EN LITEN INNFØRING I USIKKERHETSANALYSE
|
|
|
- David Klausen
- 10 år siden
- Visninger:
Transkript
1 EN LITEN INNFØRING I USIKKERHETSANALYSE 1. Forskjellige typer feil: a) Definisjonsusikkerhet Eksempel: Tenk deg at du skal måle lengden av et noe ullent legeme, f.eks. en sau. Botemiddel: Legg vekt på klare og spesifiserte definisjoner. b) Grove feil Eksempel: Teller feil antall meter når måler lengde med meterstokk. Botemiddel: Gjør dem ikke. c) Systematiske feil Se nedenfor. d) Statistiske feil Se nedenfor. KONKLUSJON: Bruk sunn fornuft. Ikke bruk formler for statistisk usikkerhet ukritisk. 2. Systematiske feil: Forårsakes av blant annet: a) Feil kalibrert måleinstrument b) Metning av måleinstrument c) Menneskelig egenskap d) Andre forsøksbetingelser enn antatt 1
2 Eksempel: Meterstokk er ikke eksakt 1 m, men 0,9998 m. Botemidler: a) Tenk kritisk på utføring av måling. b) Sjekk nøyaktighet og område for måleinstrument. c) Kalibrer måleutstyr. d) Anslå fornuftig grense for ukorrigerbare systematiske feil. 3. Statistisk usikkerhet: Gjentatte målinger av én og samme størrelse under samme forsøksbetingelser gir forskjellige verdier. Eksempel: Dersom en flere ganger måler lengden på et bord (f.eks. 5 m) med meterstokk med lengde 1 m og fin gradering, vil en få ulike verdier. Botemiddel: Mål mange ganger og beregn middelverdien. Variasjonen i målingene gir mål for usikkerhet som benevnes f.eks. x. Eksperimentelt viser det seg at målingene blir tilnærmet normalfordelt 1 i mange tilfeller: f(x) = 1 e (x µ)2 2σ 2 (1) 2πσ der f(x) = sannsynlighet for å måle verdien x µ = middelverdi σ = standardavvik Teoretisk [2] kan det vises at en får normalfordeling når det totale feilbidraget er sammensatt av uendelig mange feilbidrag som adderes uavhengig av hverandre. Ca. 68% av målingene ligger i [µ σ, µ + σ] Ca. 95% av målingene ligger i [µ 2σ, µ + 2σ] Ca. 99,7% av målingene ligger i [µ 3σ, µ + 3σ] (En snakker om 1σ, 2σ eller 3σ grenser.) 1 Normalfordeling vil bli nærmere behandlet i læreboka [1] i statistikkfaget TMA4240 eller TMA4245 som de fleste først får i tredje årskurs. 2
3 f(x) µ σ µ µ + σ x Figur 1: Normalfordeling Estimater for µ og σ: (NB! Forutsetter tilnærmet normalfordeling.) Estimat for middelverdi [3] µ: x = 1 n n x i (2) i=1 Estimat for standardavvik [3] σ = usikkerhet i enkeltmåling (1σ-grense): x = 1 n (x i x) n 1 2 (3) i=1 Estimat for usikkerhet i middelverdi [3]: x = x n (4) Merknader: 1) x 0 for n. (Husk at dette gjelder statistisk usikkerhet, ikke systematisk.) 2) Det ovenfor gjelder når alle målinger er like sikre. Ellers må vektfaktor nyttes. 3) Husk å skille mellom systematisk og statistisk usikkerhet, og statistisk usikkerhet i enkeltmåling og middelverdi! 3
4 Eksempel: Vi undersøker måleverdier fra starten av en måleserie. Måleserien er tatt av posisjonen til en masse som ikke beveger seg. Små bevegelser som kommer av usikkerhet i bestemmelse av posisjon er synlig (ca 0.05 mm). Dersom vi plotter det tilhørende histogrammet ser vi noe som ligner på en normalfordeling, med standardavvik på Dette stemmer godt overens med at omtrent 68% av målingene ligger innenfor denne grensen. Dette gir et godt bilde av sammenheng mellom data, normalfordeling og usikkerhet. Figur 2: Data for en masse som står stille. Til venstre: rådata, til høyre: tilsvarende fordeling av verdier. 4. Feilforplantning: Vi betrakter en fysisk størrelse f(x, y, z,... ) som beregnes ut fra målinger av de fysiske størrelser x, y, z,.... Anta at x, y, z osv. er uavhengige. Da gjelder [4]: ( ( f ) 2 ( ) ) 1 f 2 2 f = x x + y y +... (5) for tilstrekkelig små x, y, z osv. I mangel av noe bedre nyttes lign.(5) også ofte for systematiske feil og for kombinasjon av systematiske og statistiske feil. For systematiske feil representerer x, y osv. anslått usikkerhet. Det verste tilfellet (alle feil virker i samme retning) ville for små feil være: f = f x x + f y y +... (6) 4
5 Dersom en har målt middelverdier for x, y, z osv. nytter en: f = f(x, y, z,... ) (7) og ( ( f ) 2 ( ) ) 1 f 2 2 f = x x + y y +... (8) Merk at målet ikke er å bruke mest mulig formler, men å komme fram til et så forstandig anslag på usikkerhet som mulig. Eksempel: f(x, y, z) = konstant x y2 z 3 gir: f f = ( ( x x ) 2 ( + 2 y ) 2 ( + 3 z ) ) y z Merk at det ofte letter regningen å nytte relative feil som f. eks. x x. 5
6 5. Tilpassing av modeller til data: Ofte er det et problem å tilpasse en funksjon til data og sammenligne resultatene med andre feil. Vi tenker oss at vi har en fysisk modell som sier at tilsvarende målinger av x og y kan beskrives med en modell f(x). En bruker da ofte en rutine i matlab eller python som kan bestemme beste tilpasning av data til funksjonen. De fleste algoritmer bruker minste kvadraters metode (mean square, S). Algoritmen minimerer da: S = 1 n n (f(x i ) y i ) 2. (9) i=1 Feilen f(x i ) y i kalles residual. Ofte får man en indikasjon i analyseprogrammet på om tilpasningen er god i form av en RMS verdi. RMS = sqrt( 1 n n (f(x i ) y i ) 2 ). (10) i=1 Dette er veldig likt uttrykket for standardavviket, og når modellen er en god beskrivelse av data blir også RMS identisk med standardavviket og residualene blir minimale. Vi kan se på dette gjennom å undersøke en annen del av samme dataserie som vi analyserte tidligere. Vi gjør en lineær og en kvadratisk tilpasning og ser hvilken RMS verdi vi ender opp med (figur 3).. Figur 3: Venstre: tilpasning med minimering av S for en lineær og kvadratisk fit av data. Høyre: residualene til tilpasningene. Korresponderende verdier for RMS er 0.15 for den lineære tilpasningen og for den kvadratiske, hvilket er langt større enn standardavviket for den stillestående massen. 6
7 Figur 4: Residualene til den kvadratiske tilpasningen i figur 3. Det er ingen åpenbare systematiske feil i residuaene. Trolig ligger den største feilen (ettersom den er mye større enn standardavviket) i usikkerhet fra programvaren Tracker. Denne usikkerheten er et resultat av at Tracker ikke finner eksakt samme punkt på massen som måles gjennom hele analysen. 7
8 Merknader: 1) Dersom målepunktene har ulik usikkerhet må vektfaktorer nyttes. Referanser [1] R.E. Walpole, R.H. Myers, S.L. Myers and K. Ye: Probability and Statistics for Engineers and Scientists, Eight Edition, Pearson, London 2007, kapittel 6. [2] N.C. Barford, Experimental Measurements: Precision, Error and Truth, Second Edition, Wiley, New York 1985, kapittel 5. [3] R.E. Walpole et.al., op.cit. 2, kapittel 9.3. [4] N.C. Barford, op.cit., kapittel 2.3. [5] N.C. Barford, op.cit., kapittel 3.3. Knut Arne Strand, 2004 Revidert KAS Revidert LEW/KAS Revidert EW 2 Op.cit. betyr sitert ovenfor. 8
TFY4108. Trening i eksperimentelt arbeid Demonstrere fysiske fenomener Opplæring i usikkerhetsanalyse
!1 TFY4108 Trening i eksperimentelt arbeid Demonstrere fysiske fenomener Opplæring i usikkerhetsanalyse Fysikk lab Fysikk lab Elektron og ionelaboratorium fs-laserspektroskopilaboratorium Lysspredningslaboratium
Praktiske labøvinger TFY4106
Praktiske labøvinger TFY4106 Introduksjon Prof. A. van Helvoort Labsansvarlig [email protected] Innhalt Hvorfor? Hvordan? (Praktiske informasjon) Kort om feilanalyse Sammendrag 2 Eksempel Modell Modell
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 7. oktober 2009. Tid for eksamen: 15:00 17:00. Oppgavesettet er på
Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk
Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor
TMA4245 Statistikk: MTBYGG, MTING
TMA4245 Statistikk: MTBYGG, MTING Hjemmeside: https://wiki.math.ntnu.no/tma4245/2015v/ Faglærer: Arvid Næss vikar 06.01: Håkon Tjelmeland Lærebøker: Walpole, Myers, Myers og Ye (2012). Probability & Statistics
UNIVERSITETET I OSLO
Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 13. oktober 2010. Tid for eksamen: 15:00 17:00. Oppgavesettet
Eksamensoppgave i TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
Seksjon 1.3 Tetthetskurver og normalfordelingen
Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data ved tall Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver
Anslag for usikkerhet av et sammensatt resultat basert på anslått usikkerhet ( feilmarginer ) for måleverdiene.
KJ053/gen. / 004/013 / S. 1 av 8 Anslag for usikkerhet av et sammensatt resultat basert på anslått usikkerhet ( feilmarginer ) for måleverdiene. (Pluss, kort, litt om statistisk usikkerhet - normalfordelt
10.1 Enkel lineær regresjon Multippel regresjon
Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel
Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L
Representasjon av tall på datamaskin Kort innføring for MAT-INF00L Knut Mørken 3. desember 204 Det er noen få prinsipper fra den første delen av MAT-INF00 om tall som studentene i MAT-INF00L bør kjenne
år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9
TMA424 Statistikk Vår 214 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II Oppgave 1 Matlabkoden linearreg.m, tilgjengelig fra emnets hjemmeside, utfører
UNIVERSITETET I OSLO Matematisk Institutt
UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent
1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene
1 Sec 3-2: Hvordan beskrive senteret i dataene 2 Sec 3-3: Hvordan beskrive spredningen i dataene Todeling av statistikk Deskriptiv statistikk Oppsummering og beskrivelse av den stikkprøven du har. Statistisk
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg
Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.20).
Econ 130 HG mars 017 Supplement til forelesningen 7. februar Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.0). Regel 5.19 sier at summer, Y X1 X X
Kort overblikk over kurset sålangt
Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente
EKSAMENSOPPGAVER STAT100 Vår 2011
EKSAMENSOPPGAVER STAT100 Vår 2011 Løsningsforslag Oppgave 1 (Med referanse til Tabell 1) a) De 3 fiskene på 2 år hadde lengder på henholdsvis 48, 46 og 35 cm. Finn de manglende tallene i Tabell 1. Test
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK 1000 Innføring i anvendt statistikk. Eksamensdag: Mandag 4. desember 2006. Tid for eksamen: 14.30 17.30. Oppgavesettet er
Oppfriskning av blokk 1 i TMA4240
Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 13: Lineær korrelasjons- og regresjonsanalyse Kap. 13.1-13.3: Lineær korrelasjonsanalyse. Disse avsnitt er ikke pensum,
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av
Statistisk behandling av kalibreringsresultatene Del 1. v/ Rune Øverland, Trainor Elsikkerhet AS
Statistisk behandling av kalibreringsresultatene Del 1. v/ Rune Øverland, Trainor Elsikkerhet AS Denne artikkelserien handler om statistisk behandling av kalibreringsresultatene. I de fleste tilfeller
ting å gjøre å prøve å oppsummere informasjonen i Hva som er hensiktsmessig måter å beskrive dataene på en hensiktsmessig måte.
Kapittel : Beskrivende statistikk Etter at vi har samlet inn data er en naturlig første ting å gjøre å prøve å oppsummere informasjonen i dataene på en hensiktsmessig måte. Hva som er hensiktsmessig måter
System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man
System av likninger System av likninger er en mengde likninger med flere ukjente. I økonomiske sammenheng er disse svært vanlige ved optimering. Ofte må vi kreve deriverte lik null for å optimere. I kurset
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Torsdag 9. oktober 2008. Tid for eksamen: 15:00 17:00. Oppgavesettet er på
Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir
Høgskolen i Sør-Trøndelag Avdeling Trondheim Økonomisk Høgskole EKSAMENSOPPGAVE
Høgskolen i Sør-Trøndelag Avdeling Trondheim Økonomisk Høgskole EKSAMENSOPPGAVE MET1002 Statistikk Grunnkurs 7,5 studiepoeng Torsdag 14. mai 2007 kl. 09.00-13.00 Faglærer: Sjur Westgaard (97122019) Kontaktperson
Uncertainty of the Uncertainty? Del 3 av 6
Uncertainty of the Uncertainty? Del 3 av 6 v/rune Øverland, Trainor Elsikkerhet AS Dette er del tre i artikkelserien om «Uncertainty of the Uncertainty». I dag skal jeg vise deg hvorledes man bestemmer
TMA4245 Statistikk Eksamen august 2014
TMA4245 Statistikk Eksamen august 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Oppgave 1 En bedrift produserer en type medisin i pulverform Medisinen selges på flasker
TMA 4255 Forsøksplanlegging og anvendte statistiske metoder
TMA 4255 Forsøksplanlegging og anvendte statistiske metoder Våren 2007 1 Om kurset Foreleser Øvingslærer Kurset er beregnet for studenter som ønsker en videreføring av grunnkurset i statistikk. Sentralt
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Fredag 13.10.2006. Tid for eksamen: Kl. 09.00 11.00. Tillatte hjelpemidler:
Emne 10 Litt mer om matriser, noen anvendelser
Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes
Lineære likningssystemer og matriser
Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger
Sted Gj.snitt Median St.avvik Varians Trondheim 6.86 7.50 6.52 42.49 Værnes 7.07 7.20 6.79 46.05 Oppdal 4.98 5.80 7.00 48.96
Vår 213 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 8, blokk II Matlabøving Løsningsskisse Oppgave 1 a) Ingen løsningsskisse. b) Finn, for hvert datasett,
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 22/3, 2006. Tid for eksamen: Kl. 09.00 11.00. Tillatte hjelpemidler:
Forelesning 6: Punktestimering, usikkerhet i estimering. Jo Thori Lind
Forelesning 6: Punktestimering, usikkerhet i estimering Jo Thori Lind [email protected] Oversikt 1. Trekke utvalg 2. Estimatorer og observatorer som stokastiske variable 3. Egenskapene til en estimator
Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling
Kapittel 8 Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling TMA4240 H2006: Eirik Mo 2 Til nå... Definert sannsynlighet og stokastiske variabler (kap. 2 & 3).
HØGSKOLEN I STAVANGER
EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN
TMA4245 Statistikk Høst 2016
TMA5 Statistikk Høst 6 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving Løsningsskisse Oppgave a) Den tilfeldige variabelen X er kontinuerlig fordelt med sannsynlighetstetthet
Forelesning 3. april, 2017
Forelesning 3. april, 2017 APPENDIX TIL KAP. 6 Sentralgrenseteoremet AVSNITT 6.3 Anvendelser av sentralgrenseteoremet Histogrammer S-kurver Q-Q-plot Diverse eksempler MGF for følger av uavhengige identisk
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1100 Statistiske metoder og dataanalyse 1 - Løsningsforslag Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30
ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon
ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start 2 Kap. 13: Lineær korrelasjons-
Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013
1 Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 013. Skrevet av Stian Lydersen 16 januar 013 Vi antar at vårt utvalg er et tilfeldig og representativt utvalg for
Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir
BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL
Labratorieøvelse i FYSIKK Høst 1994 Institutt for fysisk, NTH BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL av Ola Olsen En lett revidert og anonymisert versjon til eksempel for skriving av lab.-rapport
På samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet.
GEOMETRI GRUNNLEGGENDE GEOMETRI Geometriske former Trekant, firkant, sirkel. - Hva er det? Hvordan ser det ut? Deltakerne fikk i oppdrag å tegne: en firkant, en trekant og en runding. Som forventet, tegnet
ECON2130 Kommentarer til oblig
ECON2130 Kommentarer til oblig Her har jeg skrevet ganske utfyllende kommentarer til en del oppgaver som mange slet med. Har noen steder gått en del utover det som det strengt tatt ble spurt om i oppgaven,
Statistisk behandling av kalibreringsresultatene Del 3. v/ Rune Øverland, Trainor Elsikkerhet AS
Statistisk behandling av kalibreringsresultatene Del 3. v/ Rune Øverland, Trainor Elsikkerhet AS Denne artikkelserien handler om statistisk behandling av kalibreringsresultatene. Denne artikkelen har kalibreringskurve
Generell informasjon om faget er tilgjengelig fra It s learning. 1 En kort oppsummering Adaptiv filtrering 2. 3 Prediksjon 4
Stavanger, 13. august 2013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 2013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 1 En kort oppsummering. 1 2 Adaptiv
Om tilpasning av funksjoner til observerte dataer
Om tilpasning av funksjoner til observerte dataer Anta at vi har tilgjengelig noen måledataer for en størrelse y som avhenger av en annen størrelse : : 1 2 $$$ n y : y 1 y 2 $$$ y n I mange situasjoner
Eksamensoppgave i ST0103 Brukerkurs i statistikk
Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Jarle Tufto Tlf: 99 70 55 19 Eksamensdato: 3. desember 2016 Eksamenstid (fra til): 09:00-13:00
Tema. Beskrivelse. Husk!
Dette er ment som en hjelpeoversikt når du bruker boka til å repetisjon. Bruk Sammendrag etter hvert kapittel som hjelp. Verktøykassen fra side 272 i boka er og til stor hjelp for repetisjon til terminprøve.
God nøyaktighet er en kombinasjon av riktighet og presisjon.
Jo mer nøyaktig informasjon jeg får, jo mer trygg er jeg på at jeg setter riktig insulindose. Og blir reguleringen av blodsukkeret bedre, kan det føre til et lavere langtidsblodsukker. Nå finnes det en
Tabell 1: Beskrivende statistikker for dataene
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7, blokk II Løsningsskisse Oppgave 1 a) Utfør en beskrivende analyse av datasettet % Data for Trondheim: TRD_mean=mean(TRD);
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Sara Martino a, Torstein Fjeldstad b Tlf: a 994 03 330, b 962 09 710 Eksamensdato: 28. november 2018 Eksamenstid
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn
DEL 1 GRUNNLEGGENDE STATISTIKK
INNHOLD 1 INNLEDNING 15 1.1 Parallelle verdener........................... 18 1.2 Telle gunstige.............................. 20 1.3 Regneverktøy og webstøtte....................... 22 1.4 Oppgaver................................
UNIVERSITETET I OSLO
Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk Eksamensdag: Mandag 3. desember 2018. Tid for eksamen: 14.30 18.30. Oppgavesettet er på
Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab
Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to
EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST00 STATISTIKK FOR SAMFUNNSVITERE Torsdag
STK1100 våren Normalfordelingen. Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger
STK00 våren 206 Normalfordelingen Svarer til avsnitt 4.3 i læreboka Geir Storvik Matematisk institutt Universitetet i Oslo Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger Normalfordelingen
Løsningsforslag til obligatorisk oppgave i ECON2130 våren 2014 av Jonas Schenkel.
Løsningsforslag til obligatorisk oppgave i ECON2130 våren 2014 av Jonas Schenkel. Det er i flere av oppgavene flere fremgangsmåter. Om din måte var riktig burde komme frem i rettingen. A Både X og Y tilfredsstiller
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 28/3, 2007. Tid for eksamen: Kl. 09.00 11.00. Tillatte hjelpemidler:
Bootstrapping og simulering Tilleggslitteratur for STK1100
Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 (oppdatert April 2016) 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor
FYS våren Linjetilpasning. Alex Read Universitetet i Oslo Fysisk institutt
FYS150 - våren 019 Linjetilpasning Alex Read Universitetet i Oslo Fysisk institutt Mål Studere en alternativ linjetilpasning der vi kjenner usikkerheten per målepunkt σ i (i stedet for å hente denne usikkerheten
TMA4240 Statistikk Høst 2018
TMA4240 Statistikk Høst 2018 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 5 Dette er andre av tre innleveringer i blokk 2. Denne øvingen skal oppsummere pensum
Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab
Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab For grunnleggende bruk av Matlab vises til slides fra basisintroduksjon til Matlab som finnes på kursets hjemmeside. I denne øvingen skal vi analysere
Gruvedrift. Institutt for matematiske fag, NTNU. Notat for TMA4240/TMA4245 Statistikk
Gruvedrift Notat for TMA/TMA Statistikk Institutt for matematiske fag, NTNU I forbindelse med planlegging av gruvedrift i et område er det mange hensyn som må tas når en skal vurdere om prosjektet er lønnsomt.
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Øvelsesoppgave i: ECON30 Dato for utlevering: 7.03.04 Dato for innlevering: 07.04.04 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Innleveringssted: Ekspedisjonen, etasje innen kl 5:00 Øvrig informasjon: Denne
Matteknologisk utdanning
Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 5) HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato: 30. mai 2007
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Mandag 1. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig
Eksamen i. MAT110 Statistikk 1
Avdeling for logistikk Eksamen i MAT110 Statistikk 1 Eksamensdag : Torsdag 28. mai 2015 Tid : 09:00 13:00 (4 timer) Faglærer/telefonnummer : Molde: Per Kristian Rekdal / 924 97 051 Kristiansund: Terje
Inferens i regresjon
Strategi som er fulgt hittil: Inferens i regresjon Deskriptiv analyse og dataanalyse først. Analyse av en variabel før studie av samvariasjon. Emne for dette kapittel er inferens når det er en respons
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1 Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30 18.00. Oppgavesettet
Angivelse av usikkerhet i måleinstrumenter og beregning av total usikkerhet ved målinger.
Vedlegg A Usikkerhet ved målinger. Stikkord: Målefeil, absolutt usikkerhet, relativ usikkerhet, følsomhet og total usikkerhet. Angivelse av usikkerhet i måleinstrumenter og beregning av total usikkerhet
Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger
Fordelinger, mer om sentralmål og variasjonsmål Tron Anders Moger 20. april 2005 1 Forrige gang: Så på et eksempel med data over medisinerstudenter Lærte hvordan man skulle få oversikt over dataene ved
Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.
Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4 november 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.
Legg merke til at summen av sannsynlighetene for den gunstige hendelsen og sannsynligheten for en ikke gunstig hendelse, er lik 1.
Sannsynlighet Barn spiller spill, vedder og omgir seg med sannsynligheter på andre måter helt fra de er ganske små. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner. Men hvor stor er sannsynligheten
Lengdemål, areal og volum
Lengdemål, areal og volum Lengdemål Elever bør tidlig få erfaring med å vurdere ulike avstander og lengdemål. De kommer ofte opp i situasjoner i hverdagen hvor det er en stor ulempe å ikke ha begrep om
Algoritmer og Datastrukturer IAI 21899
Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 30. november 2000, kl. 09.00-14.00 LØSNINGSFORSLAG 1 Del 1, Binære søketrær Totalt
Oppgave 3. Fordampningsentalpi av ren væske
Oppgave 3 Fordampningsentalpi av ren væske KJ1042 Rom C2-107 Gruppe 45 Anders Leirpoll & Kasper Linnestad [email protected] [email protected] 29.02.2012 i Sammendrag I forsøket ble damptrykket
Forelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind
Forelesning 5: Kontinuerlige fordelinger, normalfordelingen Jo Thori Lind [email protected] Oversikt 1. Kontinuerlige fordelinger 2. Uniform fordeling 3. Normal-fordelingen 1. Kontinuerlige fordelinger
MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka:
MOT30 Statistiske metoder, høsten 2006 Løsninger til regneøving nr. 8 (s. ) Oppgaver fra boka: Oppgave.5 (.3:5) ) Først om tolking av datautskriften. Sammendrag gir følgende informasjon: Multippel R =R,
STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler
STK1000 Uke 36, 2016. Studentene forventes å lese Ch 1.4 (+ 3.1-3.3 + 3.5) i læreboka (MMC). Tetthetskurver Eksempel: Drivstofforbruk hos 32 biler Fra histogram til tetthetskurver Anta at vi har kontinuerlige
Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere
2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende
Seksjon 1.3 Tetthetskurver og normalfordelingen
Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver
Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann
MAT1030 Diskret matematikk Forelesning 16: likninger Dag Normann Matematisk Institutt, Universitetet i Oslo INGEN PLENUMSREGNING 6/3 og 7/3 5. mars 008 MAT1030 Diskret matematikk 5. mars 008 Mandag ga
TMA4240 Statistikk Høst 2016
TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 12 Denne øvingen består av oppgaver om enkel lineær regresjon. De handler blant
Tillatte hjelpemidler: C3: alle typer kalkulator, alle andre hjelpemidler
EKSAMENSOPPGAVER Institutt: Eksamen i: Tid: IKBM STAT100 Torsdag 13.des 2012 STATISTIKK 09.00-12.30 (3.5 timer) Emneansvarlig: Solve Sæbø ( 90065281) Tillatte hjelpemidler: C3: alle typer kalkulator, alle
