Introduksjon (2) til R Matriser og matriseregning

Størrelse: px
Begynne med side:

Download "Introduksjon (2) til R Matriser og matriseregning"

Transkript

1 Introduksjon (2) til R Matriser og matriseregning Før vi ser nærmere på matriser skal vi laste ned data fra Statistikkbanken Statistisk sentralbyrå (SSB): Gå til Statistisk sentralbyrå Velg Statistikkbanken Velg + Befolkning og deretter + Fødte og døde, og så til Fødte >>. Velg tabell Levendefødte, etter mors alder. Kryss av for fylkesvis Hele landet. Sett hake for alle aldre og alle årstall. Deretter Vis tabell>> Kryss av for lagre som Excel. Rediger excel-filen fjern unødvendig tekst og alle headinger. Deretter lag en tekstfil (tab delimited) *.txt. Denne filen lagrer du i arbeidsdirektoriet for R (hjemmeområdet ditt). Deretter kan du lese den inn med read.table MB <- as.matrix(read.table("aldermorbarnv2.txt", header = FALSE)) head(mb) V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 [1,] [2,] [3,] Lager nye variabeloverskrifter, og definerer alder (age) og årstall (y). Bruk årstall avhengig av hva du laster ned fra SSB age <- 15:49 y <- 1972:2016 Setter navn på kolonner og rader: colnames(mb) <- y rownames(mb) <- age head(mb)

2 Bruker image() og konturplot contour (), filled.contour() image(age, y, MB, col = terrain.colors(12), ylab="årstall", xlab="mors alder ved første fødsel (år)") contour(age, y, MB, add = TRUE, labcex = 1) filled.contour(age, y, MB, ylab = "Årstall", xlab = "Mors alder ved første barn (år)") Fram til begynnelsen av 2000-tallet har mors alder økt ved førstegangsfødsel. Aldersstrukturen på populasjonen i Norge Gå til Statistisk sentralbyrå 2

3 Velg Statistikkbanken Velg Folketall og deretter Folkemengde og befolkningsendringer. Finn tabell Folkemengde, etter kjønn og ettårig alder. Velg Alder 1-årig. Hak av for alle aldre. Velg Kvinner og deretter alle årstall. Vis tabell og lagre den i Excel. Rediger Excel-filen ved å fjerne headinger på kolonner og rader som tidligere. Lagre den som tekstfil og les den inn i R: FK <- as.matrix(read.table("folkemettaarigkvinnerv2.txt", header = FALSE)) alder <- 0 : 105 årstall < : 2017 colnames(fk) <- årstall rownames(fk) <- alder image(alder, årstall, FK, col = terrain.colors(12), ylab = "Årstall", xlab = "Alder (år)", main = "Antall kvinner i Norge") contour(alder, årstall, FK, add = TRUE, labcex = 1) filled.contour(alder, årstall, FK, ylab = "Årstall", xlab = "Alder(år)", main = "Antall kvinner i Norge") 3

4 Årsklassen 105 år betyr 105 år og eldre. Legg merke til færre fødsler under andre verdenskrigog på 1980-tallet, samt stadig økende levealder. Tilsvarende kan gjøres for Menn, hvor man får omtrent samme resultat, men hvor man kan se at nå har det for første gang blitt flere menn enn kvinner i Norge, vesentlig grunnet immigrasjon. Lag et plot med årstall på x-aksen og summen av kolonnene på y-aksen. Denne figuren viser antall kvinner i Norge plot(1846 : 2017, colsums(fk), type = "l", lwd = 4, col = 2, xlab = "Årstall", ylab = "Antall kvinner i Norge") Antall gutter og jenter født i Norge Gitt til slutteksamen H2016 Gå til Statistisk sentralbyrå Velg Statistikkbanken, Befolkning, Fødte og døde, Fødte og 4

5 tabell 04231: Levendefødte, etter kjønn Sett hake for hele landet, Gutt og jenter, samt Vis tabell >>, samt Lagre som Excel, og deretter lagre filen på arbeidsdirektoriet. Rediger filen slik at du ender med en txt-fil som ser slik ut (bruke transpose) Årstall Gutter Jenter b <- read.table("filnavn.txt", header = TRUE) b[1:6,] Årstall Gutter Jenter Deretter lager du et plot: plot(b$årstall, b$gutter, ylim = c(20000, 35000), pch = 17, col = 4, xlab = "Årstall", ylab = "Antall levendefødte per år") points(b$årstall, b$jenter, pch = 16, col = 2) legend("topleft", c("gutter", "Jenter"), pch = c(17,16), lwd = 2, col = c(4,2)) Trekker linjer ved å bruke en glattingsfunksjon: lines(smooth.spline(b$årstall, b$gutter),lty = 1, col = 4,lwd = 2) lines(smooth.spline(b$årstall, b$jenter),lty = 1, col = 2,lwd = 2) 5

6 Konklusjon av resultatene fra egenaktivitetene? Du kan som alternativ presentere dataene med variabel Kjønn med kategoriene Gutter og Jenter Årstall Antall Kjønn Gutter Gutter Gutter plot(b$årstall, b$antall, col=c(4,2)[b$kjønn], ylim=c(20000, 35000), xlab = "Årstall", pch = c(17, 16)[b$Kjønn], ylab = "Antall levendefødte per år") Vi skal undersøke om Fishers prinsipp for kjønnsratio 1: 1 (50:50) gjelder for mennesker. Lager en ny kolonne som inneholder Ratio mellom gutter og jenter, og lag et plot av resultatet: b$ratio <- b$gutter/b$jenter plot(b$årstall, b$ratio, lwd= 3, type="b", xlab = "Årstall", ylab = "Kjønnsratio gutter/jenter") abline (h = mean(b$ratio), lwd = 2, col = 2) Alternativt plot hvis du har lest inn Er det avvik fra 50:50 forhold? Nei. Ifølge Fishers prinsipp resulterer slik mennesket resproduserer seg i et 50:50 forhold. g.m <- as.integer (mean (b$gutter)); g.m j.m <- as.integer (mean (b$jenter)); j.m binom.test(c(g.m, j.m), p = 0.5) #alternativt chisq.test(c(g.m, j.m),p=c(1/2,1/2)) Exact binomial test data: c(g.m, j.m) 6

7 number of successes = 29401, number of trials = 57241, p-value = 6.996e-11 alternative hypothesis: true probability of success is not equal to percent confidence interval: sample estimates: probability of success Chi-squared test for given probabilities data: c(g.m, j.m) X-squared = , df = 1, p-value = 6.821e-11 Tidsserieobjekt Vi kan lage et tidsserieobjekt av datasettet: b.ts <- ts(b[,-1],start = c(1972,1), frequency = 1) plot(b.ts, main= "", xlab = "Årstall", lwd=3) Matriser Lag en magisk matrise jfr. Albrecht Düreres Melencolia I med et magisk kvadrat, med innslag av alkymistenes mystikk. 7

8 Det finnes ikke noe magisk i kvadratet, men har den interessante egenskapen at tallet 34 går igjen i flere av summeringene. - Alle hjørnene summeres til 34 - De fire tallene i midten summeres til 34-3 og 2 i første rad som vender mot 15 og 14 i fjerde rad summeres til 34-5 og 9 i første kolonne som vender mot 8 og 12 i fjerde kolonne summeres til 34 - De fire kvadratene i hvert hjørne adderes til 34 - Summeres kolonnene blir dette = 34 - Summen av diagonalene blir v <- c(16, 5, 9, 4, 3, 10, 6, 15, 2, 11, 7, 14, 13, 8, 12, 1) magic <- matrix(v, nrow = 4) magic [,4] [1,] [2,] [3,] [4,] Summer kolonner og rader i matrisen: colsums(magic) [1] rowsums(magic) [1] Diagonalen til matrisen: diag(magic) [1] Summer diagonalen: sum(diag(magic)) [1] 34 Transposering av en matrise forandrer rader til kolonner og kolonner til rader: Transposer matrisen: 8

9 t(magic) [,4] [1,] [2,] [3,] [4,] Løse ligninger via matriseregning Vi skal løse følgende ligningssystem x 4y + 6z = 10 x 2y + z = 5 2x 5y + 4z = 3 Med matrisealgebra har vi: Ax = B A <- matrix(c(1, 1, 2, -4, -2, -5, 6, 1, 4), nrow = 3);A [1,] [2,] [3,] A er inverterbar, determinanten (deta) er forskjellig fra null det(a) [1] -1 B <- matrix(c(10, 5, -3), nrow = 3); B [,1] [1,] 10 [2,] 5 [3,] -3 Løser ligningsystemet solve(a, B) [,1] [1,] 124 [2,] 75 [3,] 31 Det vil si: x = 124, y = 75, z = 31 Hvis A er en kvadratisk n x n matrise og determinanten til A er forskjellig fra null så får vi en entydig løsning av Ax = B lik x=a -1 B. Hvis deta = 0 og B 0 så har Ax = B ingen eller uendelig mange løsninger. 9

10 Matriser En kolonnevektor K er en nx1 matrise med bare en kolonne. k 1 k 2 K = [ ] k n En radvektor R er en 1xn matrise med bare en rad: R = [r 1 r 2 r n] En mxn matrise A har m rader og n kolonner: a 11 a 12 a 1n a A = [ 21 a 22 a 2n ] a m1 a m2 a mn En nxn kvadratmatrise B har n rader og n kolonner a 11 a 12 a 1n a B = [ 21 a 22 a 2n ] a n1 a n2 a nn En nxn diagonalmatrise D har 0 i alle ledd bortsett fra hoveddiagonalen: a a D = [ 22 0 ] 0 0 a nn En diagonalmatrise hvor alle tallene på hoveddiagonalen er lik 1 og resten lik 0 (a ij = 1 når i = j og a ij = 0 når i j)kalles en identitetsmatrise (enhetsmatrise) av orden n (I n ) I n = [ ] 1 En matrise n x n A multiplisert (%*%) med identitetsmatrisen gir den opprinnelige matrisen: A I n = A 10

11 Lager en matrise med 3 rader, samt en 3x3 diagonalmatrise. Matrise multiplisert %*% diagonalmatrise gir den opprinnelige matrisen: A <- matrix(c(1, 1, 2, -4, -2, -5, 6, 1, 4), nrow = 3); A [1,] [2,] [3,] I3 <- diag(1, nrow = 3); I3 [1,] [2,] [3,] A %*% I3 [1,] [2,] [3,] Nullmatrisen 0 har alle tall lik 0: = [ ] 0 Matrisen A multiplisert med nullmatrisen gir en nullmatrise. I en transponert (transposert) matrise A T bytter rader og kolonner plass, men hoveddiagonalen blir lik den opprinnelige matrisen A: a 11 a 21 a m1 A T a = [ 12 a 22 a 2n ] a 1n a 2n a mn Transponerer en matrise med tallene 1:9 med t(): X <- matrix(1:9, nrow = 3); X [1,] [2,] [3,] t(x) [1,] [2,]

12 [3,] Hvis vi i stedet er en 2x3 matrise så vil den transponerte matrisen bli en 3x2 matrise: X2 <- matrix(c(1, 4, 2, 5, 3, 6), nrow = 2); X2 [1,] [2,] Transponert matrise X^T t(x2) [,1] [,2] [1,] 1 4 [2,] 2 5 [3,] 3 6 Hvis den kvadratiske transponerte nxn matrisen A T er lik den opprinnelige matrisen A har vi en symmetrisk matrise. Vi kan utføre matrisealgebra. A og B er to mxn matriser, og summen av dem A + B = B + A (kommutativ lov) blir lik summen av enkeltelementene. Tilsvarende for matrisesubtraksjon,men da A - B. a 11 a 12 a 1n b 11 b 12 b 1n a A + B = [ 21 a 22 a 2n b ] + [ 21 b 22 b 2n ] = a m1 a m2 a mn b m1 b m2 b mn a 11 + b 11 a 12 + b 12 a 1n + b 1n a = [ 21 + b 21 a 22 + b 22 a 2n + b 2n ] a m1 + b m1 a m2 + b m2 a mn+bmn X2 <- matrix(c(1, 4, 2, 5, 3, 6), nrow=2); X2 [1,] [2,] X3 <- matrix(1:6, nrow=2); X3 [1,] [2,] X2 + X3 [1,] [2,]

13 En matrise kan bli multiplisert med en skalar k ved at alle elementene i matrisen blir multiplisert med k: k <- 2 k * X2 [1,] [2,] Har vi en nxn kvadratmatrise A kan vi finne determinanten til matrisen deta. For en 2x2 matrise blir determinanten: A = [ a 11 a 12 a 21 a 22 ] A = deta = a 11 a 12 a 21 a 22 = a 11 a 22 a 12 a 21 Det vil si lik produktet av diagonalen øverst venstre - nederst høyre minus produktet diagonalen øversthøyre nederst venstre. For en 3x3 matrise M blir determinanten detm= M : a 11 a 12 a 13 M = [ a 21 a 22 a 23 ] a 31 a 32 a 33 a 11 a 12 a 13 detm = a 21 a 22 a 23 = a 11 a 22 a 23 a a 31 a 32 a 32 a a 12 a 21 a a 31 a + a 13 a 21 a a 31 a M <- matrix(c(1, 2, -2, 3, 6, 0, 0, 4, 2), nrow = 3);M [1,] [2,] [3,] Determinanten til matrisen M: det(m) [1] -24 Vi kan også regne med determinanter. De kan adderes, bli multiplisert med en skalar. Hvis vi har to nxn matriser A og B så vil: det(ab) = (deta)(detb) deta = deta T 13

14 En kvadratisk nxn matrise er singulær hvis determinanten til matrisen er lik 0: M2 <- matrix(c(2, 2, -1, 3, 6, 0, 0, 4, 2), nrow=3);m [1,] [2,] [3,] det(m2) [1] 0 Tilsvarende, for en kvadratmatrise hvor determinanten er forskjellig fra 0, så er matrisen ikke-singulær. For to nxn matriser A og B hvor AB = BA = I n så er B en invers matrise til A, og A er en invers matrise til B. Det er bare mulig å invertere en matrise hvis determinanten til matrisen er forskjellig fra null. Hvis vi har en inverterbar matrise A: så vil den inverse matrisen A -1 være lik: A = [ a 11 a 12 a 21 a 22 ] A 1 = 1 deta [ a 22 a 12 a 21 a 11 ] Hvis den transponerte nxn matrisen A T er lik den inverse matrisen A -1, (A T =A -1 )så kalles matrisen ortogonal. Vi kan løse lineære ligninger analytisk, dvs. vi trenger ikke bruke rekkereduksjon, og Gauss-Jordan eliminasjon: Identitetsmatrisen I n har 1-tall i diagonalen og 0 for resten I4 <- diag(1, nrow=4); I4 [,4] [1,] [2,] [3,] [4,]

15 En nxn matrise M er invertibel hvis det eksisterer en invers matrise M -1 og matrisemultiplisering (%*%) av disse blir lik identitetsmatrisen: M M 1 = I n M <- matrix(c(1, 1, 2, 4, 6, 4, 0, 1, 2), nrow=3); M [1,] [2,] [3,] Minv <- solve(m); Minv [1,] [2,] [3,] M%*%Minv [1,] [2,] [3,] Hvis det finnes en invertibel matrise C slik at sammenhengen med to n x n matriser K og L er slik at: K = C 1 LC så er matrisene K og L formlike. Det betyr også at matrisene K og L har like egenverdier. For eksempel diagonalmatrisen D til K har egenverdiene langs diagonalen, og K sies å være diagonaliserbar hvis diagonalmatrisen D er formlik med K. Hvis en slik nxn matrise er diagonaliserbar har den n egenvektorer som er lineært uavhengige. Vi kan finne determinanten, egenverdier, egenvektorer og den transposerte matrisen. Hvis vi har en kvadratmatrise M så vil matrisen ganger egenvektorene (ν) være lik egenverdiene (skalarverdier λ ) ganger egenvektorene: M ν = λ ν Egenverdien med størst absoluttverdi kommer først. Egenvektorer og egenverdier benyttes i stabilitetsanalyse av differensialligninger via Jacobi-matrise med partiellderiverte, i prinsipalkomponentanalyse ved multivariabel statisikk, eller i generelle likevektsstudier. I dette eksemplet blir egenverdiene og egenvektorene komplekse tall 15

16 Egenverdier og egenvektorer M <- matrix(c(1, 2, -2, 3, 6, 0, 0, 4, 2), nrow = 3);M [1,] [2,] [3,] eigen(m) $values [1] $vectors [1,] [2,] [3,] Hvis vi har en 2 x 2 matrise så vil determinanten være. Mer komplisert utregning for større tall av n: M = [ a b c d ] det(m) = a b = ad bc c d det(m) #determinant [1] -24 t(m)# transposert matrise, bytter rader og kolonner [1,] [2,] [3,] M <- matrix(c(1, 1, 2, 4, 6, 4, 0, 1, 2), nrow = 3); M [1,] [2,] [3,] colsums(m) #kolonnesum [1] rowsums(m) #radsum [1] diag(m) #diagonal [1] sum(diag(m))#sum diagonal [1] 9 rowmeans(m) #gjennomsnitt av rader [1] colmeans(m) #gjennomsnitt av kolonner [1]

17 Datarammer, as.data.frame(),data.frame() er en type matriser som kan inneholde forskjellige datatyper, men lister, list(), kan i tillegg inneholde alt mulig rart. Bruker vi oppsummering summary() kommer svaret som en liste.man kan plukke ut deler av en matrise med subset() expand.grid() kan brukes til å lage alle mulige faktorkombinasjoner, for eksempel kombinasjon av faktorene a, b og c: b <- expand.grid(list(a = seq(0, 4, 2), b = c(1, 2), c = seq(0, 1))); b a b c Skal man gjenta prosesser er det flere muligheter replicate() apply() eller løkker for(i in 1:n){FUN} hvor FUN er funksjonen som du velger å bruke apply() kan brukes på rader (MARGIN = 1) eller kolonner (MARGIN = 2) i matriser. lapply() utfører apply() på hvert element i en liste eller dataramme, og returnerer svaret som en liste. En lignende utgave er sapply(). Her et eksempel med å regne ut gjennomsnitt av 10 normalfordelte tall og gjenta dette 1000 ganger: hist(sapply(1:1000, function(x)mean(rnorm(10))), col="lightgreen", breaks=20, xlab="", main="") Man kan også gjøre det på denne måten: 17

18 hist(replicate(1000, mean(rnorm(10))), col="lightblue", breaks=20, xlab="", main="") Du kan også løse et system med ligninger hvor komplekse tall inngår (4 i)x + 2y = 3 i 2x + (4 3i)y = 2 + i A <- matrix(c(4-1*1i, 2+0*1i, 2+0*1i, 4-3*1i), nrow=2); A [,1] [,2] [1,] 4-1i 2+0i [2,] 2+0i 4-3i B <- c(3-1*1i, 2+1*1i); B [1] 3-1i 2+1i solve(a, B) [1] i i Løsningene (x, y) i kompleksplanet blir ( i, i) 18

Matriser og matriseregning

Matriser og matriseregning og matriseregning Halvor Aarnes, UiO, 2014 Matriser Innhold Matriser... 1 Determinant... 6 Ligningsystemer... 8 Matriseaddisjon og matrisesubtraksjon... 11 Matrisemultiplisering... 11 Egenverdier og egenvektorer...

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

1 Gauss-Jordan metode

1 Gauss-Jordan metode Merknad I dette Kompendiet er det gitt referanser både til læreboka og til selve Kompendiet Hvordan å gjenkjenne dem? Referansene til boka er 3- tallede, som Eks 3 Vi kan også referere til 22, kap 22 eller

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles elementer. En matrise har rader (vannrett, horisontalt)

Detaljer

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006 Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 006 Oppgave I hele oppgaven bruker vi I = 0 0 0 0. 0 0 a) Matrisen A har størrelse og B har størrelse slik at matriseproduktet A B er en

Detaljer

Minste kvadraters løsning, Symmetriske matriser

Minste kvadraters løsning, Symmetriske matriser Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

4 Matriser TMA4110 høsten 2018

4 Matriser TMA4110 høsten 2018 Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere

Detaljer

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009 Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2009 Addisjon av matriser Hvis A = [a ij ] og B = [b ij ] er matriser med samme størrelse, så er summen A + B matrisen

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles matriseelementer eller bare elementer. En matrise har

Detaljer

Matriser. Kapittel 4. Definisjoner og notasjon

Matriser. Kapittel 4. Definisjoner og notasjon Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper

Detaljer

Inverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009

Inverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009 Inverse matriser E.Malinnikova, NTNU, Institutt for matematiske fag September, 2009 Inverse 2 2 matriser En 2 2 matrise [ ] a b A = c d er inverterbar hvis og bare hvis ad bc 0, og da er [ ] A 1 1 d b

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

Regneregler for determinanter

Regneregler for determinanter Regneregler for determinanter E.Malinnikova, NTNU, Institutt for matematiske fag 6. oktober, 2010 Triangulær matriser En kvadratisk matrise A = [a ij ] kalles øvre/nedretriangulær hvis a ij = 0 når i >

Detaljer

Forelesningsnotat i Diskret matematikk 27. september 2018

Forelesningsnotat i Diskret matematikk 27. september 2018 Kvadratiske matriser Hvis en matrise A er kvadratisk kan den multipliseres med seg selv. Vi skriver vanligvis A 2 istedenfor AA, A 3 istedenfor AAA, osv. Spesielt er A 1 = A. Enhetsmatriser, også kalt

Detaljer

Pensum i lineæralgebra inneholder disse punktene.

Pensum i lineæralgebra inneholder disse punktene. Pensum i lineæralgebra inneholder disse punktene. 1) Løsning av lineære ligningssystem. Finne løsning hvis den fins og også avgjøre om løsning ikke fins. Entydig, flertydig løsning. 2) Overføre en matrise

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles matriseelementer eller bare elementer. En matrise har

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................

Detaljer

Lineær algebra. 0.1 Vektorrom

Lineær algebra. 0.1 Vektorrom Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene

Detaljer

6 Determinanter TMA4110 høsten 2018

6 Determinanter TMA4110 høsten 2018 6 Determinanter TMA4110 høsten 2018 En matrise inneholder mange tall og dermed mye informasjon så mye at det kan være litt overveldende Vi kan kondensere ned all informasjonen i en kvadratisk matrise til

Detaljer

Løsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at

Løsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at Løsning Eksamensrelevante oppgaver i ELE 379 Matematikk Vektorer, matriser og lineær algebra Dato Februar 05 Oppgave. (A) Vi leser av at A = 3 5, B = ( 0 5 ), C = 0 5 9 og har dermed at π x = Ax + BT =

Detaljer

Øving 2 Matrisealgebra

Øving 2 Matrisealgebra Øving Matrisealgebra Gå til menyen Edit Preferences... og sett Format type of new output cells til TraditionalForm hvis det ikke allerede er gjort. Start med to eksempelmatriser med samme dimensjon: In[]:=

Detaljer

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort

Detaljer

Diagonalizering. En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1

Diagonalizering. En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1 Diagonalizering En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1 1 Diagonalizering En n n matrise A sies å være diagonaliserbar hvis den er similær med

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta

Detaljer

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1

Detaljer

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og EGENVERDIER FOR MATRISER a Motiverende eksempel En by i USA har 0000 innbyggere som stemmer ved valget hvert år. I dag stemmer 8000 for R og 000 for D. Hvert år går 30% fra R til D og 0% fra D til R. Hva

Detaljer

Løsningsforslag MAT 120B, høsten 2001

Løsningsforslag MAT 120B, høsten 2001 Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()

Detaljer

Diagonalisering. Kapittel 10

Diagonalisering. Kapittel 10 Kapittel Diagonalisering I te kapitlet skal vi anvende vår kunnskap om egenverdier og egenvektorer til å analysere matriser og deres tilsvarende lineærtransformasjoner Eksempel Vi begynner med et eksempel

Detaljer

LO510D Lin.Alg. m/graf. anv. Våren 2005

LO510D Lin.Alg. m/graf. anv. Våren 2005 TF Høgskolen i Sør Trøndelag Avdeling for informatikk og e læring LO5D Lin.Alg. m/graf. anv. Våren 5 Løsningsforslag Eksamen a) Setter α = og β = i ligningssystemet og gausseliminerer totalmatrisen til

Detaljer

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T. Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen

Detaljer

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015 Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: Mandag 5 desember 2016 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg:

Detaljer

Øving 3 Determinanter

Øving 3 Determinanter Øving Determinanter Determinanten til en x matrise er definert som Clear@a, b, c, dd K a b OF c d ad -bc Determinanten til en matrise er derfor et tall. Du skal se at det viktige for oss er om tallet er

Detaljer

7.4 Singulærverdi dekomposisjonen

7.4 Singulærverdi dekomposisjonen 7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon

Detaljer

MAT1120 Repetisjon Kap. 1, 2 og 3

MAT1120 Repetisjon Kap. 1, 2 og 3 MAT1120 Repetisjon Kap. 1, 2 og 3 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Fra kap. 1 repeterer vi: Matriser Vektorer og lineære kombinasjoner Lineæravbildninger

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av

Detaljer

Determinanter til 2 2 og 3 3 matriser

Determinanter til 2 2 og 3 3 matriser Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A = er c d det(a) = a b c d = ad bc. 1 Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A =

Detaljer

6.4 Gram-Schmidt prosessen

6.4 Gram-Schmidt prosessen 6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig

Detaljer

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2 Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som

Detaljer

MAT Prøveeksamen 29. mai - Løsningsforslag

MAT Prøveeksamen 29. mai - Løsningsforslag MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Repetisjon: Om avsn og kap. 3 i Lay

Repetisjon: Om avsn og kap. 3 i Lay Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert

Detaljer

Eksamensoppgave MAT juni 2010 (med løsningsforslag)

Eksamensoppgave MAT juni 2010 (med løsningsforslag) Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6

Detaljer

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer.

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. Kapittel 2 Matriser I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. 2.1 Definisjoner og regneoperasjoner

Detaljer

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer: 5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.

Detaljer

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0 TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x

Detaljer

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og

Detaljer

MAT UiO. 10. mai Våren 2010 MAT 1012

MAT UiO. 10. mai Våren 2010 MAT 1012 MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer

Detaljer

Løsningsforslag øving 6

Løsningsforslag øving 6 Løsningsforslag øving 6 7 Husk Teorem 79 i notatet: En delmengde U av et vektorrom V er et underrom hvis ) nullvektoren er i U, ) summen av to vektorer i U er i U igjen, og 3) et skalarmultiplum av en

Detaljer

Repetisjon: om avsn og kap. 3 i Lay

Repetisjon: om avsn og kap. 3 i Lay Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet

Detaljer

Lineære likningssett.

Lineære likningssett. Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,

Detaljer

Forelesning 10 Cramers regel med anvendelser

Forelesning 10 Cramers regel med anvendelser Forelesning 10 Cramers regel med anvendelser Eivind Eriksen 25. mars 2010 Lineære likningssystemer Vi minner om at ethvert lineært likningssystem Ax = b kan løses ved hjelp av Gauss eliminasjon, som er

Detaljer

Lineære ligningssystem og matriser

Lineære ligningssystem og matriser Lineære ligningssystem og matriser E.Malinnikova, NTNU, Institutt for matematiske fag September 15, 2009 Lineære ligningssystem Vi har et ligningssystem av m ligninger med n ukjente x 1,..., x n som kan

Detaljer

Matriser og Kvadratiske Former

Matriser og Kvadratiske Former Eivind Eriksen Matriser og Kvadratiske Former 15 mars 2012 Handelshøyskolen BI Innhold 1 Matriser og vektorer 1 11 Matriser 1 12 Matriseaddisjon 2 13 Matrisesubtraksjon 3 14 Skalarmultiplikasjon 3 15

Detaljer

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1 Eksamen i ELE79 - Matematikk valgfag Torsdag 8. mai 07 LØSNINGFORSLAG Oppgave (a) Den utvidede matrisen til likningssystemet er 6 Gausseliminasjon: ganger rad I legges til rad II: 0 0 Rad I trekkes fra

Detaljer

Løsningsforslag for eksamen i Matematikk 3 - TMA4115

Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5) Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er

Detaljer

13 Oppsummering til Ch. 5.1, 5.2 og 8.5

13 Oppsummering til Ch. 5.1, 5.2 og 8.5 3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne

Detaljer

MAT-1004 Vårsemester 2017 Obligatorisk øving 2

MAT-1004 Vårsemester 2017 Obligatorisk øving 2 MAT-1004 Vårsemester 2017 Obligatorisk øving 2 Contents 1 OPPGAVE 2 2 OPPGAVE 2 Eksempler 4.1 Oppgave 1............................... 4.2 Oppgave 2............................... 5 4 Formatering av svarene

Detaljer

Egenverdier og egenvektorer

Egenverdier og egenvektorer Kapittel 9 Egenverdier og egenvektorer Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer Hvis A er en m n-matrise, så gir A en transformasjon

Detaljer

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009.

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 Løsningsforslag til eksamen i MA/MA6 Lineær algebra med anvendelser høsten 9 Oppgave a) Rangen til A er lik antallet

Detaljer

LØSNINGSSKISSE TIL EKSAMEN I FAG SIF august 2001

LØSNINGSSKISSE TIL EKSAMEN I FAG SIF august 2001 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSSKISSE TIL EKSAMEN I FAG SIF500 0. august 00 Oppgave 5 +6 ( 4 +6)0 dvs. at vi har en rot 0 og 4 røtter av

Detaljer

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 25 2. januar 25 EKSAMENSOPPGAVER FOR TMA4/TMA45 MATEMATIKK 3 Oppgave A- a) Finn kvadratrøttene til det komplekse tallet

Detaljer

Oppgaver til seksjon med fasit

Oppgaver til seksjon med fasit Oppgaver til seksjon 4.-4.5 med fasit Oppgaver til seksjon 4.. Finn alle løsningene til ligningssystemet x + y z = x + y z = x + y + z =. Finn alle løsningene til ligningssystemet x y + z = x y = 4 x +

Detaljer

Elementær Matriseteori

Elementær Matriseteori Elementær Matriseteori Magnus B. Botnan NTNU 3. august, 2015 Kursinfo - Foreleser: Magnus B. Botnan http://www.math.ntnu.no/~botnan/ - Hjemmeside: https: //wiki.math.ntnu.no/tma4110/2015h/forkurs/start

Detaljer

Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise

Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise E.Malinnikova, NTNU, Institutt for matematiske fag 19. september 2011 Lineære ligningssystem Vi har et ligningssystem av m ligninger med

Detaljer

Øving 5 Diagonalisering

Øving 5 Diagonalisering Øving 5 Diagonalisering En matrise A er diagonaliserbar dersom den er similær med en diagonalmatrise, dvs. det eksisterer en invertibel matrise P og diagonal matrise D slik at P.D.P -1. I øving 4 lærte

Detaljer

Forelesning i Matte 3

Forelesning i Matte 3 Forelesning i Matte 3 Determinanter H. J. Rivertz Institutt for matematiske fag 1. februar 008 Innhold 1. time 1 Determinanter og elementære radoperasjoner Innhold 1. time 1 Determinanter og elementære

Detaljer

Eksamensoppgave i TMA4110/TMA4115 Calculus 3

Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Institutt for matematiske fag Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Faglig kontakt under eksamen: Markus Szymik Tlf: 411 16 793 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Kap. 6 Ortogonalitet og minste kvadraters problemer

Kap. 6 Ortogonalitet og minste kvadraters problemer Kap. 6 Ortogonalitet og minste kvadraters problemer vanlig indreprodukt (prikkprod.) i IR n, egenskaper. ortogonalitet i IR n Pythagoras teorem: u og v i IR n er ortogonale hvis og bare hvis u + v 2 =

Detaljer

EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER

EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Truls Fretland (73 55 89 87) EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER LØSNINGSFORSLAG

Detaljer

Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på

Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Kap. 7 Innledning Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Symmetriske matriser. Disse matrisene har uvanlig pene egenskaper mht. diagonalisering. Kvadratiske

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 23.08.2015 Fjerde utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er løsing av linære likningsystem enkelt, men det blir fort veldig

Detaljer

TMA Kræsjkurs i Matlab. Oppgavesett 1/3

TMA Kræsjkurs i Matlab. Oppgavesett 1/3 TMA4123 - Kræsjkurs i Matlab. Oppgavesett 1/3 22.02.2013 Dette oppgavesettet omhandler grunnleggende Matlab-funksjonalitet, slik som variabler, matriser, matematiske funksjoner og plotting. Den aller viktigste

Detaljer

Løsningsforslag øving 9, ST1301

Løsningsforslag øving 9, ST1301 Løsningsforslag øving 9, ST1301 Oppgave 1 Regresjon. Estimering av arvbarhet. a) Legg inn din egen høyde, din mors høyde, din fars høyde, og ditt kjønn via linken på fagets hjemmeside 1. Last så ned dataene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet

Detaljer

Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11.

Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11. Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11. utgave Jonas Tjemsland 19. november 2014 1 Lineære likningssystemer

Detaljer

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4122/TMA410 Matematikk 4M/4N Høsten 2010 1 Oppgave: Løs følgende ligningssystemer ved hjelp av Gauss-eliminasjon med delvis

Detaljer

Kap. 7 Symmetriske matriser og kvadratiske former

Kap. 7 Symmetriske matriser og kvadratiske former Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.

Detaljer

MA2501, Vårsemestre 2019, Numeriske metoder for lineære systemer

MA2501, Vårsemestre 2019, Numeriske metoder for lineære systemer MA5 Vårsemestre 9 Numeriske metoder for lineære systemer Introduksjon Vi vil approksimere løsningen av lineære systemet av n ligningene og n ukjente: a x + a x + + a n x n b a x + a x + + a n x n b ()

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Lineær algebra Eksamensdag: Mandag,. desember 7. Tid for eksamen: 4. 8.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Numerisk lineær algebra

Numerisk lineær algebra Numerisk lineær algebra Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 29. Oktober 2007 Problem og framgangsmåte Vi vil løse A x = b, b, x R N,

Detaljer

Homogene lineære ligningssystem, Matriseoperasjoner

Homogene lineære ligningssystem, Matriseoperasjoner Homogene lineære ligningssystem, Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2010 Antall løsninger til et lineær ligningssystem Teorem Et lineært ligningssytem har

Detaljer

7.1 forts. Schur triangularisering og spektralteoremet

7.1 forts. Schur triangularisering og spektralteoremet 7.1 forts. Schur triangularisering og spektralteoremet Vi skal vise to svært sentrale resultat i lineær algebra. Spektralteoremet (Teorem 3 i Lay): dette sier bl.a. at reelle symmetriske matriser er ortogonalt

Detaljer

16 Ortogonal diagonalisering

16 Ortogonal diagonalisering Ortogonal diagonalisering Ortogonale matriser Definisjon (Def 7) En n n matrise A kalles ortogonal dersom den er invertibel og A A T Denne betingelsen er ekvivalent til at der I n er n n identitesmatrisen

Detaljer

Eksamensoppgave i TMA4115 Matematikk 3

Eksamensoppgave i TMA4115 Matematikk 3 Institutt for matematiske fag Eksamensoppgave i TMA45 Matematikk 3 Faglig kontakt under eksamen: Aslak Bakke Buan a, Morten Andreas Nome b, Tjerand Silde c Tlf: a mobil Aslak, b mobil Morten, c mobil Tjerand

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

Egenverdier for 2 2 matriser

Egenverdier for 2 2 matriser Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier

Detaljer

Oppgaver til seksjon med fasit

Oppgaver til seksjon med fasit Oppgaver til seksjon.6-. med fasit Oppgaver til seksjon.6. Skriv b som en lineærkombinasjon av a og a når a = ( ( a = og b =.. Skriv b som en lineærkombinasjon av a, a og a når a = a =, a = og b = 5. (.

Detaljer