Øving 2 Matrisealgebra

Størrelse: px
Begynne med side:

Download "Øving 2 Matrisealgebra"

Transkript

1 Øving Matrisealgebra Gå til menyen Edit Preferences... og sett Format type of new output cells til TraditionalForm hvis det ikke allerede er gjort. Start med to eksempelmatriser med samme dimensjon: In[]:= B= ; ; - (Setter du semikolon etter linjene, vises ikke output. Den er jo egentlig uinteressant, da den gjentar input). Addisjon av matriser Her summeres elementvis.det samme gjelder subtraksjon. Eneste krav er at alle matriser har like mange rader og søyler. Sjekk svarene! A+B A-B Multiplikasjon med konstant Her multipliseres også elementvis. A 6-9 Subtraksjon kan derfor oppfattes som addisjon med negativ matrise A + H- BL Matrisemultiplikasjon Her multipliseres ikke elementvis. Hver rad i A multipliseres med hver kolonne i B som i et skalarprodukt, hvor raden i A oppfattes som radvektor og søylen i B som kolonnevektor. For at Mathematica skal forstå at vi mener matrisemultiplikasjon, må du sette et punktum (dot) mellom A og B. (Uttrykket AB uten dot gir elementvis multiplikasjon, men dette er uten betydning for oss).

2 Øving uke.nb Her multipliseres ikke elementvis. Hver rad i A multipliseres med hver kolonne i B som i et skalarprodukt, hvor raden i A oppfattes som radvektor og søylen i B som kolonnevektor. For at Mathematica skal forstå at vi mener matrisemultiplikasjon, må du sette et punktum (dot) mellom A og B. (Uttrykket AB uten dot gir elementvis multiplikasjon, men dette er uten betydning for oss). A.B Øv deg på å gjennomføre beregningen av matriseproduktet for hånd. For eksempel vil tallet i posisjon (,) framkomme ved skalarproduktet mellom rad i A og kolonne i B: 8,, <.8-,, < Når du regner med vanlige tall, spiller rekkefølgen ingen rolle. + = + =, * = * = 6. Vi sier at algebraen med reellle tall er kommutativ. NB! Matrisemultiplikasjon er generelt ikke kommutativ. Derfor er rekkefølgen viktig fordi A.B ¹ B.A. Bare unntaksvis er disse produktene like. Dette er derfor til stor forskjell fra den multiplikasjonen med reelle tall du er vant til. Vi sjekker med eksemplet ovenfor: B.A A.B B.A False Matrisemultiplikasjon er ikke begrenset til kvadratiske matriser. Men operasjonen kan bare gjennomføres når antall kolonner i A matcher antar rader i B. Ellers går ikke skalarproduktene i hop. En matrise A med dimensjon m x n kan multipliseres med en matrise B med dimensjon n x r. Resultatet er en matrise A.B med dimensjon m x r. Dersom r ¹ m, er ikke produktet B.A definert. A.B - ; B=K O; - B.A Her var m = r =, n =, så begge muliplikasjoner var mulige. Men igjen ser du at svarene er forskjellige. Matrisepotensering Dette er et spesialtilfelle av matrisemultiplikasjon, hvor B = A. Du kan multiplisere matrisen A med seg selv k ganger ved kommandoen MatrixPower[A,k]

3 Øving uke.nb Dette er et spesialtilfelle av matrisemultiplikasjon, hvor B = A. Du kan multiplisere matrisen A med seg selv k ganger ved kommandoen MatrixPower[A,k] In[]:= Out[]= MatrixPower@A, D Du kan selvfølgelig bruke dot - notasjonen, men dette er lite hensiktsmessig når eksponenten er høy. In[]:= Out[]= A.A.A Legg merke til at i tekst vil vi naturlig skrive A for å beregne A.A.A. I Mathematicakode vil derimot uttrykket A bety at alle elementer i A blir opphøyd i tredje potens. Dette er ikke matrisemultiplikasjon. In[]:= Out[]= A Unntaket er diagonalmatriser. Der vil matrisemultiplikasjon være det samme som å multiplisere de enkelte elementene In[8]:= D = DiagonalMatrix@8,, <D D = DiagonalMatrix@8,, 6<D D.D Out[8]= Out[9]= 6 Out[]= 8 In[6]:= Out[6]= In[7]:= Out[7]= D 8 7 MatrixPower@D, D 8 7 Matrisetransponering Matrisealgebraen har en regneoperasjon som ikke finnes blant de reelle tall, kalt transponering. Det betyr ganske enkelt at du bytter om rader og kolonner. Den transponerte matrise skrives AT i vanlig litteratur, men Mathematica betegner den Transpose[A]

4 Øving uke.nb Matrisealgebraen har en regneoperasjon som ikke finnes blant de reelle tall, kalt transponering. Det betyr ganske enkelt at du bytter om rader og kolonner. Den transponerte matrise skrives AT i vanlig litteratur, men Mathematica betegner den Transpose[A] A Transpose@AD - - Dersom AT, sies matrisen å være symmetrisk. Symmetriske matriser har spesielle egenskaper som viser seg spesielt nyttige i anvendelser. Mer om dette seinere. K O; A Transpose@AD True Matriseinvertering Det gir ikke mening i å snakke om divisjon av matriser. Men for kvadratiske matriser A finnes en matrise A- som tilsvarer den resiproke verdien a- = a av et reelt tall a ¹. Vi har at a- a =, der er identitetselementet på den reelle tallinjen. Vi definerer A- slik at A-. A.A- = I, der I er identitetsmatrisen av samme dimensjon som A. Den består av bare enere på diagonalen, og nuller ellers. Dette er altså et av unntakene der multiplikasjonen er kommutativ. IdentityMatrix@D Inverse@AD.A Løsning av likningssett Vi vil fortsette eksemplet fra øving og skriver inn ( eller kopierer) matrisen A og vektoren b ; - b = 7 ; - Vi vil løse likningssystemet A.x = b. Husk at venstre side indikerer matrisemultiplikasjon. Multipliserer vi likningen A.x = b fra venstre med A-, får vi : A-. A. x = I. x = x = A-. b

5 Vi vil løse likningssystemet A.x = b. Husk at venstre side indikerer matrisemultiplikasjon. Multipliserer vi likningen A.x = b fra venstre med A-, får vi : Øving uke.nb A-. A. x = I. x = x = A-. b Straks vi har bestemt den inverse matrisen A-, kan vi lett finne løsningene på likningssystemet ved en enkelt matrisemultiplikasjon: x = Inverse@AD.b Denne metoden er implementert i programmet ved koden LinearSolve : LinearSolve@A, bd Denne løsningsmetoden er derfor et alternativ til den algoritmiske løsningen ved Gausseleiminasjon som vi benyttet i øving. Men dersom matrisen har dimensjon n > vil du kanskje benytte Gausseliminasjon for å finne den inverse matrisen, og da er løsningsmetodene bare variasjoner over samme metode. ( Det finnes en annen metode for å beregne inverse matriser kalt kofaktormetoden. Enda et løsningsalternativ er å bruke Cramer s regel, som gir en formel for løsningene uttrykt ved determinanter. Se øving.) Den inverse matrisen finner vi enklest ved å skrive A på redusert trappeform og gjennomføre nøyaktig de samme rekkeoperasjoner underveis på identitetsmatrisen I. Vi utvider derfor matrisen A til sammensetningen {A I} og foretar Gausseliminasjon på den sammensatte matrisen: m = ArrayFlatten@88A, IdentityMatrix@D<<D - RowReduce@mD Når A er redusert til I, vil I være tilsvarende omformet til A-. Høyre del av kombinasjonen er derfor den søkte inverse matrisen A-. Mathematica benytter innebygde algoritmer for å beregne den inverse matrisen, så vi kan sjekke svaret ved å sammenlikne med programmets interne beregningsrutine: Inverse@AD Bare kvadratiske matirser kan inverteres. Det ser du av den reduserte trappeformen til A, enhetsmatrisen er diagonal og derfor kvadratisk. En annen måte å forstå det på, er at et likningssett har bare entydig løsning når du har like mange likninger som ukjente. Det krever en kvadratisk koeffisientmatrise. I øving vil du lære at selv kvadratiske matriser ikke nødvendigvis er invertible. (Likningssettene kan være selvmotsigende).

6 6 Øving uke.nb Oppgave Gitt matrisene - - ; B = K O; - - Hvilke operasjoner er gyldige? Tenk gjennom svarene før du sjekker med programmet. Ugyldige operasjoner gir feilmeldinger. A.A A.B B.B B.A BT B- A.BT Oppgave Invertering av x matriser kan gjøres via en formel. K a b O c d Beregn A-. Resultatet kan du pugge som en formel, så slipper du Gausseliminasjon i dette tilfellet. Hvilke krav må du stille til elementene a,b,cog d? Oppgave Løs likningssystemet A.x = b der - - ; b= - ;

4 Matriser TMA4110 høsten 2018

4 Matriser TMA4110 høsten 2018 Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere

Detaljer

Øving 3 Determinanter

Øving 3 Determinanter Øving Determinanter Determinanten til en x matrise er definert som Clear@a, b, c, dd K a b OF c d ad -bc Determinanten til en matrise er derfor et tall. Du skal se at det viktige for oss er om tallet er

Detaljer

Matriser. Kapittel 4. Definisjoner og notasjon

Matriser. Kapittel 4. Definisjoner og notasjon Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Elementær Matriseteori

Elementær Matriseteori Elementær Matriseteori Magnus B. Botnan NTNU 3. august, 2015 Kursinfo - Foreleser: Magnus B. Botnan http://www.math.ntnu.no/~botnan/ - Hjemmeside: https: //wiki.math.ntnu.no/tma4110/2015h/forkurs/start

Detaljer

Lineære likningssett.

Lineære likningssett. Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,

Detaljer

Øving 4 Egenverdier og egenvektorer

Øving 4 Egenverdier og egenvektorer Øving Egenverdier og egenvektorer En egenvektor til en matrise A er løsning av likningen A.x = Λ x hvor Λ er en konstant. Det betyr at virkningan av å multiplisere en matirse med en vektor gir en ny vektor

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles elementer. En matrise har rader (vannrett, horisontalt)

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles matriseelementer eller bare elementer. En matrise har

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles matriseelementer eller bare elementer. En matrise har

Detaljer

Repetisjon: Om avsn og kap. 3 i Lay

Repetisjon: Om avsn og kap. 3 i Lay Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert

Detaljer

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer.

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. Kapittel 2 Matriser I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. 2.1 Definisjoner og regneoperasjoner

Detaljer

Forelesningsnotat i Diskret matematikk 27. september 2018

Forelesningsnotat i Diskret matematikk 27. september 2018 Kvadratiske matriser Hvis en matrise A er kvadratisk kan den multipliseres med seg selv. Vi skriver vanligvis A 2 istedenfor AA, A 3 istedenfor AAA, osv. Spesielt er A 1 = A. Enhetsmatriser, også kalt

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

MAT1120 Repetisjon Kap. 1, 2 og 3

MAT1120 Repetisjon Kap. 1, 2 og 3 MAT1120 Repetisjon Kap. 1, 2 og 3 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Fra kap. 1 repeterer vi: Matriser Vektorer og lineære kombinasjoner Lineæravbildninger

Detaljer

Repetisjon: om avsn og kap. 3 i Lay

Repetisjon: om avsn og kap. 3 i Lay Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet

Detaljer

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009 Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2009 Addisjon av matriser Hvis A = [a ij ] og B = [b ij ] er matriser med samme størrelse, så er summen A + B matrisen

Detaljer

Gauss-eliminasjon og matrisemultiplikasjon

Gauss-eliminasjon og matrisemultiplikasjon DUMMY Gauss-eliminasjon og matrisemultiplikasjon Lars Sydnes 9 september 2015 Sammendrag Dette notatet handler om hvordan man løser lineære ligningssystemer, altså systemer av flere ligninger i flere ukjente,

Detaljer

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort

Detaljer

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b)

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b) Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Fredag 05. februar 2016 kl 14:00 Antall oppgaver: 5 Løsningsforslag 1 Vi denerer noen matriser A [ 1 5 2 0 B [ 1

Detaljer

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2 Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

LO510D Lin.Alg. m/graf. anv. Våren 2005

LO510D Lin.Alg. m/graf. anv. Våren 2005 TF Høgskolen i Sør Trøndelag Avdeling for informatikk og e læring LO5D Lin.Alg. m/graf. anv. Våren 5 Løsningsforslag Eksamen a) Setter α = og β = i ligningssystemet og gausseliminerer totalmatrisen til

Detaljer

tma4110 Matematikk 3 Notater høsten 2018 Øystein Skartsæterhagen Morten Andreas Nome Paul Trygsland

tma4110 Matematikk 3 Notater høsten 2018 Øystein Skartsæterhagen Morten Andreas Nome Paul Trygsland tma4 Matematikk Notater høsten 8 Øystein Skartsæterhagen Morten Andreas Nome Paul Trygsland Innhold Introduksjon ii Lineære likningssystemer Gausseliminasjon 4 Vektor- og matriselikninger 8 4 Matriser

Detaljer

1 Gauss-Jordan metode

1 Gauss-Jordan metode Merknad I dette Kompendiet er det gitt referanser både til læreboka og til selve Kompendiet Hvordan å gjenkjenne dem? Referansene til boka er 3- tallede, som Eks 3 Vi kan også referere til 22, kap 22 eller

Detaljer

Øving 5 Diagonalisering

Øving 5 Diagonalisering Øving 5 Diagonalisering En matrise A er diagonaliserbar dersom den er similær med en diagonalmatrise, dvs. det eksisterer en invertibel matrise P og diagonal matrise D slik at P.D.P -1. I øving 4 lærte

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

Forelesning 10 Cramers regel med anvendelser

Forelesning 10 Cramers regel med anvendelser Forelesning 10 Cramers regel med anvendelser Eivind Eriksen 25. mars 2010 Lineære likningssystemer Vi minner om at ethvert lineært likningssystem Ax = b kan løses ved hjelp av Gauss eliminasjon, som er

Detaljer

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006 Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 006 Oppgave I hele oppgaven bruker vi I = 0 0 0 0. 0 0 a) Matrisen A har størrelse og B har størrelse slik at matriseproduktet A B er en

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som

Detaljer

Pensum i lineæralgebra inneholder disse punktene.

Pensum i lineæralgebra inneholder disse punktene. Pensum i lineæralgebra inneholder disse punktene. 1) Løsning av lineære ligningssystem. Finne løsning hvis den fins og også avgjøre om løsning ikke fins. Entydig, flertydig løsning. 2) Overføre en matrise

Detaljer

MAT1120 Repetisjon Kap. 1

MAT1120 Repetisjon Kap. 1 MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer

Detaljer

12 Projeksjon TMA4110 høsten 2018

12 Projeksjon TMA4110 høsten 2018 Projeksjon TMA0 høsten 08 En projeksjon er en lineærtransformasjon P som tilfredsstiller P x = P x for alle x Denne ligningen sier at intet nytt skjer om du benytter lineærtransformasjonen for andre gang,

Detaljer

Løsningsforslag øving 6

Løsningsforslag øving 6 Løsningsforslag øving 6 7 Husk Teorem 79 i notatet: En delmengde U av et vektorrom V er et underrom hvis ) nullvektoren er i U, ) summen av to vektorer i U er i U igjen, og 3) et skalarmultiplum av en

Detaljer

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0 TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x

Detaljer

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015 Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c

Detaljer

8 Vektorrom TMA4110 høsten 2018

8 Vektorrom TMA4110 høsten 2018 8 Vektorrom TMA4 høsten 8 I de foregående kapitlene har vi tatt en lang vandring gjennom den lineære algebraens jungel. Nå skal vi gå opp på en fjelltopp og skue ut over landskapet vi har vandret gjennom.

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer?

Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer? Kapittel 7 Vektorrom Vårt mål i dette kapitlet og det neste er å generalisere og abstrahere ideene vi har jobbet med til nå Især skal vi stille spørsmålet Hva er en vektor? Svaret vi skal gi, vil virke

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 23.08.2015 Fjerde utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er løsing av linære likningsystem enkelt, men det blir fort veldig

Detaljer

Lineærtransformasjoner

Lineærtransformasjoner Kapittel 8 Lineærtransformasjoner I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Matriser. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Matriser. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 8 Matriser Løsningsforslag Oppgave 1 Redusert trappeform og løsning av lineære likningssystemer a) Totalmatrisa blir Vi tilordner dette i MATLAB: 5 1 1

Detaljer

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1

Detaljer

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7. MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................

Detaljer

Fasit til utvalgte oppgaver MAT1110, uka 13/4-16/4

Fasit til utvalgte oppgaver MAT1110, uka 13/4-16/4 Fasit til utvalgte oppgaver MAT0, uka /4-6/4 Øyvind Ryan oyvindry@i.uio.no April, 00 Oppgave 4.8. a Bytt om første og andre rad. b Legg til ganger rad til rad. c Bytt om første og andre rad. d Legg til

Detaljer

Egenverdier for 2 2 matriser

Egenverdier for 2 2 matriser Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier

Detaljer

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden Avsnitt. Oppgave Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen a) 7 går opp i 68 siden 68 7 b)

Detaljer

Det viktigste dataelementet som MATLAB benytter, er matriser, som også gjerne betegnes arrays.

Det viktigste dataelementet som MATLAB benytter, er matriser, som også gjerne betegnes arrays. Kapittel 5 Matriseoperasjoner Det viktigste dataelementet som MATLAB benytter, er matriser, som også gjerne betegnes arrays. I det etterfølgende vil begrepet vektor bli benyttet enkelte steder som betegnelse

Detaljer

Homogene lineære ligningssystem, Matriseoperasjoner

Homogene lineære ligningssystem, Matriseoperasjoner Homogene lineære ligningssystem, Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2010 Antall løsninger til et lineær ligningssystem Teorem Et lineært ligningssytem har

Detaljer

Forelesning i Matte 3

Forelesning i Matte 3 Forelesning i Matte 3 Determinanter H. J. Rivertz Institutt for matematiske fag 1. februar 008 Innhold 1. time 1 Determinanter og elementære radoperasjoner Innhold 1. time 1 Determinanter og elementære

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

Lineær algebra. H. Fausk

Lineær algebra. H. Fausk Lineær algebra H. Fausk 11.02.2016 Sjuende utkast Flere lineære likninger som samtidig skal oppfylles kalles lineære likningssystem. I prinsippet er løsing av lineære likningsystem enkelt, det benytter

Detaljer

MAT1120 Plenumsregningen torsdag 26/8

MAT1120 Plenumsregningen torsdag 26/8 MAT1120 Plenumsregningen torsdag 26/8 Øyvind Ryan (oyvindry@i.uio.no) August 2010 Innføring i Matlab for dere som ikke har brukt det før Vi skal lære følgende ting i Matlab: Elementære operasjoner Denere

Detaljer

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og

Detaljer

7.4 Singulærverdi dekomposisjonen

7.4 Singulærverdi dekomposisjonen 7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta

Detaljer

Matriser og Kvadratiske Former

Matriser og Kvadratiske Former Eivind Eriksen Matriser og Kvadratiske Former 15 mars 2012 Handelshøyskolen BI Innhold 1 Matriser og vektorer 1 11 Matriser 1 12 Matriseaddisjon 2 13 Matrisesubtraksjon 3 14 Skalarmultiplikasjon 3 15

Detaljer

Løsningsforslag øving 7

Løsningsforslag øving 7 Løsningsforslag øving 7 8 Husk at en funksjon er injektiv dersom x y gir f(x) f(y), men her ser vi at f(3) 9 f( 3), eller generelt at f(z) z f( z) for alle z C, som betyr at f ikke er injektiv Vi ser også

Detaljer

Lineær algebra. 0.1 Vektorrom

Lineær algebra. 0.1 Vektorrom Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene

Detaljer

18. (og 19.) september 2012

18. (og 19.) september 2012 Institutt for geofag Universitetet i Oslo 18. (og 19.) september 2012 Litt repetisjon: Array En array er en variabel som inneholder flere objekter (verdier) En endimensjonal array er en vektor En array

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium i MAT00 Matematikk Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT00! Selv om

Detaljer

Prosent- og renteregning

Prosent- og renteregning FORKURSSTART Prosent- og renteregning p prosent av K beregnes som p K 100 Eksempel 1: 5 prosent av 64000 blir 5 64000 =5 640=3200 100 p 64000 Eksempel 2: Hvor mange prosent er 9600 av 64000? Løs p fra

Detaljer

Løsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at

Løsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at Løsning Eksamensrelevante oppgaver i ELE 379 Matematikk Vektorer, matriser og lineær algebra Dato Februar 05 Oppgave. (A) Vi leser av at A = 3 5, B = ( 0 5 ), C = 0 5 9 og har dermed at π x = Ax + BT =

Detaljer

Øvingsforelesning TDT4105 Matlab

Øvingsforelesning TDT4105 Matlab Øvingsforelesning TDT4105 Matlab Øving 2. Pensum: Funksjoner, matriser, sannhetsuttrykk, if-setninger. Benjamin A. Bjørnseth 8. september 2015 2 Innhold Funksjoner Matriser Matriseoperasjoner Sannhetsuttrykk

Detaljer

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009.

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 Løsningsforslag til eksamen i MA/MA6 Lineær algebra med anvendelser høsten 9 Oppgave a) Rangen til A er lik antallet

Detaljer

Regneregler for determinanter

Regneregler for determinanter Regneregler for determinanter E.Malinnikova, NTNU, Institutt for matematiske fag 6. oktober, 2010 Triangulær matriser En kvadratisk matrise A = [a ij ] kalles øvre/nedretriangulær hvis a ij = 0 når i >

Detaljer

Emne 10 Litt mer om matriser, noen anvendelser

Emne 10 Litt mer om matriser, noen anvendelser Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag Oppgave 1 Vektorer a) Variablene i MATLAB kan være tall, vektorer eller matriser. Vi kan for eksempel gi vektoren x = [1, 0, 3] på denne

Detaljer

Dynamiske systemer. Kapittel Diskrete dynamiske systemer

Dynamiske systemer. Kapittel Diskrete dynamiske systemer I _ j j * Kapittel Dynamiske systemer Mange fenomener innen naturvitenskap kan beskrives med det som i matematisk teori kalles et dynamisk system Felles for alle dynamiske systemer er at vi betrakter et

Detaljer

Lineær algebra. H. Fausk

Lineær algebra. H. Fausk Lineær algebra H. Fausk 04.02.2016 Sjuende utkast Lineære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er løsing av lineære likningsystem enkelt, det benytter bare de

Detaljer

Arne B. Sletsjøe. Kompendium, MAT 1060

Arne B. Sletsjøe. Kompendium, MAT 1060 Arne B. Sletsjøe Kompendium, MAT 6 Innhold Dynamiske systemer 4. Diskrete dynamiske systemer..................................... 4. Lukkede dynamiske systemer..................................... 8. Oppgaver

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente Oppvarming Her er et eksempel på et

Detaljer

En rekke av definisjoner i algebra

En rekke av definisjoner i algebra En rekke av definisjoner i algebra Martin Strand, martin.strand@math.ntnu.no 11. november 2010 Definisjonene som er gitt her, kommer i MA2201 Algebra og MA3201 Ringer og moduler. Forhåpentligvis blir det

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av

Detaljer

CAS GeoGebra. Innhold. Matematikk for ungdomstrinnet

CAS GeoGebra. Innhold. Matematikk for ungdomstrinnet CAS GeoGebra Innhold CAS GeoGebra... 1 REGNING MED CAS-VERKTØYET... 2 Rette opp feil, slette linjer... 3 Regneuttrykk... 4 FAKTORISERE TALL... 4 BRØK... 4 Blandet tall... 5 Regneuttrykk med brøk... 5 POTENSER...

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu. 1 TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.no 2 Frist for øving 1: Fredag 11. Sept. Noen oppstartsproblemer

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1 Eksamen i ELE79 - Matematikk valgfag Torsdag 8. mai 07 LØSNINGFORSLAG Oppgave (a) Den utvidede matrisen til likningssystemet er 6 Gausseliminasjon: ganger rad I legges til rad II: 0 0 Rad I trekkes fra

Detaljer

MAT1030 Forelesning 28

MAT1030 Forelesning 28 MAT1030 Forelesning 28 Kompleksitetsteori Roger Antonsen - 12. mai 2009 (Sist oppdatert: 2009-05-13 08:12) Forelesning 28: Kompleksitetsteori Introduksjon Da er vi klare (?) for siste kapittel, om kompleksitetsteori!

Detaljer

Verdens korteste grunnkurs i Excel (2007-versjonen)

Verdens korteste grunnkurs i Excel (2007-versjonen) Verdens korteste grunnkurs i Excel (2007-versjonen) NB! Vær oppmerksom på at Excel kan se annerledes ut hos dere enn det gjør på bildene under. Her er det tatt utgangspunkt i programvaren fra 2007, mens

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre,

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre, 1 TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.no 2 Frist for øving 1: Fredag 16. Sept. Noen oppstartsproblemer

Detaljer

MAT-1004 Vårsemester 2017 Obligatorisk øving 2

MAT-1004 Vårsemester 2017 Obligatorisk øving 2 MAT-1004 Vårsemester 2017 Obligatorisk øving 2 Contents 1 OPPGAVE 2 2 OPPGAVE 2 Eksempler 4.1 Oppgave 1............................... 4.2 Oppgave 2............................... 5 4 Formatering av svarene

Detaljer

Vektorligninger. Kapittel 3. Vektorregning

Vektorligninger. Kapittel 3. Vektorregning Kapittel Vektorligninger I denne uken skal vi bruke enkel vektorregning til å analysere lineære ligningssystemer. Vi skal ha et spesielt fokus på R, for det går an å visualisere; klarer man det, går det

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente. Oppvarming Her er et eksempel på et

Detaljer

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 Vi fortsetter studiet av (MKS): minimum kost nettverk strøm problemet. Har nå en algoritme for beregning av x for gitt spenntre T Skal forklare

Detaljer

Matriser TI -86 F1 F2 F3 F4 F5 M1 M2 M3 M4 M5

Matriser TI -86 F1 F2 F3 F4 F5 M1 M2 M3 M4 M5 13 Matriser Lage matriser... 204 Vise matriseelementer, rader og delmatriser... 207 Redigere matrisedimensjon og -elementer... 208 Slette en matrise... 209 Bruke en matrise i et uttrykk... 210 TI -86 M1

Detaljer

Emne 7. Vektorrom (Del 1)

Emne 7. Vektorrom (Del 1) Emne 7. Vektorrom (Del 1) Første del av dette emnet innholder lite nytt regnemessig, men vi innfører en rekke nye begreper. Avbildning (image). R m T R n n image(t) Vi kan starte med samme skjematiske

Detaljer

MAT-1004 Vårsemester 2017 Obligatorisk øving 3

MAT-1004 Vårsemester 2017 Obligatorisk øving 3 MAT-4 Vårsemester 7 Obligatorisk øving Contents OPPGAVE OPPGAVE Hvordan løses oppgave? 5 4 Hvordan løses oppgave? 6 5 Formatering av svarene 8 5. Rasjonale tall............................. 8 5. Matriser

Detaljer

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER INNHOLD ALGEBRA OG FUNKSJONER... PARENTESER... USYNLIGE PARENTESER... USYNLIGE MULTIPLIKASJONSTEGN... DE TI GRUNNLEGGENDE ALGEBRAISKE LOVENE... REGNEUTTRYKK INNSATT FOR VARIABLER... 3 SETTE OPP FORMLER...

Detaljer

Tall, vektorer og matriser

Tall, vektorer og matriser Tall, vektorer og matriser Kompendium: MATLAB intro Tallformat Komplekse tall Matriser, vektorer og skalarer BoP(oS) modul 1 del 2-1 Oversikt Tallformat Matriser og vektorer Begreper Bruksområder Typer

Detaljer

Oppgavesett med fasit

Oppgavesett med fasit TIL ENT3R ELEVENE Oppgavesett med fasit Tommy Odland Sist oppdatert: 1. november 2013 http://is.gd/ent3rknarvik http://tommyodland.com/ent3r 1 INNHOLD 1 Om dette dokumentet 3 1.1 Formål og oppbygging..................................

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9 Innlevering BYPE000 Matematikk 000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 4. april 014 før forelesningen Antall oppgaver: 9 1 Regn ut determinanten til følgende matriser. (Det er også

Detaljer