Foroppgave i usikkerhetsanalyse Viskositet i glyserol
|
|
- Pål Gustavsen
- 8 år siden
- Visninger:
Transkript
1 Oppgave 1 Lab i TFY4120 Foroppgave i usikkerhetsanalyse Viskositet i glyserol Institutt for fysikk, NTNU
2 2 1. Innledning Hensikten med denne oppgaven er først og fremst å få øvelse i analyse av feilkilder og feilforplanting. Måling av viskositet i glyserol er valgt fordi apparaturen er enkel og rimelig. Formålet med oppgaven er ikke først og fremst å bestemme viskositeten i glyserol så nøyaktig som mulig. Derfor er denne apparaturen ikke laget slik at all måleusikkerhet minimaliseres. Selv om formålet med denne oppgaven først og fremst er å lære usikkerhetsanalyse, må det likevel påpekes at Stokes lov, som en her stifter bekjentskap med, er sentral. Oppgaven illustrerer også en enkel måte å måle viskositet i en væske når viskositeten er tilstrekkelig høy. 2. Teori Når en kule synker i en væske under påvirkning av tyngdekraften, vil den oppnå konstant hastighet etter å ha falt et lite antall diametre [1]. For tilstrekkelig liten fallhastighet er friksjonskraften, F F, som virker på kulen, gitt ved Stokes lov [2]: F = πηrv (1) F 6 der η = væskens viskositet r = kulens radius v = kulens hastighet Kraftlikevekt gir da der 4 3 ( k v) 6 3 π r ρ ρ g πηrv = (2) g = tyngdens akselerasjon ρ = tettheten til kulen k ρ = tettheten til væsken v Fra (2) får vi: η 2( ρ ρ ) gr 9v 2 k v = (3) Vi ser av lign. (3) at vi kan finne viskositeten til en væske ved å måle en kules fallhastighet i denne væsken. En betingelse for at lign. (1) og dermed lign. (3) skal være gyldig, er at fallhastigheten er tilstrekkelig lav. Denne betingelsen kvantifiseres ved hjelp av det dimensjonsløse Reynolds tall, R, definert ved [3]: e R 2rρ v η v e = (4)
3 3 Det er vist [3] at Stokes lov holder med en nøyaktighet på bedre enn 1% for: R e < 0,05 (5) Det er også en forutsetning for å kunne bruke lign. (3) at kulen faller i en væske med uendelig utstrekning. I praktiske tilfeller må vi korrigere for veggeffekter. I det tilfelle at kulen faller vertikalt langs sentrum i en sylinder er følgende korreksjon funnet [4] for korrigering av viskositeten gitt ved lign. (3): der η r = η (1 2,10 ) (6) R korr m R = radius av sylinderen η m = viskositet beregnet etter lign. (3) Resultater korrigert med denne faktor er funnet [4] å ha bedre enn 1% nøyaktighet når r / R < 0,1 og R e < 0, 05. Kombinasjon av lign. (3) og (6) gir: 2 2( ρk ρv) gr r η = (1 2,10 ) (7) 9v R
4 4 3. Apparatur og utførelse Det fallkuleviskosimeteret som skal brukes i denne oppgaven er vist i figur 1. Det er forsynt med en trakt som sentrerer kulen i fallrøret. Det har 4 målestreker. Avstanden mellom nabomålestreker er ( 10,0 ± 0,1) cm. NB! Pass på at du observerer kulen med synsretning normalt på sylinderoverflaten! Kulen som nyttes, er av stål og kan løftes opp i røret ved hjelp av en utvendig magnet. Fallrøret skal ikke åpnes under forsøket. Væsken som nyttes i dette forsøket er glyserol. Viskositeten i glyserol er sterkt temperaturavhengig. Ved siden av fallrøret har vi derfor plassert et lignende rør fylt med glyserol der en kan avlese temperaturen. Oppgitte data: Tetthet for glyserol: Tetthet for stålkule: Radius for stålkule: Radius innvendig for fallrør: Tyngdens akselerasjon: 3 ρ v = (1, 26 ± 0, 01) kg/dm 3 ρ k = (7,8 ± 0,1) kg/dm r = ( 1,00 ± 0,02) mm R = ( 10,7 ± 0,1) mm 2 g = ( 9,822 ± 0,005) m/s fallrør med målestreker termometer (kan justeres i høyde) magnet stålkule Fig. 1. Skisse av fallkuleviskosimeter Merk at ditt strålende ansikt og/eller friske pust til og med kan varme glyserol. Hold dere derfor lengst mulig unna fallrøret mens dere gjør målingene.
5 5 4. Forhåndsoppgave v Finn et uttrykk for relativ usikkerhet i fallhastigheten v, dvs. finn v som funksjon av falllengden l og måletiden τ og de tilsvarende usikkerheter l og τ. Merk at det er nødvendig å lese notatet om Usikkerhetsanalyse utlagt på fagets hjemmeside før denne oppgaven løses. 5. Obs før du starter med laboratorieoppgaven Det legges vekt på forståelse av grunnleggende prinsipper. Forsøk å jobbe rolig og metodisk for å lære mest mulig. Vi forventer i alle fall at du sitter ut hele labtida. For denne oppgaven er labtida satt til 4 timer. Det er ikke et krav at alle oppgavene utføres. Bruk garderobehyllene. Sett ryggsekker til side. Spising og drikking er dessverre ikke tillatt inne på laben. Apparaturen for denne oppgaven er oppsatt der andre oppgaver vanligvis kjøres. Vennligst ikke rør annen apparatur enn den som tilhører denne oppgaven. (Noe av utstyret tilhørende de andre oppgavene kan være både skjørt og kostbart.) 6. Laboratorieoppgave 1 Mål kulens falltid i glyserol med usikkerhet på følgende måte: a) Utfør 30 målinger av falltiden τ for stålkulen mellom høyeste og laveste målestrek. Del målingene i 3 serier med 10 målinger i hver. Les av temperaturen T før og etter hver måleserie. Måleseriene utføres fortløpende for å minimalisere eventuelle temperaturendringer under forsøket. La termometrets følsomme område (væskebeholderen) være plassert midt mellom øverste og nederste målestrek. Da kan en håpe på å avlese middeltemperaturen over fallstrekningen, også for det tilfelle at det skulle være små temperaturgradienter i vertikalretningen. b) Beregn τ 1, τ1 og τ1 for første måleserie og tilsvarende for måleserie 2 og 3. Anta for beregningene at statistisk usikkerhet i tidsmålingene dominerer. 2 Besvar følgende spørsmål ved bruk av måleresultatene: a) Er τ 1, τ 2 og τ 3 forskjellige utover den statistiske måleusikkerheten? Bør en bruke standardavvikene τ1, τ 2 og τ 3 for enkeltmålinger eller standardavvikene τ1, og τ 3 for middelverdier for å avgjøre dette? τ 2 b) I Handbook of Chemistry and Physics [5] er det oppgitt følgende data for glyserol -3 kg ved forskjellige temperaturer ( 1cp (centipoise) = 1 10 ): ms
6 6 Temperatur T ( C) Viskositet η (cp) Stemmer eventuell forskjell i midlere falltid mellom måleseriene med eventuell temperaturendring mellom måleseriene i henhold til tabellen? Merk at glyserolen vi måler på har et vanninnhold på ca. 2%, og at viskositeten på glyserol er sterkt avhengig av vanninnholdet. Det er ikke oppgitt vanninnhold for dataene som er hentet fra referanse 5. c) Vær oppmerksom på at systematisk temperaturendring kan føre til at verdiene for τ 1, τ 2 og τ 3 blir vesentlig større enn de ville ha vært dersom en bare hadde tilfeldige feil. Synes dette å ha vært tilfelle i ditt eksperiment? d) Å dele målingene opp i intervaller og sammenligne middelverdier og standardavvik er bare én mulig metode for å påvise om det har vært vesentlig systematisk forandring i τ på grunn av temperaturendring. Kunne det tenkes en bedre metode for å gjøre dette ved bruk av dine målinger? e) Ville det føre til en vesentlig mindre usikkerhet i τ dersom temperaturen kunne holdes konstant? Kan du komme på en måte å endre eksperimentet på for å oppnå dette? 3 Dersom en ikke er overbevist om at τ har variert vesentlig pga. temperaturendring, beregnes verdier for τ og τ felles for alle målingene. Disse verdiene brukes i fortsettelsen av oppgaven. I motsatt tilfelle velges ett sett verdier fra en enkelt måleserie. a) Bestem midlere fallhastighet med usikkerhet, v ± v. Avstanden mellom øverste og nederste strek settes lik ( 30,0 ± 0,1) cm. (Husk at resultatet fra forhåndsoppgaven kan benyttes her, men husk også å vurdere om det er usikkerhet for en enkeltmåling eller usikkerhet for middelverdi som bør benyttes for falltiden.) b) Beregn tallverdier for η og R e ved angitt middeltemperatur under forsøket. Er liten nok til at Stokes lov gjelder med nøyaktighet bedre enn 1%? R e 4 Vi ønsker å bestemme usikkerheten viskositetsmålingen vår. η a) Finn et uttrykk for relativ usikkerhet i η,, som funksjon av r, R, ρ k, ρ v, v, g og η de tilsvarende usikkerhetene. Prøv så langt det er mulig å bruke relativ usikkerhet, for r ρ eksempel. Det kan også være nyttig å bruke former som k. Merk at r ρk ρv avhengig av hvordan du regner, kan denne oppgaven bli litt arbeidsom. Spør veilederen om hjelp dersom du setter deg fast.
7 7 b) I punktet ovenfor fant du et uttrykk for usikkerheten i η, η, basert på usikkerhetene g, r, R, ρk, ρv og v. Hvilke av disse usikkerhetene er uvesentlige for η beregning av η og kan neglisjeres når tallverdi for skal bestemmes? η c) Beregn tallverdi for η, og før opp sluttsvaret for η ± η. Angi hvilken temperatur η resultatet gjelder for. 7. Referanser 1. A. C. Merrington, Viscometry, Edvard Arnold & Co, London 1949, s L. D. Landau og E. M. Lifshitz, Fluid Mechanics, Pergamon press, Oxford 1959, s A. C. Merrington, Op.cit., s A. C. Merrington, Op.cit, kapittel IV. 5. R. C. Weast, Ed., Handbook of Chemistry and Physics, CRC Press, Cleveland 1974, s. F-53. Knut Arne Strand 2005 Revidert , AB/LMA/EH/KAS Revidert HH/KAS Revidert RS/LEW/KAS Revidert SW/BS
8 Æ ÄÁÌ Æ ÁÆÆ ÊÁÆ Á ÍËÁÃà ÊÀ ÌË Æ Ä Ë ÓÖÙØ ØØ Ö Ø Ø Ð Ú Ö Ò ÓÖ Ð Ò Ò Ð ºµ ½º ÓÖ ÐÐ ØÝÔ Ö Ð µ Ò ÓÒ Ù Ö Ø ÑÔ Ð Ì Ò Ø Ù Ð ÑÐ Ð Ò Ò Ú Ø ÒÓ ÙÐÐ ÒØ Ð Ñ º º Ò Ùº ÓØ Ñ Ð Ä Ú Ø Ô Ð Ö Ó Ô ÖØ Ò ÓÒ Öº µ ÖÓÚ Ð ÑÔ Ð Ì ÐÐ Ö Ð ÒØ ÐÐ Ñ Ø Ö ÒÖ ÑÐ Ö Ð Ò Ñ Ñ Ø Ö ØÓ º ÓØ Ñ Ð Ö Ñ º µ ËÝ Ø Ñ Ø Ð Ë Ò Ò ÓÖº µ ËØ Ø Ø Ð Ë Ò Ò ÓÖº ÃÇÆÃÄÍËÂÇÆ ÖÙ ÙÒÒ ÓÖÒ٠غ Á ÖÙ ÓÖÑÐ Ö ÓÖ Ø Ø Ø Ù Ö Ø Ù Ö Ø º ¾º ËÝ Ø Ñ Ø Ð ÓÖÖ Ú Ð ÒØ ÒÒ Ø µ Ð Ð Ö ÖØ ÑÐ Ò ØÖÙÑ ÒØ µ Å ØÒ Ò Ú ÑÐ Ò ØÖÙÑ ÒØ µ Å ÒÒ Ð Ò Ô µ Ò Ö ÓÖ Ø Ò Ð Ö ÒÒ ÒØ ØØ ½
9 ÑÔ Ð Å Ø Ö ØÓ Ö Ø ½ Ñ Ñ Ò ¼ Ѻ ÓØ Ñ Ð Ö µ Ì Ò Ö Ø Ô ÙØ Ö Ò Ú ÑÐ Ò º µ Ë Ò Ý Ø Ø Ó ÓÑÖ ÓÖ ÑÐ Ò ØÖÙÑ Òغ µ Ã Ð Ö Ö ÑÐ ÙØ ØÝÖº µ Ò Ð ÓÖÒÙ Ø Ö Ò ÓÖ Ù ÓÖÖ Ö Ö Ý Ø Ñ Ø Ðº º ËØ Ø Ø Ù Ö Ø ÒØ ØØ ÑÐ Ò Ö Ú Ò Ó ÑÑ Ø ÖÖ Ð ÙÒ Ö ÑÑ ÓÖ Ø Ò Ð Ö Ö ÓÖ ÐÐ Ú Ö Öº ÑÔ Ð Ö ÓÑ Ò Ö Ò Ö ÑÐ Ö Ð Ò Ò Ô Ø ÓÖ º º ѵ Ñ Ñ Ø Ö ØÓ Ñ Ð Ò ½ Ñ Ó Ò Ö Ö Ò Ú Ð Ò ÙÐ Ú Ö Öº ÓØ Ñ Ð ÅÐ Ñ Ò Ò Ö Ó Ö Ò Ñ ÐÚ Ö Òº Î Ö ÓÒ Ò ÑÐ Ò Ò Ö ÑÐ ÓÖ Ù Ö Ø ÓÑ Ò ÚÒ º º xº Ô Ö Ñ ÒØ ÐØ Ú Ö Ø Ø ÑÐ Ò Ò Ð Ö Ø ÐÒÖÑ Ø ÒÓÖÑ Ð ÓÖ ÐØ ½ Ñ Ò Ø Ð ÐÐ Ö f(x) = 1 e (x µ)2 2σ 2 ½µ 2πσ Ö f(x) = ÒÒ ÝÒÐ Ø ÓÖ ÑÐ Ú Ö Ò x µ = Ñ ÐÚ Ö σ = Ø Ò Ö ÚÚ Ì ÓÖ Ø ¾ Ò Ø Ú Ø Ò Ö ÒÓÖÑ Ð ÓÖ Ð Ò ÒÖ Ø ØÓØ Ð Ð Ö ¹ Ø Ö ÑÑ Ò ØØ Ú Ù Ò Ð Ñ Ò Ð Ö ÓÑ Ö Ù Ú Ò Ú Ú Ö Ò Ö º º ± Ú ÑÐ Ò Ò Ð Ö [µ σ,µ + σ] º ± Ú ÑÐ Ò Ò Ð Ö [µ 2σ,µ + 2σ] º ± Ú ÑÐ Ò Ò Ð Ö [µ 3σ,µ + 3σ] Ò Ò Ö ÓÑ 1σ 2σ ÐÐ Ö 3σ Ö Ò Öºµ ½ ÆÓÖÑ Ð ÓÖ Ð Ò Ú Ð Ð ÒÖÑ Ö Ò Ð Ø ÐÖ Ó ½ Ø Ø Ø Ø ÌÅ ¾ ¼ ÐÐ Ö ÌÅ ¾ ÓÑ Ø Ö Ø Ö ØÖ Ö ÙÖ º ¾
10 f(x) µ σ µ µ + σ x ÙÖ ½ ÆÓÖÑ Ð ÓÖ Ð Ò Ø Ñ Ø Ö ÓÖ µ Ó σ Æ ÓÖÙØ ØØ Ö Ø ÐÒÖÑ Ø ÒÓÖÑ Ð ÓÖ Ð Ò ºµ Ø Ñ Ø ÓÖ Ñ ÐÚ Ö µ x = 1 n n i=1 x i ¾µ Ø Ñ Ø ÓÖ Ø Ò Ö ÚÚ σ = Ù Ö Ø Ò ÐØÑÐ Ò 1σ¹ Ö Ò µ x = 1 n (x i x) n 1 2 µ i=1 Ø Ñ Ø ÓÖ Ù Ö Ø Ñ ÐÚ Ö x = x n µ Å Ö Ò Ö ½µ x 0 ÓÖ n º ÀÙ Ø ØØ Ð Ö Ø Ø Ø Ù Ö Ø Ý Ø Ñ Ø ºµ ¾µ Ø ÓÚ Ò ÓÖ Ð Ö ÒÖ ÐÐ ÑÐ Ò Ö Ö Ð Ö º ÐÐ Ö Ñ Ú Ø ØÓÖ ÒÝØØ º µ ÀÙ ÐÐ Ñ ÐÐÓÑ Ý Ø Ñ Ø Ó Ø Ø Ø Ù Ö Ø Ó Ø Ø Ø Ù Ö Ø Ò ÐØÑÐ Ò Ó Ñ ÐÚ Ö
11 º Ð ÓÖÔÐ ÒØÒ Ò Î ØÖ Ø Ö Ò Ý Ø ÖÖ Ð f(x,y,z,... ) ÓÑ Ö Ò ÙØ Ö ÑÐ Ò Ö Ú Ý Ø ÖÖ Ð Ö x,y,z,... º ÒØ Ø x,y,z Ó Úº Ö Ù Ú Ò º Ð Ö f = ( ( f x x ÓÖ Ø Ð ØÖ Ð Ñ x, y, z Ó Úº ) 2 ( f + y y ) )1 2 Á Ñ Ò Ð Ú ÒÓ Ö ÒÝØØ Ð Òº µ Ó Ó Ø ÓÖ Ý Ø Ñ Ø Ð Ó ÓÖ ÓÑ Ò ÓÒ Ú Ý Ø Ñ Ø Ó Ø Ø Ø Ðº ÓÖ Ý Ø Ñ Ø Ð Ö ÔÖ ¹ ÒØ Ö Ö x y Ó Úº Ò ÐØØ Ù Ö Øº Ø Ú Ö Ø Ø Ð ÐÐ Ø ÐÐ Ð Ú Ö Ö ÑÑ Ö ØÒ Ò µ Ú ÐÐ ÓÖ Ñ Ð ÚÖ f = f x x + f y y +... µ µ Ö ÓÑ Ò Ö ÑÐØ Ñ ÐÚ Ö Ö ÓÖ x,y,z Ó Úº ÒÝØØ Ö Ò Ó f = f(x,y,z,...) ( ( f ) 2 ( ) f 2 2 f = x x + y y +...)1 µ µ Å Ö Ø ÑÐ Ø Ö ÖÙ Ñ Ø ÑÙÐ ÓÖÑÐ Ö Ñ Ò ÓÑÑ Ö Ñ Ø Ð Ø ÓÖ Ø Ò Ò Ð Ô Ù Ö Ø ÓÑ ÑÙÐ º ÑÔ Ð f(x,y,z) ÓÒ Ø ÒØ x y2 z 3 Ö f f = ( ( x x )1 ) 2 ( + 2 y ) 2 ( + 3 z ) 2 2 y z Å Ö Ø Ø Ó Ø Ð ØØ Ö Ö Ò Ò Ò ÒÝØØ Ö Ð Ø Ú Ð ÓÑ º º x x º
12 º Ø ÑÑ Ð Ú Ö ØØ Ð Ò Ú Ñ Ò Ø Ú Ö Ø Ö Ñ ØÓ Î Ø Ò Ö Ó Ø Ú Ö Ò Ý ÑÓ ÐÐ ÓÑ Ö Ó Ø Ø Ð Ú Ö Ò ÑÐ Ò Ö Ú x Ó y Ð Ð Ð Ò Ô Ò Ö ØØ Ð Ò y = k 1 + k 2 x µ Ö k 1 Ó k 2 Ö Ý ÓÒ Ø ÒØ Ö Ú Ò Ö Ø ÑÑ º Ä Òº µ Ò ÓÑ Ö Ú Ø Ð y = a + b(x x) ½¼µ Ö x = 1 n n i=1 x i a = k 1 bx b = k 2 Ö ÓÑ ÐÐ ÑÐ Ò Ö Ö ÑÑ Ù Ö Ø ÒÝØØ Ú Ö Ö Ú a Ó b Ó ÖÑ k 1 Ó k 2 µ ÓÑ Ñ Ò Ñ Ð Ö Ö Q n [y i (a + b(x i x))] 2 ½½µ i=1 Ö Ú Ò ÚÒ Ø Ñ Ò Ø Ú Ö Ø Ö Ñ ØÓ ºµ Î ÒÒ Ö Ñ Ò ÑÙÑ ÓÖ Q Ú Ó ÓÑ ØØ Ö Ð ØØ Ñ ÐÐÓÑÖ Ò Ò Ö Q a = 0 Q b = 0 ½¾µ ½ µ a = 1 n n i=1 y i ½ µ b = n i=1 y ix i 1 n ( n i=1 y i) ( n i=1 x i) n i=1 x2 i 1 n ( n i=1 x i) 2 ½ µ
13 Å Ö Ò Ö ½µ Ö ÓÑ ÑÐ ÔÙÒ Ø Ò Ö ÙÐ Ù Ö Ø Ñ Ú Ø ØÓÖ Ö ÒÝØØ º ¾µ Ì Ð Ú Ö Ò Ñ ØÓ Ò Ó ÒÝØØ ÓÖ Ý Ö ÓÖ Ò ÔÓÐÝÒÓÑ Ö ÓÑ y Ö Ð Ò Ö Ó ÒØ Ò k i ÓÑ Ð Ø ÐÔ º µ Ø Ü Ð¹ Ö ÓÖ ÒÒÐ Ò Ú Ö ØØ Ð Ò Ú Ñ Ò Ø Ú Ö Ø Ö Ñ ØÓ Ö Ö ÓÒµ Ö ÙØÐ Ø Ô ÑÑ Ò ÙÒ Ö Ñ ÒÝÚ Ð Ø Ê Ö ÓÒº ØØ Ü Ð¹ Ö Ø Ò Ó Ù Ö Ø ÓÖ Ó ÒØ Ò k 1 Ó k 2 Ð Ò Ò º ÓÖ¹ Ñ ÐÚ Ö Ó ÙØÐ Ò Ò ÓÖ Ø Ø Ö ØØ º º º º Î Ù ÐÐ ÒÒÐ Ò Ú Ö ØØ Ð Ò Ö ÓÑ Ò Ý ÑÓ ÐÐ Ò Ö Ð Ò Ö x Ò Ò Ó Ø Ø ÖÙ ÖØ Ø Ñ Ø Ú Ú Ù ÐÐ ÒÒÐ Ò Ú Ò Ö ØØ Ð Ò ÓÑ Ú Ø ÙÖ ¾º Ø ÔÐ Ð Ò Ò ÒÒ ÙÖ Ò Ö ÔÖ ÒØ Ö Ö Ð Ò Ò Ñ Ñ Ñ Ð Ó Ñ Ò Ñ Ð Ú Ò Ð Ó ¹ ÒØ ÓÑ Ò ÒØ Ö Ò ÚÖ ÑÙÐ ÙØ Ö Ô Ö Ñ ÒØ ÐÐ Ø º Ö Ò Ð Ô Ù Ö Ø Ò k 1 Ó k 2 Ð Ò Ò º Ò Ð Ú Ù ÐÐ ÒÒÐ Ò Ò ÚÖ ÓÖ Ð Ø ÑÑ ÒÐ Ò Ø Ñ Ö Ö ÓÒ Ö ÓÑ ÙÐ ÑÐ ÔÙÒ Ø Ö ÙÐ Ù Ö Ø Ó Ö Ö ÓÒ ÔÖÓ Ö ÑÑ Ø Ö ÑÙÐ Ø ÓÖ ÒÝØØ Ú Ø ØÓÖ Ö Ú ÒØÙ ÐØ Ö ÓÑ Ò Ú Ø Ø ØØ ÐÐ Ö Ö Ú ÑÐ ÔÙÒ Ø Ò Ö Ø ÖÖ Ý Ø Ñ Ø Ù Ö Ø ÒÒ Ò Ö Ó Ú Ø ÚÓÖ Ò ØØ Ð Ú ÒØ Ö º y x ÙÖ ¾ ÁÐÐÙ ØÖ ÓÒ Ú ÒÒÐ Ò Ú Ö ØØ Ð Ò Ú Ù Ðغ
14 y x ÙÖ ÁÐÐÙ ØÖ ÓÒ Ú ÒÒÐ Ò Ú Ö ØØ Ð Ò Ú Ù ÐØ ÓÖ Ø Ð ÐÐ Ø Ñ Ù ¹ Ö Ø Ð Ò Öº Å Ö Ò Ú Ó Ø Ð Ò Ø ÚÖ Ú ÒØÐ Ô Ö Ñ ÒØ ÐÐ Ù Ö Ø Ø ÖÖ Ð Ò ÓÑ ÔÐÓØØ Ð Ò Öº Í Ö Ø ØÓÐÔ Ö Ö Ò Ö Ö ØÒ Ò¹ Ö ÓÑ Ú Ø Ô ÙÖ º Á Ð Ø Ð ÐÐ Ò Ø ÚÖ Ô ÐØ ÙÒ Ø ÒÝØØ Ú Ù ÐÐ ÒÒÐ Ú Ö ØØ Ð Ò º Ê Ö Ò Ö ½ ʺ º Ï ÐÔÓРʺÀº ÅÝ Ö ËºÄº ÅÝ Ö Ò Ãº ÈÖÓ Ð ØÝ Ò ËØ Ø ¹ Ø ÓÖ Ò Ò Ö Ò Ë ÒØ Ø Ø Ø ÓÒ È Ö ÓÒ ÄÓÒ ÓÒ ¾¼¼ Ô ØØ Ð º ¾ ƺ º Ö ÓÖ ÜÔ Ö Ñ ÒØ Ð Å ÙÖ Ñ ÒØ ÈÖ ÓÒ ÖÖÓÖ Ò ÌÖÙØ Ë ÓÒ Ø ÓÒ Ï Ð Ý Æ Û ÓÖ ½ Ô ØØ Ð º ʺ º Ï ÐÔÓРغ к ÓÔº غ ¾ Ô ØØ Ð º º ƺ º Ö ÓÖ ÓÔº غ Ô ØØ Ð ¾º º ƺ º Ö ÓÖ ÓÔº غ Ô ØØ Ð º º ÃÒÙØ ÖÒ ËØÖ Ò ¾¼¼ Ê Ú ÖØ ½ º½½º¾¼¼ Ã Ë Ê Ú ÖØ ½ º¼ º¾¼¼ Ä Ï»Ã Ë ¾ ÇÔº غ ØÝÖ Ø ÖØ ÓÚ Ò ÓÖº
Ã Ô Ø ÐÚ Ö ÑÓ ÐÐ Ò Ó ØÓÖÑÓ ÐÐ Ö Ã Ô ØØ Ð
Ã Ô Ø ÐÚ Ö ÑÓ ÐÐ Ò Ó ØÓÖÑÓ ÐÐ Ö Ã Ô ØØ Ð Ò Ø Ø ÃÎÅ ÖÙÒÒ Ó ÓÖÙØ ØÒ Ò Ö Ë ÖÔ ¹ ÓÖ ÓÐ Ø Ã Ô Ø ÐÚ Ö ÑÓ ÐÐ Ò Ø Ò Ò Ö ÃÎÅ Ó Ð ØÓÖÑÓ ÐÐ Ö Ã Ô Ø ÐÚ Ö ÑÓ ÐÐ Ò ÃÎŵ À Ò Ø Ò Ö ÓÑÑ Ö Ñ Ø Ð Ô Ø ÐÚ Ö ÑÓ ÐÐ Ò Ø ÒÒ Ò
DetaljerË Ð Ô Ø Ä Ð Ö ÑÑ Ö ÑÐ ØØ Ò Ó ÓÖ Ò ÓÒ Ã Ô ØØ Ð ½ Ó ¾
Ë Ð Ô Ø Ä Ð Ö ÑÑ Ö ÑÐ ØØ Ò Ó ÓÖ Ò ÓÒ Ã Ô ØØ Ð ½ Ó ¾ Ò Ø Ø Ý Ö Ô ËØÖ Ñ ¾¼½ Ô ØØ Ð ½ Ó ¾µº ÀÚ Ö Ø ÓÖ Ø Ö Ô Ó ÓÒØÖÓÐÐ ÀÚ Ö Ø ÓÖ Ø Ì ÙØ Ò ÔÙÒ Ø ÚÓÖ Ò Ð Ô Ø Ò Ö Ó Ô ÖØÒ Ö Ôº Ë Ð Ô Ø Ó Ö Ú Ú Ò Ô Ö ÓÒ ÐÐ Ö Ú
Detaljer(a δ,a+δ), (a δ,a+δ) = {x R x a < δ}. (a δ,a+δ)\{a} = (a δ,a) (a,a+δ) = {x R 0 < x a < δ}, f(x) = 2x 1.
ÆÇÌ Ì ÇÅ Ê ÆË Ê Î Ä ÌÁÄ ÊÍà Á ÃÍÊË Ì Å Ì½½½ Î ÍÆÁÎ ÊËÁÌ Ì Ì Á Ê Æ ØØ ÒÓØ Ø Ø ÒÒ ÓÐ Ö ÒÓ ÒÝØØ Ô Ò ÙÑ ÙÖ Ø Å Ì½½½ ÓÖ ÓÐ Ø Ð ÐÖ Ó Ò Ó Ö ÙÒ Ñ ÒØ ÓÑ Ø ÙØ ÝÐÐ Ò ÒÓØ Ø Ø Ð Ã Ô ØØ Ð ½ Ñ Ð ÒØ ÒÒ Ø ÒÓ Ò Ö ÑÔÐ Ö
Detaljerr t = S t r t ; s = ½ T T
Å Ö ÔÓÖØ Ð Ò Ó ÃÎÅ Ò Ø Ø Ú ØÒ Ò Ó ÚÓÐ Ø Ð Ø Ø ÈÓÖØ Ð Ú Æ Ó ÇÖ Ð Ö Ò Ò Ú Ã¹ Ó ØÒ Ò Ò ÒÚ Ø Ö Ò ÐÐÙ ØÖ ÓÒ ËÐÙØØÚÙÖ Ö Ò Ú ÃÎÅ Î Ð ÒÒÓÑ Ð Ò Ø ½º Ö Ò Ú ØÒ Ò Ó ÚÓÐ Ø Ð Ø Ø ØÖ Ö Æ ÇÖ Ð Ó Å Ö Ò À ÖÚ Ø Ó ÓÚ Ò Ò
DetaljerÃ Ô ½ Ò Ò ÐÐ ØÖ
Ã Ô ½ Ò Ò ÐÐ ØÖ Ò Ø Ø Å Ð ÓÐ Ó ÓÒ ÙÖ Ø Ô Ö Ø Ñ Ö ËØÖ Ó ØÒ Ö Ó Ð Ô Ú Ö ÇÔØ Ñ Ð Ô Ø Ð ØÖÙ ØÙÖ ÚÚ Ò Ò Ø ÓÖ Ò ÒØ Ó ØÒ Ö Ñ Ð ÍØÒÝØØ Ò Ú ÐÒ Ú Ö ÅÓØ Ú Ö Ð Ö ÓÖ Ð Ö Ñ Ð ÝÑÑ ØÖ Ò ÓÖÑ ÓÒ Ó Ô Ø Ð ØÖÙ ØÙÖ Ã Ô Ø Ð
DetaljerÃ Ô ½ Ë Ð Ô Ø Ô Ø Ð ØÖÙ ØÙÖ ¹ ÁÒ Ò ØØ
Ã Ô ½ Ë Ð Ô Ø Ô Ø Ð ØÖÙ ØÙÖ ¹ ÁÒ Ò ØØ Ò Ø Ø Ò ÓÒ Ö ÓÚ Ö Ø Ö Ò Ò Ö Ò Ñ Ã ÐÐ Ö Ð Å ÐÐ Ö Ó ÅÓ Ð Ò Á Åž Ã Ô Ø Ð Ó ØÒ Ò Ø Ó Ð Ð ÐÙØÒ Ò Ö ÓÑ Ô Ø Ð ØÖÙ ØÙÖ À Ú Ø Ò Ò Ñ ÓÒ Ó ÙØÚ ÒÒ Ò ÅÅ ÄÓÚ Ò ÓÑ Ò ÔÖ Ó Ú Ö Ò
DetaljerÒ Ø Ø Ì Ð Ô Ó ÙØ ÝØØ ÍØ ÝØØ ÐÐ Ö Ø Ð Ô Ë ØØ ÙÐ ÑÔ Ö Ñ ÙØ ÝØØ Ú Ò Ò Ø Ó ØØ Ð ÒØ ÐÐ Ö Ð ÙØ ÐÐ Ö ÓÐ Ë Ò Ð Ö Ò Ñ ÙØ Ð Ò ÔÓÐ Ø
Ã Ô ½ Ú Ò Ò Ø Ø Ì Ð Ô Ó ÙØ ÝØØ ÍØ ÝØØ ÐÐ Ö Ø Ð Ô Ë ØØ ÙÐ ÑÔ Ö Ñ ÙØ ÝØØ Ú Ò Ò Ø Ó ØØ Ð ÒØ ÐÐ Ö Ð ÙØ ÐÐ Ö ÓÐ Ë Ò Ð Ö Ò Ñ ÙØ Ð Ò ÔÓÐ Ø Ð ÙØ ÐÐ Ö ÓÐ Ö ÓÒØ ÒØ ØÖ Ñ ÓÐ Ð ÙØ ÁÒÚ Ø Ö ÒÝ ÔÖÓ Ø Ö ÃÓÒØ Òع ÓÐ Ò Ò
DetaljerÇÚ Ö Ø ØÓÖ Ö ÓÑ ÔÚ Ö Ö ÓÔ ÓÒ Ò ÔÖ ÒÓÑ ÔÖ Ò Ö ØÖ Ö ÔÖ Ò Ú ÓÔ ÓÒ Ê ÓÒ ÝØÖ Ð ÔÖ Ò Ð ¹Ë ÓÐ ¹Å ÖØÓÒ Ëŵ
à Ժ ½ ÈÖ Ò Ú ÓÔ ÓÒ Ö ÇÚ Ö Ø ØÓÖ Ö ÓÑ ÔÚ Ö Ö ÓÔ ÓÒ Ò ÔÖ ÒÓÑ ÔÖ Ò Ö ØÖ Ö ÔÖ Ò Ú ÓÔ ÓÒ Ê ÓÒ ÝØÖ Ð ÔÖ Ò Ð ¹Ë ÓÐ ¹Å ÖØÓÒ Ëŵ ØÓÖ Ö ÓÑ ÔÚ Ö Ö ÓÔ ÓÒ Ò ÔÖ Ò ÔÖ S T + ÍØ Ú Ð ÙÖ X Ì Ø Ð ÓÖ ÐÐ T + ÎÓÐ Ø Ð Ø Ø ÐÐ
DetaljerÎ Ö ØØ Ò Ú Ö
Î Ö ØØ Ò Ú Ö Ò Ø Ø Ò ÓÒ Ö ÆÆÎ Ñ ØÓ Ò Ú Ò ÑÓ ÐÐ Ò Î Ø Ú Ò Ò ÙÖ Ó Ò ÓÖÑ ÓÒ Ø Ô Ö Ò ÓÒ Ö Ò Ô Ø Ð = ÙÖ ÒØ ÐÐ Öµ ¼ = Ë ¼ ÒØ ÐÐ Öµ ½µ Ö Ø Ö ÙÐØ Ø ÔÖº ÈË ÖÒ Ò Ô Ö Ö µ ÈË Ø = Ö Ø Ö ÙÐØ Ø Ø ÒØ ÐÐ Ö Ø ¾µ ÈÖ ¹ ÖÒ
Detaljerdq = c v dt + pdα = 0 dq = c p dt αdp = 0 µ pdα = αdp c p dα = c v dp = c v = D θ = T
ÙÖ ½ ÇÔÔ Ø Ò Ò Ò ÓÔÔ Ú º¾½ºÌº ¾¾¼¼ ØÑÓ Ö Ý ¾¼½ Ä Ò Ò ÓÖ Ð Ø Ð ÑÐ Ñ ØØ ÖÑÓÔÔ Ú Ö º¾½ºÌ Î ÒØ Ö Ø ÖÖ ÐÙ Ø Ó Ö Ø Ð Ô Ö Ø Ò Γ ÓÖ ÓÑ Ú Ð Ò µ ÐÐØ Ö Ñ Ò Ö ÒÒ Ø ÖÖ Ø Ò ÙÖ ½µº ÖÑ Ú Ð ÐÙ Ø ÓÑ Ú Ø Ð Ö Γ d µ ÐÐØ Ð
DetaljerÃ Ô ½ Ë Ð Ô Ø Ô Ø Ð ØÖÙ ØÙÖ
Ã Ô ½ Ë Ð Ô Ø Ô Ø Ð ØÖÙ ØÙÖ Ò Ø Ø Ê ÒØ ØØ ÓÖ Ð Ò Î Ö Ò Ú Ö ÒØ ØØ ÓÖ Ð Ò Ê Ô Ø Ð Ö Ò ÓÖ Ò ÓÔÔ ÊË È Ö ÓÒ ØØ Ö ÌÓÐ ØÒ Ò ÇÔØ Ñ Ð Ô Ø Ð ØÖÙ ØÙÖ Ñ ØØ Ö Ê ÒØ ØØ ÓÖ Ð Ò Ø ÐØ Ö ÒØ Ö Ö Ö ÒØ Ö Ö Á ÓÐ ÖØ Ö ØØ Ø Ò
DetaljerÃ Ô ØØ Ð ½ ÖÙÒÒÐ Ò ÖÙ Ú Ø ÖÑ Ò Ð ÀÚ Ö ÒØÐ Ø ÖÑ Ò Ð Ò ÓÖ Ø ÒÝ ÖÙ Ö Ö ØØ Ø Ñ Ø ÑÝ ¹ Ø ÒÖ ÓÖ Ö Ø Ò Ñ Ø Ö Ô Ò Ð ÒÙÜÑ Ò ÚÓÖ Ò Ú Ö Ö Ò ÀÚÓÖ Ò ÖÙ Ö ØØ Á Ö ÖØ
Ã Ô ØØ Ð ½ ÖÙÒÒÐ Ò ÖÙ Ú Ø ÖÑ Ò Ð ÀÚ Ö ÒØÐ Ø ÖÑ Ò Ð Ò ÓÖ Ø ÒÝ ÖÙ Ö Ö ØØ Ø Ñ Ø ÑÝ ¹ Ø ÒÖ ÓÖ Ö Ø Ò Ñ Ø Ö Ô Ò Ð ÒÙÜÑ Ò ÚÓÖ Ò Ú Ö Ö Ò ÀÚÓÖ Ò ÖÙ Ö ØØ Á Ö ÖØ ØØ Ö ÓÑ Ø ÖÑ Ò Ð Ò ÓÖ Ð Ö Ö ÒÓ ÒÖ Ù Ø ÖØ Ö Ò Ù ØÖ
DetaljerË Ò Ö Ä Ò ÇÖ Ø Ò È Õµ ʺ º Ö º ĺ ÖØ Ý ØÖ Ø ÓÑÔÐ Ø Ö Ø Ö Þ Ø ÓÒ Ó Ö ÙÐ Ø Ø Ö ÓÒØ Ò Ò Ë Ò Ö Ð Ò ÓÖ Ø Ú Òº Ì Ö Ø Ö Þ Ø ÓÒ Ð Ø ÓÖ Ø Ò ¹ Ô Ò ÙÔÓÒ ÑÓ Ð Ò È
Ë Ò Ö Ä Ò ÇÖ Ø Ò È Õµ ʺ º Ö º ĺ ÖØ Ý ØÖ Ø ÓÑÔÐ Ø Ö Ø Ö Þ Ø ÓÒ Ó Ö ÙÐ Ø Ø Ö ÓÒØ Ò Ò Ë Ò Ö Ð Ò ÓÖ Ø Ú Òº Ì Ö Ø Ö Þ Ø ÓÒ Ð Ø ÓÖ Ø Ò ¹ Ô Ò ÙÔÓÒ ÑÓ Ð Ò È Õµ Ý Ø Ò Ø Ð Õ µ Ú Û ¹ Ñ Ò ÓÒ Ð Ú ØÓÖ Ô ÓÚ Ö Õµº ÔÔÐ
DetaljerForbedret påskekorrigering for detaljomsetning
Notater Documents 1/2013 Dinh Quang Pham Forbedret påskekorrigering for detaljomsetning Notater 1/2013 Dinh Quang Pham Forbedret påskekorrigering for detaljomsetning Statistisk sentralbyrå Statistics
DetaljerÒÒÓÙÒ Ö Ñ Û Ø Ö Ù Ò ÝÐ ØØ Ò ÝÒ ÖÓÒ Þ ÌÖ Ò Ø ÓÒ ØÓÛ Ö Ø ÙÒ Ð Ø Ö Ð Ô Ö ÒØ Ö Þ Ö ÒØ º Ö Þ Ò ºÞ ÒØ Ö ÓÖ ÓÒÓÑ Ê Ö Ò Ö Ù Ø Ù Ø ÓÒ Ó ÖÐ ÍÒ Ú Ö ØÝ Þ Æ Ø ÓÒ Ð
ÒÒÓÙÒ Ö Ñ Û Ø Ö Ù Ò ÝÐ ØØ Ò ÝÒ ÖÓÒ Þ ÌÖ Ò Ø ÓÒ ØÓÛ Ö Ø ÙÒ Ð Ø Ö Ð Ô Ö ÒØ Ö Þ Ö ÒØ º Ö Þ Ò ºÞ ÒØ Ö ÓÖ ÓÒÓÑ Ê Ö Ò Ö Ù Ø Ù Ø ÓÒ Ó ÖÐ ÍÒ Ú Ö ØÝ Þ Æ Ø ÓÒ Ð Ò ½ Ù Ù Ø ¾ ¾¼¼ ½ Ì Ú Û ÜÔÖ Ö Ö ÑÝ ÓÛÒ Ò Ó ÒÓØ Ò Ö
DetaljerTsunami Læringsmodeller i matematikk Andreas Christiansen
ÄÖ Ò ÑÓ ÐÐ Ö Ñ Ø Ñ Ø ÍØÚ Ð Ò ÓÔÔ Ú Ò Ö Ö Ø Ò Ò ÈÖ Ø Ô Ó ÙØ ÒÒ Ò À ÙÐ Ò ÎÓÐ Å ¾¼¼ Ì Ñ Ø Ñ Ø Ò³ Ô ØØ ÖÒ Ð Ø Ô ÒØ Ö³ ÓÖ Ø ÔÓ Ø³ ÑÙ Ø ÙØ ÙÐ Ø Ð Ø ÓÐÓÙÖ ÓÖ Ø ÛÓÖ ÑÙ Ø Ø ØÓ Ø Ö Ò ÖÑÓÒ ÓÙ Û Ýº ÙØÝ Ø Ö Ø Ø Ø Ø
DetaljerÌÓØ Ò Ú Ò ½ ÅÓ ÐÐ Ö Ò Ó Ó Ò»ÓÒÐ Ò ÑÓ ÐÐÚ Ö Ö Ò Ú ØÓØ Ò ÒÐ Ø
ÌÓØ Ò Ú Ò ½ ÅÓ ÐÐ Ö Ò Ó Ó Ò»ÓÒÐ Ò ÑÓ ÐÐÚ Ö Ö Ò Ú ØÓØ Ò ÒÐ Ø ÁÆÆÀÇÄ ÁÒÒ ÓÐ ½ À Ò Ø Ñ ÓÔÔ Ú Ò ½ ¾ ÇÑ ÔÖÓ ÒÐ Ø ¾ ¾º½ ÈÖÓ Ö Ú Ð º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ ¾º¾ ÈÖÓ Ò ÁÒ
Detaljeru = u a cos θ; v = u a sin θ θ = (π/4) sin ωt (ǫ x + ǫ y ), u a (z) = min U, 0.4 ln z )
ÁÒÒ ÓÐ ½ ÁÒÒÐ Ò Ò ¾ ¾ ÈÖÓ Ð Ñ Ø ÐÐ Ò ¾ ÄÓ Ð Ø ¹ Ñ Ð Ö Ò ÁÒÚ Ö ÔÖÓ Ð Ñ Ø ÐÐ Ò º½ ÁÒÚ Ö Ð Ò Ò ÖØ Ô Ó ÖÚ ÓÒ Ø º º º º º º º º º º º º º º º º º º º º¾ ÁÒÚ Ö Ð Ò Ò ÖØ Ô ÓÖ Ò Ð Ø ¹Î Ö º º º º º º º º º º º
DetaljerR, t. reference model. observed model 1 P
ÌÖ Ò Û Ø ÆÓÚ Ð ÈÓ Ø Ñ Ø ÓÒ Ð ÓÖ Ø Ñ Ó Ó ÊÓ Ò Ò ÆÓÖ ÖØ ÃÖĐÙ Ö ÌÓÖ Ê Ö Ð ËÓÑÑ Ö ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø ÙÒ ÈÖ Ø Å Ø Ñ Ø Ö Ø Ò¹ Ð Ö Ø ¹ÍÒ Ú Ö ØĐ Ø ÞÙ Ã Ð ÈÖ Ù Ö ØÖ ½¹ ¾ ½¼ à РÖÑ ÒÝ ÖÓ Ò Ö ØÖ º Ò ÓÖÑ Ø ºÙÒ
DetaljerÁÒ ÐÓÚ Ò Ñ ÑÓÖÝ Ó Ä Ø È ÙÐ ½
ÝÒ Ñ Ð Ø Ô Ò ÓÒ ÓÖ Ø Ú Â ÑÑÝ È ÙÐ Å Ø ÖÓÔÔ Ú ØÙ ÔÖÓ Ö ÑÑ Ø ÅÓ ÐÐ Ö Ò Ó Ø ÒÐÝ Ñ ØÙ Ö ØÒ Ò Ò Ò ÓÖ Ö Ò Ó Ê Ó ¾¼¼ Î Ð Ö Ö ÐÚ Ò Ñ Ö ¾¼¼ Ø Ñ Ø Ñ Ø ¹Ò ØÙÖÚ Ø Ò Ô Ð ÙÐØ Ø ÍÒ Ú Ö Ø Ø Ø Ç ÐÓ ÁÒ ÐÓÚ Ò Ñ ÑÓÖÝ Ó Ä
DetaljerÓÖÓÖ Ì Ø Ð ½ºÚ Ð Ö ËØ Ò Ö Î Ø ÔÖÓ ÓÖ ÁÒ Ø ØÙØØ ÓÖ ÓÒÓÑ Ú Í µ ÓÖ Ò Ñ ÒØ Ð Ö Ø Ú Ø Ø Ó Ò ÓÖÑ Ø Ú Ú Ð Ò Ò Ö ÒÒÓÑ Ð Ö ÔÖÓ Òº Ì Ø Ð ¾ºÚ Ð Ö Ö Ð Ú Ö Ø Ñ ÒÙ
ÈÖ Ö Ó ÓÒØÖ Ø Ö Ö ÙÐ Ö ØÐ Ú Ö Ò Ö Ö Ì ÓÖ Ø Ó ÑÔ Ö Ò ÐÝ Å Ø ÖÓÔÔ Ú Ñ ÙÒÒ ÓÒÓÑ Ã Ö Å Ö Ö Ø Ð ØÖ ÁÒ Ø ØÙØØ ÓÖ ÓÒÓÑ ÍÒ Ú Ö Ø Ø Ø Ö Ò À Ø ¾¼¼ ÓÖÓÖ Ì Ø Ð ½ºÚ Ð Ö ËØ Ò Ö Î Ø ÔÖÓ ÓÖ ÁÒ Ø ØÙØØ ÓÖ ÓÒÓÑ Ú Í µ ÓÖ
DetaljerÌ ÊÁË ÈÖÓ Ö Ñ ÜÔÐÓÖ Ö Ë ÓÒ ËØ ØÙ Ê ÔÓÖØ ÏÓÐ Ò Ë Ö Ò Ö ÏÓÐ Ò ºË Ö Ò ÖÖ º Ùº Ø Ê Ö ÁÒ Ø ØÙØ ÓÖ ËÝÑ ÓÐ ÓÑÔÙØ Ø ÓÒ ÊÁË µ ÂÓ ÒÒ Ã ÔÐ Ö ÍÒ Ú Ö ØÝ Ä ÒÞ Ù ØÖ
Ì ÊÁË ÈÖÓ Ö Ñ ÜÔÓÖ Ö Ë ÓÒ ËØ ØÙ Ê ÔÓÖØ ÏÓ Ò Ë Ö Ò Ö ÏÓ Ò ºË Ö Ò ÖÖ º Ùº Ø Ê Ö ÁÒ Ø ØÙØ ÓÖ ËÝÑ Ó ÓÑÔÙØ Ø ÓÒ ÊÁË µ ÂÓ ÒÒ Ã Ô Ö ÍÒ Ú Ö ØÝ Ä ÒÞ Ù ØÖ ØØÔ»»ÛÛÛºÖ º Ùº Ø ÏÓ Ò Ë Ö Ò Ö ØØÔ»»ÛÛÛºÖ º Ùº Ø ½»½ Ó Ò
DetaljerËØÓ Ø ÑÓ Ð ÓÖ ÝÑÑ ØÖ Û Ú Ù Ú Ö Ù Ä Ö Ò ÖÓÒع ÝÑÑ ØÖÝ ØÓ Ø Ä Ö Ò ÑÓ Ð ÓÖ ÝÑÑ ØÖ Ó Ò Û Ú Û Ø Ö Ø ÓÒ Ð ÔÖ Ò ÓÖ Ä Ò Ö Ò ½ ËÓ Ö ½ ÒÒ Ä Ò Ö Ò ¾ ½ ÒØÖ ÓÖ Å Ø
ËØÓ Ø ÑÓ Ð ÓÖ ÝÑÑ ØÖ Û Ú Ù Ú Ö Ù Ä Ö Ò ÖÓÒع ÝÑÑ ØÖÝ ØÓ Ø Ä Ö Ò ÑÓ Ð ÓÖ ÝÑÑ ØÖ Ó Ò Û Ú Û Ø Ö Ø ÓÒ Ð ÔÖ Ò ÓÖ Ä Ò Ö Ò ½ ËÓ Ö ½ ÒÒ Ä Ò Ö Ò ¾ ½ ÒØÖ ÓÖ Å Ø Ñ Ø Ð Ë Ò ÄÙÒ ÍÒ Ú Ö ØÝ ¾ Å Ø Ñ Ø Ð Ë Ò ÆÓÖÛ Ò ÍÒ
DetaljerÓÖÓÖ Î Ð Ñ ØØ Ø Ð Ò Ð Ø Ò ÖÙÒ ØÙÖ ÒÒÓÑ Ú Ö Ò Ò Ú Ñ Ø Ñ Ø ÓØ ÔÓÖº Á ÒÒ Ó Ð ÓÖØ ÐÐ ÓÑ ÚÓÖ Ò Ñ Ø Ñ Ø ÖÙ Ø ÒÓÐÓ ÙÒ Ø Ó ÙÒ Ö ÓÐ Ò Ø Ò ¹ Ô Ö Ñ ÒØ Öº Â ÔÖ Ú
ÀÚÓÖ ÓÖ Ñ ØØ Ë ÙÖ Ï ÒÒ Ö ½½º Ó ØÓ Ö ¾¼¼ ½ ÓÖÓÖ Î Ð Ñ ØØ Ø Ð Ò Ð Ø Ò ÖÙÒ ØÙÖ ÒÒÓÑ Ú Ö Ò Ò Ú Ñ Ø Ñ Ø ÓØ ÔÓÖº Á ÒÒ Ó Ð ÓÖØ ÐÐ ÓÑ ÚÓÖ Ò Ñ Ø Ñ Ø ÖÙ Ø ÒÓÐÓ ÙÒ Ø Ó ÙÒ Ö ÓÐ Ò Ø Ò ¹ Ô Ö Ñ ÒØ Öº  ÔÖ Ú Ö Ó Ò ÚÒ
DetaljerÅÓ ÐÐ Ö Ò Ú Ø ÔÖ Ø ÐÝ ÐØ Ø Ö Ò Ö ÙÐ Ñ ÒÒ ÐÐ Ò ÐÝ ÐØ Ö Ò Ù Ø ÝÐ Ò Ö ÖÖ Ý Å Ø ÖÓÔÔ Ú Ù Ø Ú Ë Ò Ö ÆÓÖ ÐÙÒ Î ØÒ ÓÐ ÁÒ Ø ØÙØØ ÓÖ Ý Ó Ø ÒÓÐÓ ÂÙÒ ¾¼½¾
ÅÓ ÐÐ Ö Ò Ú Ø ÔÖ Ø ÐÝ ÐØ Ø Ö Ò Ö ÙÐ Ñ ÒÒ ÐÐ Ò ÐÝ ÐØ Ö Ò Ù Ø ÝÐ Ò Ö ÖÖ Ý Å Ø ÖÓÔÔ Ú Ù Ø Ú Ë Ò Ö ÆÓÖ ÐÙÒ Î ØÒ ÓÐ ÁÒ Ø ØÙØØ ÓÖ Ý Ó Ø ÒÓÐÓ ÂÙÒ ¾¼½¾ ÓÖÓÖ ÒÒÓÑ ÓÔÔÚ Ø Ò Ø Ð Ö Ø Ò Ø Ò Ð ÓÑÑ Ö Ò Ô Ñ Ð Ò ÝØØ º
DetaljerÓ Ö Ò ¹½ Ð ØØ Ö Ð Ö Ú Ñ Ò ÓÒ Å Ø ÖÓÔÔ Ú ÒÚ Ò Ø Ó Ê Ò ÓÖ ÒØ ÖØ Ñ Ø Ñ Ø Î Ö ÌÓÔÔ ÓÐ Å Ø Ñ Ø Ò Ø ØÙØØ ÍÒ Ú Ö Ø Ø Ø Ö Ò ½º ÙÒ ¾¼½½ Ö ÓÖ ÒÒ Ñ Ø ÖÓÔÔ Ú Ú ÖØ ÒÒÓÑ ÖØ Ó Ö Ú Ò Ú Ñ Ø Ñ Ø Ò Ø ØÙØØ Ú Ð Ò ÓÖ ÒÚ Ò
DetaljerUndervisningssituasjonen hos avd. B i forbindelse med reduksjon til 7 fast ansatte. Konsekvens av å endre fordelingen av fast ansatte fra 2/5 til 3/4 mellom forskningsgruppene faststoffmekanikk og fluidmekanikk.
DetaljerÓÖÓÖ ÒÒ ÓÔÔ Ú Ò Ö Ö Ú Ø ÓÖ Ò Ð Ñ Ñ ØØ Ñ Ø Ö ØÙ ÙÑ ÁÒ ÓÖ¹ Ñ Ø Ú À ÓÐ Ò Ø ÓÐ º Â Ú Ð Ø Ñ Ò Ú Ð Ö ÔÖÓ ÓÖ ÖÖ ÄÙ Ú Ò ÓÑ ÓÖ Ø ÑÙÐ ÓÖ Ñ Ó Ñ ÒÒ ÓÔÔ Ú Òº À Ò Ú
Ø Ð ÓÖÑ Ð Ò Ú ØÒÓÑÙ ÓÐÓ ÖÙÞ Ð Ú ÙÒ Ø Ó Ä ÒÓÒ ÙÐØÙÖ Ð Î Ð Å Ø Ö Ö ÓÔÔ Ú Ò Ú Ø Ð ÓÑ Ú Ð Ö À ÓÐ Ò Ø ÓÐ Ú Ð Ò ÓÖ Ò ÓÖÑ ÓÒ Ø ÒÓÐÓ ½¼º ÒÙ Ö ¾¼½¼ ÓÖÓÖ ÒÒ ÓÔÔ Ú Ò Ö Ö Ú Ø ÓÖ Ò Ð Ñ Ñ ØØ Ñ Ø Ö ØÙ ÙÑ ÁÒ ÓÖ¹ Ñ Ø Ú
DetaljerÁÆËÌÁÌÍÌ Æ ÌÁÇÆ Ä ÈÇÄ Ì ÀÆÁÉÍ Ê ÆÇ Ä Æ ØØÖ Ù Ô Ö Ð Ð ÓØ ÕÙ ÌÀ Ë ÔÓÙÖ Ó Ø Ò Ö Ð Ö Ç Ì ÍÊ Ð³ÁÆÈ ËÔ Ð Ø ÁÒ ÓÖÑ Ø ÕÙ ËÝ Ø Ñ Ø ÓÑÑÙÒ Ø ÓÒ ÔÖ Ô Ö Ù Ð ÓÖ ØÓ
ÁÆËÌÁÌÍÌ Æ ÌÁÇÆ Ä ÈÇÄ Ì ÀÆÁÉÍ Ê ÆÇ Ä Æ ØØÖ Ù Ô Ö Ð Ð ÓØ ÕÙ ÌÀ Ë ÔÓÙÖ Ó Ø Ò Ö Ð Ö Ç Ì ÍÊ Ð³ÁÆÈ ËÔ Ð Ø ÁÒ ÓÖÑ Ø ÕÙ ËÝ Ø Ñ Ø ÓÑÑÙÒ Ø ÓÒ ÔÖ Ô Ö Ù Ð ÓÖ ØÓ Ö ÄËʹÁÅ ÔÖÓ Ø Ë Ê Ë Ò Ð Ö Ð³ ÓÐ ÓØÓÖ Ð Å Ø Ñ Ø ÕÙ
DetaljerÁÒ ÓÖÑ Ø ÓÒ ÐÓÛ ÁÒ Ö Ò ÓÖ ÅÄ Ê Æ ÇÁË ÈÇÌÌÁ Ê Ò ÎÁÆ ÆÌ ËÁÅÇÆ Ì ÁÆÊÁ Ì Ô Ô Ö ÔÖ ÒØ ØÝÔ ¹ Ò ÓÖÑ Ø ÓÒ ÓÛ Ò ÐÝ ÓÖ Ðй Ý¹Ú ÐÙ ¹ ÐÙÐÙ ÕÙ Ô¹ Ô Û Ø Ö Ö Ò Ü ÔØ
ÁÒ ÓÖÑ Ø ÓÒ ÐÓÛ ÁÒ Ö Ò ÓÖ ÅÄ Ê Æ ÇÁË ÈÇÌÌÁ Ê Ò ÎÁÆ ÆÌ ËÁÅÇÆ Ì ÁÆÊÁ Ì Ô Ô Ö ÔÖ ÒØ ØÝÔ ¹ Ò ÓÖÑ Ø ÓÒ ÓÛ Ò ÐÝ ÓÖ Ðй Ý¹Ú ÐÙ ¹ ÐÙÐÙ ÕÙ Ô¹ Ô Û Ø Ö Ö Ò Ü ÔØ ÓÒ Ò Ð Ø¹ÔÓÐÝÑÓÖÔ Ñ Û Û Ö Ö ØÓ ÓÖ Åĺ Ì ØÝÔ Ý Ø Ñ ÓÒ
DetaljerNotater. Kalendereffekter. Dinh Quang Pham. Modell og estimering. Documents 45/2012
Notater Documents 45/2012 Dinh Quang Pham Kalendereffekter Modell og estimering Notater 45/2012 Dihn Quang Pham Kalendereffekter Modell og estimering Statistisk sentralbyrå Statistics Norway Oslo Kongsvinger
DetaljerÔÐÓÑÓÔÔ Ú Ý Å ÖÓ Ð Ö ÓÑ ØÖ ÒÚ Ò Ø Ø Ð Ø ÓÒ Ú Ø ÑÔ Ö ØÙÖ Ö ÒØ Ö ÖÝ ØÚ Ú ÒØÓÑ Ý Ø Ò ÃÐ Ñ Ø Ò ÂÙÒ ¾¼¼ Ø Ñ Ø Ñ Ø ¹Ò ØÙÖÚ Ø Ò ÔÐ ÙÐØ Ø ÁÒ Ø ØÙØØ ÓÖ Ý ÆÓÖ ÐÝ Ó ÖÚ ØÓÖ Ø ÍÒ Ú Ö Ø Ø Ø ÌÖÓÑ ¼ ÌÖÓÑ Ø Ð ÓÒ ½ ¼ Ø
DetaljerË ÑÑ Ò Ö Ú ÓÚ ÔÖÓ Ø Ì ØØ Ð ÅÌ ÆÖ ½¼ ÓÑÔÐ Ü ÅÓ Ð Ì ÒÝ Ð ØÓ ½ º¼ º¼ ÐØ Ö µ Î Ð Ö µ Ä Ö À ÐÚÓÖ ÒÙÒ ÂÓÒ Ö Ò Ì ÓÑ Ù Ø ÝÚ Ò ÃÓÐ ÇÔÔ Ö Ú Ö ËÙÒ Ø Ñ Ë Ö Ú Ë ÙÖ
½ Ë ÑÑ Ò Ö Ú ÓÚ ÔÖÓ Ø Ì ØØ Ð ÅÌ ÆÖ ½¼ ÓÑÔÐ Ü ÅÓ Ð Ì ÒÝ Ð ØÓ ½ º¼ º¼ ÐØ Ö µ Î Ð Ö µ Ä Ö À ÐÚÓÖ ÒÙÒ ÂÓÒ Ö Ò Ì ÓÑ Ù Ø ÝÚ Ò ÃÓÐ ÇÔÔ Ö Ú Ö ËÙÒ Ø Ñ Ë Ö Ú Ë ÙÖ Å Ø Ò ÙÖ ÙÒ Ø ÑºÓÑ ÃÓÒØ ØÔ Ö ÓÒ Ì ÓÑ Ù Ø ËØ ÓÖ µ
DetaljerÆÓ Ò ÑÑ Ò Ò Ö Ñ ÐÐÓÑ Ö Ö Ñ ØÖÓ Ö Ð Ò Ö Ó Ö Ó ØÖ ÐÐ Ö Ò Ö ÃÚ Ð Å Ø ÖÓÔÔ Ú Ð Ö Å Ø Ñ Ø ÁÒ Ø ØÙØØ ÍÒ Ú Ö Ø Ø Ø Ö Ò ÆÓÖ ½½º ÔÖ Ð ¾¼¼ Ö Ñ ÓÖ ÐØ Ñ Ö ØØ Ò ØÓÖ Ø Ø Ð Ñ Ò Ú Ð Ö ÌÖÝ Ú ÂÓ Ò Ò ÓÖ Ò Ð Ó Ô Ö ÓÒÐ ÑÓØ
DetaljerÓÑÔ Ð Ö ÓÖ À Ö ØÓÔ À ÖÖÑ ÒÒ Ö Ø Ò Ä Ò Ù Ö ÊÓ ÖØ ĐÙÒÞ Â Ò Ä Ø Ò Ö Ö Ò Ö Ø Ò Ë ÐÐ Ö ÙÐØĐ Ø ĐÙÖ Å Ø Ñ Ø ÙÒ ÁÒ ÓÖÑ Ø ÍÒ Ú Ö ØĐ Ø È Ù ÖÑ ÒÝ ÖÖÑ ÒÒ Ð Ò Ù Ö
ÓÑÔ Ð Ö ÓÖ À Ö ØÓÔ À ÖÖÑ ÒÒ Ö Ø Ò Ä Ò Ù Ö ÊÓ ÖØ ĐÙÒÞ Â Ò Ä Ø Ò Ö Ö Ò Ö Ø Ò Ë ÐÐ Ö ÙÐØĐ Ø ĐÙÖ Å Ø Ñ Ø ÙÒ ÁÒ ÓÖÑ Ø ÍÒ Ú Ö ØĐ Ø È Ù ÖÑ ÒÝ ÖÖÑ ÒÒ Ð Ò Ù Ö Ñ ºÙÒ ¹Ô Ùº ØØÔ»»ÛÛÛº Ñ ºÙÒ ¹Ô Ùº» Ð Ò Ù Ö» Å Ý ½ ØÖ
DetaljerÐ Ø Ø Ô Ö Ñ Ö Ö ÙÐÐ ÖÝÐÐ ÙÔ Ø Ú ÖØ ½ º
ÌÌ ÊË Æ Ú À ÒÖ Ù Ò Ñ Ø ÐÐ Ú Ç ÒÝ Ù Ò Ð Ø Ø Ô Ö Ñ Ö Ö ÙÐÐ ÖÝÐÐ ÙÔ Ø Ú ÖØ ½ º Ì Ð Ð Ø Ó Ú Ò Ö ØØ Ö ÓÔÔÑÓ Ò Ö ÓÖÒ Ú Ò ØÐ Ó ÂÓ Ø Ò Ö Ö Ú ØØ Ö Ø Ø ÓÑ ÐÐ Ö ØØ Ö ÝÒº Ø Ö Ö Ñ Ö Ú ØÓ Ð Öº Ò ÝÖ Ø Ð Ò ÓÑ Ò Ð Ö Ð
Detaljer¾
½ ÆÓÖ ¹ ÌÝ ÌÝ ¹ ÆÓÖ Ê Ø ÙÒ ÁÒ Ó Å Ö Ø Ò Ö ¾ º ÖÙ Ö ¾¼¼ ¾ ÁÒ ÐØ Ú ÖÞ Ò ½ Ä Ò ÖØ Ò ½º½ à ÖØ Ò º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º½º½ Ä Ò ÖØ º º º º º º º º º º º º º º º
DetaljerÊ Ð Ø ÓÒ Ð Ê Ò ÓÖ Ñ ÒØ Ä ÖÒ Ò Ë Ó Þ ÖÓ ÄÙ Ê Ø ÃÙÖØ Ö Ò Ê ÔÓÖØ Ï ½½ Å Ý ¾¼¼½ Ò Ã Ø ÓÐ ÍÒ Ú Ö Ø Ø Ä ÙÚ Ò Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò Ð Ø Ò ÒÐ Ò ¾¼¼ ß ¹ ¼¼½ À
Ê Ð Ø ÓÒ Ð Ê Ò ÓÖ Ñ ÒØ Ä ÖÒ Ò Ë Ó Þ ÖÓ ÄÙ Ê Ø ÃÙÖØ Ö Ò Ê ÔÓÖØ Ï ½½ Å Ý ¾¼¼½ Ò Ã Ø ÓÐ ÍÒ Ú Ö Ø Ø Ä ÙÚ Ò Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò Ð Ø Ò ÒÐ Ò ¾¼¼ ß ¹ ¼¼½ À Ú ÖÐ Ð Ùѵ Ê Ð Ø ÓÒ Ð Ê Ò ÓÖ Ñ ÒØ Ä ÖÒ Ò Ë Ó Þ ÖÓ
DetaljerÒ Ò ÐÝ Ó ÑÔ Ö Ð Ì Ø Ò ÓÖ ÅÓ Ð ÓÒ ÈÖÓ ÙÖ Á Æ ÀÇÊÊÇ ÃË Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò ÍÒ Ú Ö ØÝ Ó Å Ò Ø Ö Íú ¹Ñ Ð ÓÖÖÓ ºÑ Òº ºÙ È Ì Ê º È Ì Ä¹Ë ÀÆ Á Ê ÐÐ Ä Ê Ö
Ò Ò ÐÝ Ó ÑÔ Ö Ð Ì Ø Ò ÓÖ ÅÓ Ð ÓÒ ÈÖÓ ÙÖ Á Æ ÀÇÊÊÇ ÃË Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò ÍÒ Ú Ö ØÝ Ó Å Ò Ø Ö Íú ¹Ñ Ð ÓÖÖÓ ºÑ Òº ºÙ È Ì Ê º È Ì Ä¹Ë ÀÆ Á Ê ÐÐ Ä Ê Ö ÅÙÖÖ Ý À ÐÐ Æ ͺ˺ º ¹Ñ Ð Ô Ô Ö Ö º ÐйРºÓÑ ÊÇ ÊÌÇ
DetaljerState and Transition Definition in Source Code. Contract Definition. public class BeginUpUpContract implements IContract< IMeasurementVariables >
ÅÓÒ ØÓÖ Ò ÅÓ Ð ËÔ Ø ÓÒ Ò ÈÖÓ Ö Ñ Ó È ØØ ÖÒ ÅÓÖ ØÞ ÐÞ Å Ð ËØÖ Û Ò Å Ð Ó È ÐÙÒÓ Ì ÊÙ Ö ÁÒ Ø ØÙØ ÓÖ ËÓ ØÛ Ö Ì ÒÓÐÓ Ý ÍÒ Ú Ö ØÝ Ó Ù ÙÖ ¹ Ò Ò ÖÑ ÒÝ ßÑÓÖ ØÞº ÐÞ Ñ Ðº ØÖ Û Ñ Ðº Ó Ð ºÙÒ ¹ Ù º ½ ØÖ Øº ÆÙÑ ÖÓÙ ÔÔÖÓ
DetaljerÍÒ Ú Ö Ø Ø Ø ËØ Ú Ò Ö Å Ø ÖÓÔÔ Ú ¾¼½½ Ê ÒØ Ò Ö ÓÒº ÖÛ Ò ÝÒ Ñ Ø ÓÖ ÓÖ Ö ÓÒ ÓÑ ØÖ º Á Å Ö ÇÙ º ÒÙ Ö ¾¼½¾ ¾ Ë ÑÑ Ò Ö Ì Ñ Ø ÓÖ Ñ Ø ÖÓÔÔ Ú Ò Ö Ð Ñ ÒØ Ö ÝÒ Ñ Ø ÓÖ ÓÖ Ö ÒØ Ò ¹ Ö ÓÒ º ÇÔÔ Ú Ò Ö ÙØ Ò ÔÙÒ Ø º º
Detaljer½º ÙØ Ú ÍÒ Ú Ö Ø Ø ÓÖÐ Ø Ë ½ ¾º ÙØ Ú ÍÒ Ú Ö Ø Ø ÓÖÐ Ø Ë ½ º ÙØ Ú Ú» ÓÖ ØØ ÖÒ ÓÙ Ò ÓÛÒÐÓ Ò Ù Ø Ñ Ø Ö Ð Ö ÐÝ Ù Ø ØÓ Ø Ö Ø Ú ÓÑÑÓÒ ÈÙ Ð ÓÔÝÖ Ø Ä Ò Å Ö º
Ú Ò ÀÓÐØ Ö ÒÒ ÁÒ Ö Ø Ò ÀÙ Ó È ÖÖ Ý Ó Ò Ö Ö ÙÖ Ö Ý Ò Ø ØÙØØ ÍÒ Ú Ö Ø Ø Ø Ç ÐÓ ½º ÙØ Ú ÍÒ Ú Ö Ø Ø ÓÖÐ Ø Ë ½ ¾º ÙØ Ú ÍÒ Ú Ö Ø Ø ÓÖÐ Ø Ë ½ º ÙØ Ú Ú» ÓÖ ØØ ÖÒ ÓÙ Ò ÓÛÒÐÓ Ò Ù Ø Ñ Ø Ö Ð Ö ÐÝ Ù Ø ØÓ Ø Ö Ø Ú ÓÑÑÓÒ
DetaljerË ÑÑ Ò Ö Á ÒÒ ÓÔÔ Ú Ò Ö Ø Ö Ø Ñ Ø ÒÝØØ Ð Ø ÚØ Ô Ö ÓÒ Ý Ø Ñ ÓÖ ÖÙØ Ö ÓÖ ÙÑ ÖÙÒÒ ØÓ ÒÙÑÑ Ö ½¼ µ Ú ÖÙ Ú Ú ¹Ú ØÖ ÓÒº ËÝ Ø Ñ Ø Ö ÙØÚ Ð Ø ËÁË Ã¹ Ý Ø Ñ Ø ÓÑ Ö Ø Ò ØÖÙÑ ÒØ ÓÖ ÙÖØ ÓÒÐ Ò Ú ¹Ú ØÖ ÓÒº Á ÓÑ Ò ÓÒ Ñ
Detaljer¾
¾ Ë ÑÑ Ò Ö Ò ÒØÖ Ð Ø ÓÖ ÒÒ Ò ÐØ Ø Ö ÒØ Ò Ö ÓÒ Ö ØÖ ÓÒ ÐØ ÚÖØ Û Ð ¹ ÚÓÒ Ä Ù Ø ÓÖ Òº Ò ÒÒ Ò Ñ Ò Ö ÒÝØØ Ø Ø ÓÖ Ö Ò ÖÛ Ò ÔÙ Ð ÖØ ½ ½ º ÒÒ ÓÔÔ Ú Ò Ø Ö Ö Ø ÙØ Ò ÔÙÒ Ø Ò Ò Ñ Ø Ø ÓÖ Ò Ø Ð ÖÛ Ò ÚÓÖ ÒØÖ Ð Ö Ô Ð
DetaljerÎ ÐØÖÓÒ¹ ÔÒÒ Ö ÓÒÒ Ëʵ Ö Ø Ò ÒÖÒ ÐØÖÓÒÒ ÔÒÒ ÓÑ ØÐ ÚÖÒ ÑÖÖ Ò ÒÖÒ ÑÒØ ÓÖÓк Á ÑÖÓÐÓÑÖØ Ö Ø Ò ÖÓØ ÓÒ Ú ÑÓÐÝÐØ ÓÑ ÖÖ ØÐ Ò ÒÖÒ Ú Ø ÐØÖ ÐØ ÖÙÒØ Øº Á Ø ÒÖÖ Ó
ÃÂŽ¼¼ ÐÓÔÔÚ ½ ¹ Áʹ ÔØÖÓ ÓÔ ÅÐ ÅÐØ Ñ ÒÒ ÓÔÔÚÒ Ö ÙÒÒ ÐÐ ÑÐÐÓÑ Áʹ ÔØÖÒ ØÐ À À Ó ÑØ ÙÒÒ ØÑÑ ÙÐ Ò ÔÖ ÓÑ ÓÖ ÑÔÐ ÒÒ Ú ØÒ Ó ÒÒ ØÝÖ ÖØÓÒ ØÒص ÙØÖ Ø ÁÊ ÔØÖÙѺ ÅÓÐÝÐ ÔØÖÓ ÓÔ ÅÓÐÝÐ ÔØÖÓ ÓÔ Ò ÒÖ ÓÑ ØÙØ Ú Ú ÐÚÖÒÒÒ
DetaljerÔÔÖÓ Ò Ø ÓÖÑ Ð Ò Ò Ú ÐÓÔÑ ÒØ Ó ÓÑÔÐ Ü ËÝ Ø Ñ Ì Ê ØÖ Ò Ñ ÒØ ÈÓ Ø ÓÒ Ê Ö Ò Þ Ð Û Â Ë ÑÓÒ Ö Ö Ê Ö ÖÓ Å Ð ÈÓÔÔÐ ØÓÒ ËÙ Ò ËØ ÔÒ Ý Ò ËØ Ú Ò Ã Ò ÓÑÔÙØ Ö Ë Ò
ÔÔÖÓ Ò Ø ÓÖÑ Ð Ò Ò Ú ÐÓÔÑ ÒØ Ó ÓÑÔÐ Ü ËÝ Ø Ñ Ì Ê ØÖ Ò Ñ ÒØ ÈÓ Ø ÓÒ Ê Ö Ò Þ Ð Û Â Ë ÑÓÒ Ö Ö Ê Ö ÖÓ Å Ð ÈÓÔÔÐ ØÓÒ ËÙ Ò ËØ ÔÒ Ý Ò ËØ Ú Ò Ã Ò ÓÑÔÙØ Ö Ë Ò Ôغ ÍÒ Ú Ö ØÝ Ó Å Ò Ø Ö Å Ò Ø Ö Å½ ÈÄ ÍÃ Ò Ö Ö ÖÖÓ
Detaljerarxiv:cs/ v1 [cs.lo] 25 Oct 2002
arxiv:cs/020022v [cs.lo] 25 Oct 2002 Ò Ð Ñ ÒØ ÖÝ Ö Ñ ÒØ Ó Ë ÓÒ ¹ÇÖ Ö ÃÐ Ù Ð Å Ø Ñ Ø ÁÒ Ø ØÙØ ÍÒ Ú Ö ØĐ Ø ÅĐÙÒ Ò Ä Ñ ÐÙÐÙ Abstract Â Ò ÂÓ ÒÒ Ò ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø ÍÒ Ú Ö ØĐ Ø ÅĐÙÒ Ò Ö Ñ ÒØ Ó ÓÒ ¹ÓÖ Ö
DetaljerÀ ¹Ä Ú Ð Ü ÙØ Ð ËÔ Ø ÓÒ Ó ØÖ ÙØ Ð ÓÖ Ø Ñ Ò ÓÒ º Ä Ù ËÓØØ º ËØÓÐÐ Ö Ò Ó Ä Ò ÓÑÔÙØ Ö Ë Ò Ô ÖØÑ ÒØ ËØ Ø ÍÒ Ú Ö ØÝ Ó Æ Û ÓÖ Ø ËØÓÒÝ ÖÓÓ ßÐ Ù ØÓÐÐ Ö ÓÐ ÒÐ
À ¹Ä Ú Ð Ü ÙØ Ð ËÔ Ø ÓÒ Ó ØÖ ÙØ Ð ÓÖ Ø Ñ Ò ÓÒ º Ä Ù ËÓØØ º ËØÓÐÐ Ö Ò Ó Ä Ò ÓÑÔÙØ Ö Ë Ò Ô ÖØÑ ÒØ ËØ Ø ÍÒ Ú Ö ØÝ Ó Æ Û ÓÖ Ø ËØÓÒÝ ÖÓÓ ßÐ Ù ØÓÐÐ Ö ÓÐ ÒÐ º ØÓÒÝ ÖÓÓ º Ù ØÖ Øº Ì Ô Ô Ö Ö Ñ Ø Ó ÓÖ Ô Ý Ò ÓÑÔÐ
Detaljert=0 t=0 U(c, l) = β u(c t, l in t )
Ó ÓÓÔ Ö Ø Ú Ò Ø Ø ÔÓÓÖ Ú Ò ÖÓÑ Ø ÓÔ Å Ö ÊÓ Ö Ó Ô ÖØÑ ÒØ Ó Ö ÙÐØÙÖ Ð Ò ÔÔÐ ÓÒÓÑ ÍÒ Ú Ö ØÝ Ó Ï ÓÒ Ò Å ÓÒ ÖÓ Ö ÓÛ º Ù Ë Ð Ø Ô Ô Ö ÓÖ ÔÖ ÒØ Ø ÓÒ Ø Ø Ö ÙÐØÙÖ Ð Ò ÔÔÐ ÓÒÓÑ Ó Ø ÓÒ³ ¾¼½¾ ÒÒÙ Ð Å Ø Ò Ë ØØÐ Ï Ò
DetaljerËØ Ø Ø È Ý Ò Ð ØØ ÜØ Å ÖØ Ò ÀÓÐØ Ù ½ ÖÐ ÚÓÒ Ç ØÞ Ý ÍÒ Ú Ö ØØ ÇÐ Ò ÙÖ ÃÓÖÖ ÖØ ÙÒ ÚÓÑ ËÓÑÑ Ö Ñ Ø Ö ¾¼¼ ½ ÓÐØ Ù Ø ÓÖ ºÔ Ý ºÙÒ ¹ÓÐ Ò ÙÖ º
ËØ Ø Ø È Ý Ò Ð ØØ ÜØ Å ÖØ Ò ÀÓÐØ Ù ½ ÖÐ ÚÓÒ Ç ØÞ Ý ÍÒ Ú Ö ØØ ÇÐ Ò ÙÖ ÃÓÖÖ ÖØ ÙÒ ÚÓÑ ËÓÑÑ Ö Ñ Ø Ö ¾¼¼ ½ ÓÐØ Ù Ø ÓÖ ºÔ Ý ºÙÒ ¹ÓÐ Ò ÙÖ º ÁÖÖØÙÑ Ú ÖÐ Ø ÙÒ Ò Ó Þ Ø Ò Ö Ö Ò ÁÑÑ Ö Ò ØÖ Ò Ò Ø Ð ÞÙÖ Ï Ö Ø Ò Òº
DetaljerÓÒ ÓÖÑ Ð Ð Ì ÓÖÝ Ö ÔØ ÓÒ Ó À ÐÝ ÓÖÖ Ð Ø ËØ Ø Ò Ê Ô ÐÝ ÊÓØ Ø Ò Ó ÖÚ Ë Ù Ò Ì ËÙ Ñ ØØ ÓÖ Ø Å Ø Ö³ Ö Ô ÖØÑ ÒØ Ó È Ý ÍÒ Ú Ö ØÝ Ó Ç ÐÓ ÂÙÒ ¾¼¼
ÓÒ ÓÖÑ Ð Ð Ì ÓÖÝ Ö ÔØ ÓÒ Ó À ÐÝ ÓÖÖ Ð Ø ËØ Ø Ò Ê Ô ÐÝ ÊÓØ Ø Ò Ó ÖÚ Ë Ù Ò Ì ËÙ Ñ ØØ ÓÖ Ø Å Ø Ö³ Ö Ô ÖØÑ ÒØ Ó È Ý ÍÒ Ú Ö ØÝ Ó Ç ÐÓ ÂÙÒ ¾¼¼ Ì Ö Ø Ó Ö Ñ Ø Ú Ð Ø Ñ Ò Ú Ð Ö ËÙ ÒÒ Î Ö ÓÑ ÓÖ ÐÓ ÓÔÔ Ú Ò Ñ Ò Ó
Detaljerk=1 L = lim k=1 ˆ j dx sgn GL = i
Ë Ò Ô ÐÐÓÚ Ö Ø Ù Ð Ò ÓÒ ØÓÖ Ð ÓÑÔÓ Ø ÓÒ Å Ö ÙÒ Ý ÂÓ Ò À ÖÚ Ý È ÖÖ Ë ÐÓ + ÎÐ Ñ Ö ÎÓÐ ÓÚ Ì Ñ Ò Ò Ë ÓÓÐ Ó Ù Ò Ò ÓÒÓÑ ÍÒ Ú Ö ØÝ Ó Ì Ñ Ò +Ï Ð Ö Ä ÙÖ Ö ÍÒ Ú Ö ØÝ ÂÙÐÝ ¾¼½ ØÖ Ø Ì Ô ÐÐÓÚ Ö Ø Ó ÒØ ÖÓÒÒ Ø Ò ØÛ Ò
DetaljerTFY4108. Trening i eksperimentelt arbeid Demonstrere fysiske fenomener Opplæring i usikkerhetsanalyse. søndag 8. september 13
1 TFY4108 Trening i eksperimentelt arbeid Demonstrere fysiske fenomener Opplæring i usikkerhetsanalyse Fysikk lab Fysikk lab Elektron og ionelaboratorium fs-laserspektroskopilaboratorium Lysspredningslaboratium
DetaljerTFY4108. Trening i eksperimentelt arbeid Demonstrere fysiske fenomener Opplæring i usikkerhetsanalyse
!1 TFY4108 Trening i eksperimentelt arbeid Demonstrere fysiske fenomener Opplæring i usikkerhetsanalyse Fysikk lab Fysikk lab Elektron og ionelaboratorium fs-laserspektroskopilaboratorium Lysspredningslaboratium
DetaljerPDF created with pdffactory Pro trial version
[ ² Ú»» ³»»² ¾ ²» ¹» ô Ì ± « Forord Ò ; ±¹ ²» ³«¹»» òòò [ ²»² ª ; µ«² ¹» ¼» º± îðïéô ¹ «²²»² ¼»»» ¼» µ±³³» ² ³³» ² º± ¾ ²» ¹» «¹«±³ ¹ ( ¼» ¾»²¼ ²¹»»²»» ; ²» ò Ê»² : ¼»» ª µ ¹ ±¾¾ ±¹ ¼»² µ ª º± ª» ¹±¼ ò
DetaljerBESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL
Labratorieøvelse i FYSIKK Høst 1994 Institutt for fysisk, NTH BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL av Ola Olsen En lett revidert og anonymisert versjon til eksempel for skriving av lab.-rapport
DetaljerTFY4120. Trening i eksperimentelt arbeid Demonstrere fysiske fenomener Opplæring i usikkerhetsanalyse og rapportskriving. søndag 8.
1 TFY4120 Trening i eksperimentelt arbeid Demonstrere fysiske fenomener Opplæring i usikkerhetsanalyse og rapportskriving 2 Fysikklab Fysikklab Grunnleggande labarbeid og feilanalyse er det samme!! 4 Hvordan
DetaljerNORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI
NORGES EKNISK- NAURIENSKAPELIGE UNIERSIE INSIU FOR KJEMI KJ4160 FYSIKALSK KJEMI GK, ÅREN 2008 Onsdag 28. mai 2008 id: 9.00-13.00 Faglig kontakt under eksamen: Førsteaman. Morten Bjørgen, tlf. 47 28 88
DetaljerBESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL
Labratorieøvelse i FYSIKK Høst 1994 Institutt for fysisk, NTH BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL av Ola Olsen En lett revidert og anonymisert versjon til eksempel for skriving av lab.-rapport
Detaljer1 ϕ(y)dy = f(x), x, y D = [0, 1]d x y. D ijk = [a i 1, a i ] [a j 1, a j ] [a k 1, a k ], 0 = a 0 < a 1 <... < a n = 1
Ä Ê ËÍ ÄÁÆ Ê ÇÊ ÅÍÄÌÁ¹ ÁÅ ÆËÁÇÆ Ä Ì ÆËÇÊ ÈÊÇ Ä ÅË Ù Ò ÌÝÖØÝ Ò ÓÚ Ø ÒÑºÖ ºÖÙ Ó ÆÙÑ Ö Ð Å Ø Ñ Ø ÁÒ Ø ØÙØ ÑÝ Ó Ë Ò ÊÙ Ò Ç ÌÀ Ì Äà ÇÎ ÊÎÁ Ï ÀÙ ¹ Ð Ø ÐÐ ÓÖ Ù Ð Ò Ö ÓÑÔÐ Ü ØÝ Ì Ò ÓÖ ÖÓÙÒ ÌÙ Ö ÓÑÔÓ Ø ÓÒ ÒÓÒ Ð
Detaljer¾º  k 0 Ö f(n) = Θ(n log b a log k n) ØÙÓÑ Ø T(n) = Θ(n log b a log k+1 n) < cf(n)
Ë ÙÓ ÑÓ Ó ÓÑ ØÖ Ó Ð ÓÖ ØÑ ½ Ë Ú Ö Ò Ù Å ¼ Ð Ñ Ö Ø ØØÔ»»ÛÛÛºÑ ºÚÙºÐØ» ÞÙ» Ó¹ Ð ÓÖ ØÑ» Ó¹ Ð ÓÖ ØÑ ºÔ ½ È ØÓ Ô Ø ØÓ È Ö ÈÓ ØËÖ ÔØ ÓÖÑ Ø º Ì Ô Ô Ø Ô ÖÙÓ Ø Ä Ì ÎÁ Ú Ö ÒØ º ÌÙÖ ÒÝ ½ Å Ø Ö Ø ÓÖ Ñ ¾ ½º½ à РØ
Detaljerarxiv:math.dg/ v1 15 Nov 2004
arxiv:math.dg/0411334 v1 15 Nov 2004 ÇÒ Ø ÃË ÈÖÒ ÓÖ ÃĐÐÖ ÉÙÒØÞØÓÒ Ó Ø ÓØÒÒØ ÙÒÐ Ó Ä ÖÓÙÔ ÖÐÓ ÐÓÖÒØÒÓ Ý ÈÖÓ ÅØ Þ ÂÓ ÅÓÙÖÓ Ý Ò ÂÓÓ Èº ÆÙÒ Ý ÅÖ ¼¼ ØÖØ ÒØÙÖÐ ÓÒ¹ÔÖÑØÖ ÑÐÝ Ó ÃĐÐÖ ÕÙÒØÞØÓÒ Ó Ø ÓØÒÒØ ÙÒÐ Ó ÓÑÔØ
DetaljerEn ekte involusjon på Waldhausens rigid-tube - avbildning. Sverre An dré Lun øe-n ielsen. Skriftlig del av Cand. Scient. -graden i matematikk
Universitetet i O slo M atematisk I nstitutt En ekte involusjon på Waldhausens rigid-tube - avbildning Sverre An dré Lun øe-n ielsen Skriftlig del av Cand. Scient. -graden i matematikk 2. mai 2000 ÁÒÒÓÐ
DetaljerPDF created with pdffactory Pro trial version
[ ² Ú»» ³»»² ¾ ²» ¹» ô ß«¹»²¼ ¼»² Forord Ÿ ² îðïé ¹»² ¾» µ ª»» ª ¾ ²» ¹»² ±»ô»»² ±² ª ¾ ²» ¹»²ô µ µ» ± ² ²¹» ±¹ ª»¼ ¹±¹ µ» ¾» ¼ò Ð ² ¾» ¼» ¾ ²» ¹»²» ¾ ¹¹» ± ºa ¹»²¼» ³»æ ó Î ³³» ² º± ¾ ²» ¹»² ²² ± ¼ ±¹
DetaljerFaglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL. EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk
Side 1 av 10 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk
DetaljerPDF created with pdffactory Pro trial version
[ ² Ú»» ³»»² ¾ ²» ¹» ô λ¹²¾² Forord Ü»²²» ²»² ¹» ¼» º ²«¼»»³¾» îðïéò a» ª ¼»»» ô ª ¼» ¾»² ² ³³» ² º± ¾ ²» ¹»²ò Ü»²²» µ ª ¾ «µ» ¼ ¾ ¹±¼ µ»² ³»¼ô ±¹ îðïè ª ²² ± ¼» ¼»²²» ªb» ³»¼»¹» ²»² ª ò»»³¾» îðïê ¼¼»
DetaljerLøsningsforslag Øving 1
Løsningsforslag Øving 1 TEP4100 Fluidmekanikk, Vår 2016 Oppgave 1-59 Løsning Luftstrømmen gjennom en vindturbin er analysert. Basert på en dimensjonsanalyse er et uttrykk for massestrømmen gjennom turbinarealet
DetaljerAuditorieøving 6, Fluidmekanikk
Auditorieøving 6, Fluidmekanikk Utført av (alle i gruppen): Oppgave 1 En beholder er åpen i ene enden og har et hull i bunnen, påsatt et innadrettet rør av lengde l og med sirkulært tverrsnitt A 0. Beholderen,
DetaljerÓÒØÒØ ½ ÖÙÒÒÐÒ ÖÔÖº ¾ ÔÖÑØÚØ ÖÙÖ Ú ÙÒ ÓÒÒ ÖÞÓÖÞÝÖÖØ ½ Æ ØØ ÖÙÖ ÓÒº ¾ ÃÐÑÖÐÑÒØÖ ÙÒ ÓÒÒ ¾ ÖÙÖ Ú ÙÒ ÓÒÒ ÅÒÖ ¾ ¹ÖÙÖ Ú ÙÒ ÓÒÒ ½
ÀǹÒÓØØ ¾¼¼¼ ÒÖ ¾ ÁËÆ ¾¹¹¼½¹ ÁËËÆ ¼¼¹½¼ ÄØØ ÙÖÙÖ ÓÒ ØÓÖ Ó Ò ÑÒÖ ÖÙÖ ÓÒ ØÓÖ ÄÖ ÃÖ ØÒ Ò ¹ÑÐ ÐÖ ÖÙºÓ ÐÓºÒÓ ÃÓÑÔÒÙÑ À ÓÐÒ Ç ÐÓ ÚÐÒ ÓÖ ÒÒÖÙØÒÒÒ ¾¼¼¼ ÓÒØÒØ ½ ÖÙÒÒÐÒ ÖÔÖº ¾ ÔÖÑØÚØ ÖÙÖ Ú ÙÒ ÓÒÒ ÖÞÓÖÞÝÖÖØ ½ Æ ØØ
DetaljerInstitutt for fysikk. Eksamen i TFY4106 FYSIKK Torsdag 6. august :00 13:00
NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Johan S. Høye/Professor Asle Sudbø Telefon: 91839082/40485727 Eksamen i TFY4106 FYSIKK Torsdag 6. august 2009 09:00 13:00 Tillatte
DetaljerÅØÑØ Ò ØØÙØØ ÖÐ Ö ÚÐÒÒÖ ÓÑ ØÖÑÒÒØÖ Ú ÙÒØÙØÓÑÓÖÖ ÀÒ ÂÖÒ ÊÖÚÓÐ ÀÓÚÓÔÔÚ ÑØÑØ ÎÖÒ ¾¼¼¾ ÓÖÓÖ À ØÓÖÒ ÒÒ ÓÔÔÚÒ Ö Ø ÔÖ Ö ØÐ Ó Ö ØØ ÙØ ÔÖÒ Ö ÄÛ Ó ÆÐ ÚÖÐ ÖÖ ÓÑÔÐ ÒÐÝ º ÖÖØ ÒÑÐ Ñ ÑÒ ÚÐÖ ÓÑ ØØÖ ÚÖØ Ò ÑÙÐ ÓÚÓÔÔÚ ÔÖÓÐÑغ
DetaljerØving 2: Krefter. Newtons lover. Dreiemoment.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 15. september kl 12:15 15:00. Øving 2: Krefter. Newtons lover. Dreiemoment. Oppgave 1 a) Du trekker en kloss bortover et friksjonsløst
DetaljerUNIVERSITETET I OSLO
Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:
Detaljer5.201 Galilei på øret
RST 1 5 Bevegelse 20 5.201 Galilei på øret undersøke bevegelsen til en tung sylinder ved hjelp av hørselen Eksperimenter Fure Startstrek Til dette forsøket trenger du to høvlede bordbiter som er over en
DetaljerTestobservator for kjikvadrattester
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket
DetaljerEN LITEN INNFØRING I USIKKERHETSANALYSE
EN LITEN INNFØRING I USIKKERHETSANALYSE 1. Forskjellige typer feil: a) Definisjonsusikkerhet Eksempel: Tenk deg at du skal måle lengden av et noe ullent legeme, f.eks. en sau. Botemiddel: Legg vekt på
DetaljerEKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard formelsamling
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT60 Fluidmekanikk DATO: 15. mai 008 TID FOR EKSAMEN: kl. 09-13 (4 timer) TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard
DetaljerËØ Ø ËÐ Ò ÅÓØ ÓÒ È ÒÓÑ Ò Ò ÝÒ Ñ Ð ËÝ Ø Ñ Á ÓÖ º ÂÙÒ Ö ÂÓ Ò Âº ËØ Ð ÍÒ Ú Ö Ø Ø Ð Ð Ì Ò ÙÐØ Ø Æ ÙÖÓ Ò ÓÖÑ Ø ÍÒ Ú Ö Ø Ø ØÖ ¾ Ð Ð ½ Ê ÙÒ ÖØ ºÙÒ ¹ Ð Ð º Ø
ËØØ ËÐÒ ÅÓØÓÒ ÈÒÓÑÒ Ò ÝÒÑÐ ËÝ ØÑ ÁÓÖ º ÂÙÒÖ ÂÓÒ Âº ËØÐ ÍÒÚÖ ØØ ÐÐ ÌÒ ÙÐØØ ÆÙÖÓÒÓÖÑØ ÍÒÚÖ ØØ ØÖ ¾ ÐÐ Ê ÙÒÖغÙÒ¹Ðк ØÐغÙÒ¹Ðк ØÖØ Ï ÔÖ ÒØ ÒÛ ØÝÔ Ó ÐÒ ÑÓØÓÒ Û Ö ÙÐØ ÖÓÑ ÒÓÚÐ Ó Ó Ø ÐÒ ÙÖ º Ï Ù Ø ØÓ Ò Ø Ù
DetaljerÊ ÙÐ Ö Ò Ò ÙÐ Ö ß ÐÓ Ò Ó «Ö Ò ÓÖÖ Ø ÑÙÐØ Ø Ô Ñ Ø Ó ÓÖ ÒÓÒ Ø «Ò ܹ¾ ÖÑ Ò Ö Ú ÐÓ ½ Ô ÖØÑ ÒØ Ó Ë ÒØ ÓÑÔÙØ Ò Ò ËØ Ø Ø Ë Ñ ÓÒ ÓÐ Ú Ö ÍÒ Ú Ö ØÝ Ô ÖØ Ó ¼¼¼ Ö
ÊÙÐÖ ÙÐÖ ßÐÓ Ó «Ö ÓÖÖØ ÑÙÐØ ØÔ ÑØÓ ÓÖ Ó Ø«Ü¹¾ ÖÑ ÖÚÐÓ ½ ÔÖØÑØ Ó ËØ ÓÑÔÙØ ËØØ Ø ËÑÓ ÓÐÚÖ ÍÚÖ ØÝ ÔÖØÓ ¼¼¼ Ö ½¼¼¹ ÎÞÙÐ Ñ ÑºÙ ºÚµ ÐÙ ĐÙÖÖ Ù Ø ËĐÓÖÐ ¾ ÆÙÑÖÐ ÐÝ ØÖ ÓÖ ÅØÑØÐ Ë ÄÙ ÍÚÖ ØÝ ÓÜ ½½ ˹¾¾½ ¼¼ ÄÙ ËÛ ÐÙ
DetaljerELEVARK. ...om å tømme en beholder for vann. Innledning. Utarbeidet av Skolelaboratoriet ved NTNU - NKR
ELEVARK...om å tømme en beholder for vann Innledning Problemstilling: Vi har et sylindrisk beger med et sirkulært hull nær bunnen. Vi ønsker å bestemme sammenhengen mellom væskehøyden som funksjon av tiden
DetaljerIMM DACE A MATLAB KRIGING TOOLBOX VERSION 2.0. Søren N. Lophaven Hans Bruun Nielsen Jacob Søndergaard TECHNICAL REPORT IMM-REP
IMM INFORMATICS AND MATHEMATICAL MODELLING Technical University of Denmark DK-2800 Kongens Lyngby Denmark J. No. DACE1 1.8.2002 HBN/ms DACE A MATLAB KRIGING TOOLBOX VERSION 2.0 Søren N. Lophaven Hans Bruun
DetaljerOppgave 3. Fordampningsentalpi av ren væske
Oppgave 3 Fordampningsentalpi av ren væske KJ1042 Rom C2-107 Gruppe 45 Anders Leirpoll & Kasper Linnestad andersty@stud.ntnu.no kasperjo@stud.ntnu.no 29.02.2012 i Sammendrag I forsøket ble damptrykket
Detaljerarxiv: v1 [cond-mat.mtrl-sci] 7 May 2009
ÎÖØÓÒÐ ÔÖÓÔÖØ Ó ÖÔÒ ÒÒÓÖÓÒ Ý Ö Ø¹ÔÖÒÔÐ ÐÙÐØÓÒ ÊÓÐÒ ÐÐÒ ÅÖÐ ÅÓÖ ÂÒÒ ÅÙÐØÞ Ò Ö ØÒ ÌÓÑ Ò arxiv:0905.1035v1 [cond-mat.mtrl-sci] 7 May 2009 ÁÒ ØØÙØ Ö ØÖÔÖÔÝ ÌÒ ÍÒÚÖ ØØ ÖÐÒ ÀÖÒÖ ØÖº ½¼¾ ÖÐÒ Ø ÇØÓÖ ½ ¾¼½µ ØÖØ
DetaljerHandi-Lift EA7 Målskjema
Handi-Lift EA7 Målskjema Dato: Monteringsdato: Vår ref.: Bestillings nr.: Kunde (HMS): Utprøvingsnr.: Bruker Navn: Bruker nr.: Fødselsdato: Adresse: Postnr.: Poststed: Telefon (priv.): Telefon (arb.):
DetaljerHandi-Lift EA7 Målskjema
Handi-Lift EA7 Målskjema Dato: Monteringsdato: Vår ref.: Bestillings nr.: Kunde (HMS): Utprøvingsnr.: Bruker Navn: Bruker nr.: Fødselsdato: Adresse: Postnr.: Poststed: Telefon (priv.): Telefon (arb.):
DetaljerHØGSKOLEN I STAVANGER
EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF1 Eksamensdag: 3. November 9 Tid for eksamen: 9.-1. Oppgavesettet er på 5 sider Vedlegg: Ingen Tillatte hjelpemidler:
Detaljersøndag 7. september 14
3 Mål Få en førståelse for: Hvordan bruker bruker man sin kunnskap på en vitenskaplig måte? Hvordan man arbeider rasjonellt med åpen problemstilling Hvordan fysikk/eksperiment er viktigt i de sammanhangen.
DetaljerMålet med dette notatet er å dokumentere at det er funnet løsmasser ved grunnen og å dokumentere miljøgiftkonsentrasjonen i sedimentene.
NOTAT Oppdrag 1110630 Grunner Indre Oslofjord Kunde Kystverket Notat nr. 001 Dato 07.01.2015 Til Fra Kopi Kristine Pedersen-Rise Tom Øyvind Jahren [Navn] Sedimentundersøkelse ved Belgskjærbåen Kystverket
DetaljerLaboratorieoppgave 3: Fordampingsentalpi til sykloheksan
Laboratorieoppgave 3: Fordampingsentalpi til sykloheksan Åge Johansen agej@stud.ntnu.no Ole Håvik Bjørkedal olehb@stud.ntnu.no Gruppe 60 17. mars 2013 Sammendrag Rapporten omhandler hvordan fordampningsentalpien
DetaljerFlervalgsoppgaver. Gruppeøving 1 Elektrisitet og magnetisme
Gruppeøving Elektrisitet og magnetisme Flervalgsoppgaver Ei svært tynn sirkulær skive av kobber har radius R = 000 m og tykkelse d = 00 mm Hva er total masse? A 0560 kg B 0580 kg C 0630 kg D 0650 kg E
DetaljerTMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
DetaljerEksamen i FYS Oppgavesettet, inklusiv ark med formler, er på 7 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI
Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 16. desember, 2011 Tid for eksamen : kl. 9.00-13.00 Sted : Åsgårdveien 9 Hjelpemidler : K. Rottmann: Matematisk Formelsamling, O. Øgrim:
DetaljerLøsningsforslag til midtveiseksamen i FYS1001, 26/3 2019
Løsningsforslag til midtveiseksamen i FYS1001, 26/3 2019 Oppgave 1 Løve og sebraen starter en avstand s 0 = 50 m fra hverandre. De tar hverandre igjen når løven har løpt en avstand s l = s f og sebraen
DetaljerLøsningsforslag til Øving 6 Høst 2016
TEP4105: Fluidmekanikk Løsningsforslag til Øving 6 Høst 016 Oppgave 3.13 Skal finne utløpshastigheten fra røret i eksempel 3. når vi tar hensyn til friksjon Hvis vi antar at røret er m langt er friksjonen
DetaljerRepetisjonsoppgaver kapittel 0 og 1 løsningsforslag
Repetisjonsoppgaver kapittel 0 og løsningsforslag Kapittel 0 Oppgave a) Gjennomsnittet er summen av måleverdiene delt på antallet målinger. Summen av målingene er,79 s. t sum av måleverdiene antallet målinger,79
DetaljerEksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI
Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 23. februar, 2012 Tid for eksamen : kl. 9.00-13.00 Sted : Administrasjonsbygget, Rom B154 Hjelpemidler : K. Rottmann: Matematisk Formelsamling,
DetaljerBestemmelse av skjærmodulen til stål
Bestemmelse av skjærmodulen til stål Rune Strandberg Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 9. oktober 2007 Sammendrag Skjærmodulen til stål har blitt bestemt ved en statisk og en dynamisk
DetaljerÐ ÓÖ Ø Ñ ÓÖ ÌÖ Ò ÔÓ Ø ÓÒ ÁÒÚ Ö ÒØ ËØÖ Ò Å Ø Ò ÜØ Ò ØÖ Øµ Î Ð Å Ò Ò ½ ÓÒÞ ÐÓ Æ Ú ÖÖÓ ¾ Ò Ó Í ÓÒ Ò ½ ¾ ½ Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò ÈºÇ ÓÜ ¾ Ì ÓÐÐ ÙÙ ØÙ ¾ µ
ÐÓÖØÑ ÓÖ ÌÖÒ ÔÓ ØÓÒ ÁÒÚÖÒØ ËØÖÒ ÅØÒ ÜØÒ ØÖص ÎÐ ÅÒÒ ½ ÓÒÞÐÓ ÆÚÖÖÓ ¾ Ò Ó ÍÓÒÒ ½ ¾ ½ ÔÖØÑÒØ Ó ÓÑÔÙØÖ ËÒ ÈºÇ ÓÜ ¾ ÌÓÐÐ ÙÙ ØÙ ¾ µ Áƹ¼¼¼½ ÍÒÚÖ ØÝ Ó ÀÐ Ò ÒÐÒº ßÚÑÒÒ ÙÓÒÒÐ ºÐ Òº ÒØÖ ÓÖ Ï Ê Ö ÔÖØÑÒØ Ó ÓÑÔÙØÖ
DetaljerLøsningsforslag til øving 5
FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 011. Løsningsforslag til øving 5 Oppgave 1 a) Energibevarelse E A = E B gir U A + K A = U B + K B Innsetting av r = L x i ligningen gir
Detaljer