Løsningsforslag til Øving 6 Høst 2016
|
|
- Toralf Håkonsen
- 8 år siden
- Visninger:
Transkript
1 TEP4105: Fluidmekanikk Løsningsforslag til Øving 6 Høst 016 Oppgave 3.13 Skal finne utløpshastigheten fra røret i eksempel 3. når vi tar hensyn til friksjon Hvis vi antar at røret er m langt er friksjonen gitt som: Bruker Bernoulli fra punkt 1 til i figuren: h f = 5.4 V tube g. (1) p 1 ρg + V 1 g + z 1 = p ρg + V g + z + h f () hvor h f er friksjonshøyden. Antar atmosfæretrykk ved utløpet, dvs. p 1 = p = p a. V 1 0 siden væskeoverflaten er mye større enn tverrsnittsarealet til røret. Bernoulli gir da: z 1 = V g + z V g tube = V g + z V g (3) g(z 1 z ) = V ( ) V = Volumstrømmen Q er gitt ved: g(z1 z ) = 1.61m/s 6.4 Q = V A = V π 4 d = 16.4cm 3 /s (4) 1
2
3 Oppgave Vi skal finne (a) V og (b) kraft pr. lengdeenhet på demningen. a)vi kan bruke hydrostatikk i tverrsnittene 1 og, som vil si at trykket her varierer lineært som funksjon av vanndybden. Massebevarelse gir oss at A 1 V 1 = A V, dvs. V 1 = V h H. (5) Bernoulli langs en strømlinje fra tverrsnitt 1 til (vi er smarte og legger strømlinjen langs overflaten der trykket er lik atmosfæretrykket): 1 V 1 + p a ρ + gh = 1 V + p a ρ + gh 1 V h H + gh = 1 V + gh V = g(h h) 1 h = 9, 76m/s. (6) /H b) Vi legger nå et kontrollvolum rundt demningen. På dette kontrollvolumet virker det en ukjent kraft i x-retning. Impulssatsen gir oss (vi husker fra tidligere kapitler at horisontalkomponenten av trykket mot en vertikal flate er lik trykket i sentroiden av flaten multiplisert med flatearealet. Sentroidetrykket mot tverrsnittene 1 og er dermed henholdsvis ρgh/ og ρgh/). Fra massebevarelsen husker vi også at V 1 = V h/h, så Fx = F + p CG,1 H p CG, h = ρv 1 ( V 1 )H + ρv (V )h F + 1 ρgh 1 ρgh = ρv h H + ρv h F = 1 ρg( H + h ) + ρ( V h H + V h) (7) Hastighetene i parentes i første linje ovenfor er strømningens hastighetsvektor skalarmultiplisert med normalvektoren pekende ut av kontrollvolumet. Setter vi inn tallverdier for V og ρg = 9790kg/m 3, fås F = 68300N/m. Dette er kraften fra omgivelsene (bunnen) på kontrollvolumet. Dette er så langt vi kommer med regning med kontrollvolum, og vi må nå betrakte hva som foregår inne i kontrollvolumet. Kraften på kontrollvolumet, F, som vi har funnet over virker på demningen fra sjøbunnen. Vi vet imidlertid at demningen er i ro, slik at summen av kreftene på denne må være null. Dermed vet vi at kraften vannet virker på demningen med (det er denne det spørres etter) må være like stor, men motsatt rettet av kraften vi har funnet, altså lik 68300N/m i størrelse og pekende langs positiv x-retning. Oppgave a) Vi skal førstvise at akselerasjonen er radielt rettet. Har gitt at x u = U 0 L Akselerasjonen finnes fra den substansielt deriverte: og a x = Du Dt = u t + u u x + v u y = 0 + U x U 0 0 L L + 0 a y = Dv Dt = v t + u v x + v v y = ( U y 0 L ) ( U 0 L ) v = U 0 y L. (8) a = U 0 L (x ı + y j) = U 0 r. (9) L 3
4 Akselerasjonen har altså radiell retning. b) Skal finne hastigheten i punktet (x = 1m, y = 1m) gitt at akselerasjonen der er a 0 = 5m/s. Akselerasjonen uttrykkes a = U 0 L r = U 0 x L + y = a 0 a0 U 0 = L = 6.3m/s (10) x + y Oppgave Vi skal finne (a) akselerasjonen ved x = L og (b) tiden for en partikkel å bevege seg fra x = 0 til x = L. a) Hastighetsfeltet er gitt ved u = V 0 (1 + x/l), v = w = 0. Akselerasjonen (her kun i x-retning): a x = Du Dt = u t + u u x + v u y + w u z = udu dx = V 0(1 + x L )V 0 L. (11) ved x = L får vi a x x=l = 6 V 0 L. (1) b) La nå x være posisjonen ved tiden t til en partikkel som følger strømmen. Vi kjenner partikkelens hastighet u = ẋ og kan sette opp og løse differensialligningen vi får (1. ordens lineær) som vi kan fra matematikken u = dx dt = V 0(1 + x L ) dx V 0 dt = (1 + x L ) dx V 0 t = (1 + x L ) = L ln(1 + x ) + C. (13) L Velger t = 0 når x = 0 som gir oss at C = 0, og finner tiden når x = L: t tot = t(x = L) = L V 0 ln 3. (14) Navier-Stokes oppgave Navier-Stokes ligning er en vektorligning og har følgelig like mange komponenter som problemet har romlige dimensjoner. Navier-Stokes ligning for en generell inkompressibel væske skrives som ρ V t + ρ ( V ) V = p + µ V + ρ g (15) 4
5 a Vi arbeider her med to romlige dimensjoner og ligning 15 resulterer følgelig i to komponenter. Hastigheten skrives som V = u ı + v j. Tyngdekraften g virker ikke parallellt til aksene i systemet (x- og y-aksene) og må dermed dekomponeres. De resterende vektorene skrives på standard komponentform. x-retning ρ u ( t + ρ u u x + v u ) = p y x + µ u + ρg sin θ (16) y-retning hvor i begge tilfeller b ρ v ( t + ρ u v x + v v ) = p y y + µ v ρg cos θ, (17) = x + y. (18) Navier-Stokes ligning uttrykker en differensiell impulsbevarelse, altså Newtons. lov. Ser på det generelle utrykket og identifisererer ρ V }{{ t } I ( ) + ρ V V } {{ } II } {{ } A = p + µ V }{{}}{{} III IV + ρ g }{{} V } {{ } B Venstre side (A) representerer, som i Newtons. lov, endringen i impuls. I Newtons. lov utrykkes dette vanligvis som ( ) m a = m d V (0) dt Navier-Stokes ligning gir imidlertid bevarelse av impulstetthet, altså (19) m a V = ρd V dt (1) hvor V er et volum. Den (total)deriverte av hastigheten (d V /dt) består for et kontinuum av to ledd (I og II) som henholdsvis representerer tidsavhengig (transient) akselerasjon og konvektiv (geometrisk) akselerasjon. Analogt til Newtons. lov representerer høyre side (B) summen av kreftene som virker på systemet. Da venstre side er impulstetthet så må høyre side være den tilsvarende kraft-tettheten, altså 1 F = f. () V Kreftene som virker på en væske er (vanligvis) trykk-kraft (III), viskøse (friksjons) krefter (IV) og tyngdekraften (V). Som en ekstra øvelse kan du gjerne sjekke hvert ledd i ligning 19 og vise at dimensjonen er krafttetthet, altså N/m 3. c Det er oppgitt at veggene i kanalen er faste, hvilket har konsekvenser for hastighetsfeltet. For hastighetskomponenten som er parallell til veggen gjelder heftbetingelsen (no slip condidtion): u vegg = 0. (3) En fast vegg tillater ingen gjennomstrømning. Dette innebærer at også normalkomponenten av hastigheten må være null: v vegg = 0. (4) 5
6 Totalt sett har vi derfor V = 0. (5) vegg 6
Løsningsforslag Øving 6
Løsningsforslag Øving 6 TEP4100 Fluidmekanikk, Aumn 016 Oppgave 4-109 Løsning Vi skal bestemme om en strømning er virvlingsfri, hvis den ikke er det skal vi finne θ-komponenten av virvlingen. Antagelser
DetaljerLøsningsforslag Øving 8
Løsningsforslag Øving 8 TEP4100 Fluidmekanikk, Vår 016 Oppgave 5-78 Løsning En vannslange koblet til bunnen av en tank har en dyse som er rettet oppover. Trykket i slangen økes med en pumpe og høyden av
DetaljerLøsningsforslag Øving 4
Løsningsforslag Øving 4 TEP4100 Fluidmekanikk, Vår 2016 Oppgave 3-162 Løsning En halvsirkelformet tunnel skal bygges på bunnen av en innsjø. Vi ønsker å finne den totale hydrostatiske trykkraften som virker
DetaljerLøsningsforslag Øving 5
Løsningsforslag Øving 5 TEP41 Fluidmekanikk, Vår 216 Oppgave til forberedning til Lab x dx y y Figure 1 a) Oppdriftskraften på kvartsirkelen er F B = γu = γ π2 4 L der γ = ρg er den spesifikke vekten av
DetaljerAuditorieøving 6, Fluidmekanikk
Auditorieøving 6, Fluidmekanikk Utført av (alle i gruppen): Oppgave 1 En beholder er åpen i ene enden og har et hull i bunnen, påsatt et innadrettet rør av lengde l og med sirkulært tverrsnitt A 0. Beholderen,
DetaljerQ = π 4 D2 V = π 4 (0.1)2 0.5 m 3 /s = m 3 /s = 3.93 l/s Pa
35 Løsning C.1 Q π 4 D2 V π 4 (0.1)2 0.5 m 3 /s 0.00393 m 3 /s 3.93 l/s G gsρ vann Q 9.81 1.26 998 0.00393 N/s 0.0484 kn/s ṁ G/g 48.4/9.81 kg/s 4.94 kg/s Løsning C.2 Omregning til absolutt trykk: p abs
DetaljerFeltlikninger for fluider
Kapittel 10 Feltlikninger for fluider Oppgave 1 Gitt et to-dimensjonalt strømfelt v = ωyi+ωxj. a) Den konvektive akselerasjonen for et to-dimensjonalt felt er gitt ved b) Bevegelseslikninga (Euler-likninga):
DetaljerLøsningsforslag Øving 12
Løsningsforslag Øving 1 TEP4100 Fluidmekanikk, Vår 013 Oppgave 9-89 Løsning Vi skal finne et uttrykk for trykket som funksjon av x og y i et gitt hastighetsfelt. Antagelser 1 Strømningen er stasjonær.
DetaljerHAVBØLGER. Her skal vi gjennomgå den enkleste teorien for bølger på vannoverflaten:
HAVBØLGER Her skal vi gjennomgå den enkleste teorien for bølger på vannoverflaten: Airy teori, også kalt lineær bølgeteori eller bølger av første orden Fremstillingen her vil temmelig nøyaktig følge kompendiet
DetaljerLøsningsforslag Øving 3
Løsningsforslag Øving 3 TEP400 Fluidmekanikk, Vår 206 Oppgave 3-86 Løsning En sikkerhetsdemning for gjørmeskred skal konstrueres med rektangulære betongblokker. Gjørmehøyden som får blokkene til å begynne
Detaljer- trykk-krefter. µ. u u u x. u venstre side. Det siste forsvinner fordi vi nettopp har vist x. r, der A er en integrasjonskonstant.
Løsningsforslag, MPT 1 Fluiddynamikk, vår 7 Oppgave 1 1. Bevarelse av impuls, massefart,..; k ma. Venstre side er ma og høyre side kreftene (pr. volumenhet). Substansielt deriverte: Akselerasjon av fluidpartikkel,
DetaljerLøsningsforslag til Øving 9 Høst 2014 (Nummerne refererer til White s 6. utgave)
TEP45: Fluidmekanikk Oppgave 8. Løsningsforslag til Øving 9 Høst 4 (Nummerne refererer til White s 6. utgave Vi skal finne sirkulasjonen Γ langs kurven C gitt en potensialvirvel i origo med styrke K. I
DetaljerLøsningsforslag Øving 3
Løsningsforslag Øving 3 TEP4105 Fluidmekanikk, Høst 2017 Oppgave 3-75 Løsning En sikkerhetsdemning for gjørmeskred skal konstrueres med rektangulære betongblokker. Gjørmehøyden som får blokkene til å begynne
DetaljerTMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si
DetaljerLøsningsforslag til Øving 3 Høst 2010
TEP5: Fluidmekanikk Løsningsforslag til Øving 3 Høst 2 Oppgave 2.32 Vi skal finne vannhøyden H i røret. Venstre side (A) er fylt med vann og 8cm olje; SG =,827 = ρ olje /ρ vann. Høyre side (B) er fylt
DetaljerLøsningsforslag Øving 7
Løsningsforslag Øving 7 TEP4100 Fluidmekanikk, Vår 016 Oppgave 5- Løsning Vinden blåser med konstant hastighet 8 m/s. Vi ønsker å finne den mekaniske energien per masseenhet i vindstrømmen, samt det totale
DetaljerLøsningsforslag Øving 2
Løsningsforslag Øving 2 TEP4100 Fluidmekanikk, Vår 2016 Oppgave -7 Løsning Et sylinder-stempel-arrangement inneholder en gass. Trykket inne i sylinderen og effekten av volumforandringer på trykket skal
DetaljerLøsningsforslag Øving 1
Løsningsforslag Øving 1 TEP4100 Fluidmekanikk, Vår 2016 Oppgave 1-59 Løsning Luftstrømmen gjennom en vindturbin er analysert. Basert på en dimensjonsanalyse er et uttrykk for massestrømmen gjennom turbinarealet
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 1100 Feltteori og vektoranalyse. Eksamensdag: Torsdag 11 desember 2008. Tid for eksamen: 14:30 17:30. Oppgavesettet er på
DetaljerEKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Kalkulator, én valgfri standard formelsamling. I h c A.
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT60 Fluidmekanikk DATO: 15. mai 006 TID FOR EKSAMEN: kl. 09-13 (4 timer) TILLATTE HJELPEMIDDEL: Kalkulator, én valgfri standard formelsamling OPPGAVESETTET
DetaljerGEF Løsningsforslag til oppgaver fra kapittel 6
GEF1100 - Løsningsforslag til oppgaver fra kapittel 6 i.h.h.karset@geo.uio.no Oppgave 1 a) Hva er forskjellen mellom Lagrangesk og Eulersk representasjon av en væskebevegelse? Gi et eksempel på hver av
DetaljerLøsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk
DetaljerTFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL
TFY46 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. Oppgave. a) Hastigheten v til kule like før kollisjonen finnes lettest ved å bruke energibevarelse: Riktig svar: C. m gl = 2 m v 2
DetaljerLøsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009
Løsningsforslag til eksamen i EA04 - Fysikk, 5..009 Oppgae a) Klossen er i kontakt med sylinderen så lenge det irker en normalkraft N fra sylinderen på klossen og il forlate sylinderen i det N = 0. Summen
DetaljerGrensebetingelse for trykk der hvor vann møter luft
Forelesning 5/4 019 ved Karsten Trulsen Grensebetingelse for trykk der hvor vann møter luft Vi skal utlede en betingelse for trykket på grenseflaten der hvor vann er i kontakt med luft. Vi gjør dette ved
DetaljerFlervalgsoppgaver. Gruppeøving 1 Elektrisitet og magnetisme
Gruppeøving Elektrisitet og magnetisme Flervalgsoppgaver Ei svært tynn sirkulær skive av kobber har radius R = 000 m og tykkelse d = 00 mm Hva er total masse? A 0560 kg B 0580 kg C 0630 kg D 0650 kg E
DetaljerPunktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].
Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen
DetaljerForeløpig løsningsforslag til eksamen i fag TEP4110 Fluidmekanikk
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET SIDE AV 9 Foreløpig løsningsforslag til eksamen i fag TEP40 Fluidmekanikk Torsdag 6. desember 0 Ligningsnummer i løsningsforslaget henviser til læreboken:
DetaljerFysikkolympiaden Norsk finale 2018 Løsningsforslag
Fysikkolympiaden Norsk finale 018 øsningsforslag Oppgave 1 Det virker tre krefter: Tyngden G = mg, normalkrafta fra veggen, som må være sentripetalkrafta N = mv /R og friksjonskrafta F oppover parallelt
Detaljera) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.
Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har
DetaljerFlervalgsoppgaver. Gruppeøving 8 Elektrisitet og magnetisme. 1. SI-enheten til magnetisk flukstetthet er tesla, som er ekvivalent med A. E.
Flervalgsoppgaver 1. SI-enheten til magnetisk flukstetthet er tesla, som er ekvivalent med A. N s C m B. N C s m C. N m s 2 D. C A s E. Wb m 2 Løsning: F = q v B gir [B] = N Cm/s = N s C m. 2. Et elektron
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerLØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8
LØNINGFORLAG TIL ØVING, TMA45, V8 Oppgave 4.5.9. Parametrisering: x = r cos θ, y = r sin θ, z = r for θ π, r 6. r(r, θ) = r cos θ, r sin θ, r. N = r r r θ = cos θ sin θ = r cos θ, r sin θ, r. r sin θ r
DetaljerFasit for eksamen i MEK1100 torsdag 13. desember 2007 Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for perfekt svar).
Fasit for eksamen i MEK torsdag 3. desember 27 Hvert delspørsmål honoreres med poengsum fra til ( for perfekt svar). Oppgave Vi har gitt to vektorfelt i kartesiske koordinater (x,y,z) A = yi+coszj +xy
DetaljerEKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard formelsamling
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT60 Fluidmekanikk DATO: 15. mai 008 TID FOR EKSAMEN: kl. 09-13 (4 timer) TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard
Detaljer1 MAT100 Obligatorisk innlevering 1. 1 Regn ut i) iii) ii) Regn ut i) ii)
1 MAT1 Obligatorisk innlevering 1 1 Regn ut 3 7 + 1 2. i) 13 14 ii) 11 14 iii) 9 14 2 Regn ut 8 9 + 3 4. i) 57 36 ii) 59 36 iii) 61 36 3 Regn ut 1 4 + 1 8. i) 3 16 ii) 3 8 iii) 5 8 4 Regn ut 1 8 + 1 16.
DetaljerLøsningsforslag Øving 10
Løsningsforslag Øving 0 TEP400 Fluidmekanikk, Vår 03 Oppgave 8-30 Løsning Volumstrømmen av vann gjennom et rør er gitt. Trykkfallet, tapshøyden og pumpens effekt skal bestemmes. Antagelser Strømningen
DetaljerKinematikk i to og tre dimensjoner
Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:
DetaljerOppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen.
NTNU Institutt for matematiske fag SIF55 Matematikk 2 4. mai 999 Løsningsforslag Oppgavesettet har punkter, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. i alternativ (3, ii alternativ (2. 2 a For
DetaljerEKSAMEN I: BIT260 Fluidmekanikk DATO: 12. mai TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Ei valgfri standard formelsamling
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT60 Fluidmekanikk DATO: 1. mai 010 TID FOR EKSAMEN: kl. 09-13 (4 timer) TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Ei valgfri standard
DetaljerKrefter, Newtons lover, dreiemoment
Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 11 Feltteori og vektoranalyse. Eksamensdag: Torsdag 1 desember 29. Tid for eksamen: 14:3 17:3. Oppgavesettet er på 7 sider.
DetaljerTFY4115: Løsningsforslag til oppgaver gitt
Institutt for fysikk, NTNU. Høsten. TFY45: Løsningsforslag til oppgaver gitt 6.8.9. OPPGAVER 6.8. Vi skal estemme Taylorrekkene til noen kjente funksjoner: a c d sin x sin + x cos x sin 3 x3 cos +... x
DetaljerAnbefalte oppgaver - Løsningsforslag
TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.
DetaljerSom vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave.
NTNU Institutt for matematiske fag TMA4105 Matematikk, øving 7, vår 011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
DetaljerVår TMA4105 Matematikk 2. Løsningsforslag Øving 2. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag
TMA415 Matematikk 2 Vår 217 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 11.1.9: Den aktuelle kurven er gitt ved r(t) (3 cos t, 4 cos t, 5 sin t).
DetaljerKap. 3 Arbeid og energi. Energibevaring.
Kap. 3 Arbeid og energi. Energibevaring. Definisjon arbeid, W Kinetisk energi, E k Potensiell energi, E p. Konservative krefter Energibevaring Energibevaring når friksjon. Arbeid = areal under kurve F(x)
DetaljerUDIRs eksempeloppgave høsten 2008
UDIRs eksempeloppgave høsten 008 Løsningsskisser Del Oppgave f x cos3x x sin3x 3 cos3x 6x sin3x fx 3u, u e 4x (Produktregel og kjerneregel på cos3x.) u e 4x 4 (Kjerneregel enda en gang...) d) f x 6uu 6u4e
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG
DetaljerEKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002 GENERELL FYSIKK II Onsdag 8. desember 2004 kl Bokmål. K. Rottmann: Matematisk formelsamling
Side 1 av 11 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Førsteamanuensis Knut Arne Strand Telefon: 73 59 34 61 EKSAMEN FAG TFY416 BØLGEFYSIKK OG
DetaljerLøsningsforslag til eksamen i FYS1000, 14/8 2015
Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en
DetaljerImpuls, bevegelsesmengde, energi. Bevaringslover.
Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde
DetaljerF. Impulser og krefter i fluidstrøm
F. Impulser og krefter i fluidstrøm Oppgave F.1 Ved laminær strøm gjennom et sylindrisk tverrsnitt er hastighetsprofilet parabolsk, u(r) = u m (1 (r/r) 2 ) hvor u max er maksimalhastigheten ved aksen,
DetaljerForelesning 23 den 18/4 2017
Forelesning 3 den 18/4 017 Eksperiment Toricelli hvor fort renner vann ut av et kar? Vi navngir eksperimentet til ære for Evangelista Torricelli (1608 1647) som oppdaget Toricellis lov i 1643. Toricelli
DetaljerNewtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 1..16 YS-MEK 111 1..16 1 Identifikasjon av kreftene: 1. Del problemet inn i system og omgivelser.. Tegn figur av objektet og alt som berører det. 3. Tegn en lukket kurve
DetaljerLøsningsforslag til ukeoppgave 4
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 4 Oppgave 4.03 W = F s cos(α) gir W = 1, 2 kj b) Det er ingen bevegelse i retning nedover, derfor gjør ikke tyngdekraften noe arbeid. Oppgave
DetaljerElementær utledning av uidmekanikkens grunnligninger
Energi og prosessteknikk NTNU Kompendium i fluidmekanikk Elementær utledning av uidmekanikkens grunnligninger Skrevet av: Iver Håkon TEX et av: Brevik Sigbjørn Løland Siste endring: 29. januar 2013 Bore
Detaljerρ = = = m / s m / s Ok! 0.1
Løsningsfoslag TEP 00 FLUIDMEKNIKK.juni 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d g 6
DetaljerLØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag ide av LØNINGFOLAG EKAMEN TMA4 MATEMATIKK 2 Lørdag 4. aug 24 Oppgave Grenseverdien eksisterer ikke. For eksempel er grenseverdien
DetaljerNewtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 7.1.14 oblig #1: prosjekt 5. i boken innlevering: mandag, 3.feb. kl.14 papir: boks på ekspedisjonskontoret elektronisk: Fronter data verksted: onsdag 1 14 fredag 1 16 FYS-MEK
DetaljerMatematikk og fysikk RF3100
DUMMY Matematikk og fysikk RF3100 Løsningsforslag, Øving 11 8mai 201 Tidsfrist: 18mai 201 klokken 1400 Oppgave 1 Obs: I denne oppgaven reperesenterer vi vektorer med 1 n-matriser, altså radvektorer I hele
DetaljerFAG: Fysikk FYS118 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel)
UNIVERSITETET I AGDER Grimstad E K S A M E N S O P P G A V E : FAG: Fysikk FYS118 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel) Klasse(r): Dato: 22.05.18 Eksamenstid, fra-til: 09.00
Detaljer1 I mengdeteori er kontinuumshypotesen en antakelse om at det ikke eksisterer en mengde som
Forelesning 12/3 2019 ved Karsten Trulsen Fluid- og kontinuumsmekanikk Som eksempel på anvendelse av vektor feltteori og flervariabel kalkulus, og som illustrasjon av begrepene vi har gått igjennom så
DetaljerEKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard formelsamling
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai 2007 TID FOR EKSAMEN: kl. 09-13 (4 timer) TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard
DetaljerLøsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Oppgave 1 Avgjør om grenseverdiene eksisterer:
DetaljerKORT INTRODUKSJON TIL TENSORER
KORT INTRODUKSJON TIL TENSORER Tensorer har vi allerede møtt i form av skalarer (tall) og vektorer. En skalar kan betraktes som en tensor av rang null (en komponent), mens en vektor er en tensor av rang
DetaljerMidtsemesterprøve fredag 10. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2006 Midtsemesterprøve fredag 10. mars kl 0830 1130. Løsningsforslag 1) A. (Andel som svarte riktig: 83%) Det
DetaljerTFY4115 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 4. ) v 1 = p 2gL. S 1 m 1 g = L = 2m 1g ) S 1 = m 1 g + 2m 1 g = 3m 1 g.
TFY4 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 4. Ogave. a) Hastigheten v til kule like fr kollisjonen nnes lettest ved a bruke energibevarelse Riktig svar C. gl v ) v gl b) Like fr sttet
DetaljerKinematikk i to og tre dimensjoner
Kinematikk i to og tre dimensjoner 2.2.217 Innleveringsfrist oblig 1: Mandag, 6.eb. kl.14 Innlevering kun via: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Piazza
DetaljerLøsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)
DetaljerEksamen i emnet SIB 5025 Hydromekanikk 25 nov b) Bestem størrelsen, retningen og angrepspunktet til resultantkrafta,.
Eksamen i emnet SIB 55 Hydromekanikk 5 nov 1999 Oppgave 1. Husk å angi benevninger ved tallsvar. ρ θ I en ny svømmehall er det foreslått montert et vindu formet som en halvsylinder med radius og bredde.
DetaljerEksamen i MAT1100 H14: Løsningsforslag
Eksamen i MAT H4: Løsningsforslag Oppgave. ( poeng) Dersom f(x, y) x sin(xy ), er f y lik: A) sin(xy ) + xy cos(xy ) B) x cos(xy ) C) x y cos(xy ) D) sin(xy ) + x y cos(xy ) E) cos(xy ) Riktig svar: C):
DetaljerLøsningsforslag Eksamen i Fys-mek1110 våren 2010
Side av Løsningsforslag Eksamen i Fys-mek våren Oppgave (Denne oppgaven teller dobbelt) Ole og Mari vil prøve om lengdekontraksjon virkelig finner sted. Mari setter seg i sitt romskip og kjører forbi Ole,
DetaljerLøsningsforslag til ukeoppgave 10
Oppgaver FYS1001 Vå018 1 Løsningsforslag til ukeoppgave 10 Oppgave 17.04 a) Et elektron har ladningen 1, 6 10 19 C. 5, 0 10 10 elektroner gir en total ladning på 8 nc. b) På -1 C går det 1C/1,6 10 19 C06,26
Detaljer1. En tynn stav med lengde L har uniform ladning λ per lengdeenhet. Hvor mye ladning dq er det på en liten lengde dx av staven?
Ladet stav 1 En tynn stav med lengde L har uniform ladning per lengdeenhet Hvor mye ladning d er det på en liten lengde d av staven? A /d B d C 2 d D d/ E L d Løsning: Med linjeladning (dvs ladning per
DetaljerLøsningsforslag til Eksamen i MAT111
Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse
Detaljerdg = ( g P0 u)ds = ( ) = 0
NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
DetaljerGEF1100: kapittel 6. Ada Gjermundsen. September 2017
GEF1100: kapittel 6 Ada Gjermundsen September 2017 Hvem er jeg? (forha pentligvis snart Dr.) Ada Gjermundsen ada.gjermundsen@geo.uio.no adagjermundsen@gmail.com Studerer varmetransport i atmosfære og hav
DetaljerNewtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 3.1.17 Innlevering av oblig 1: neste mandag, kl.14 Devilry åpner snart. Diskusjoner på Piazza: https://piazza.com/uio.no/spring17/fysmek111/home Gruble-gruppe i dag etter
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon 3.01.018 snuble-gruppe i dag, kl.16:15-18:00, Origo FYS-MEK 1110 3.01.018 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon
DetaljerLøsningsforslag til ukeoppgave 2
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 2 Oppgave 2.15 a) F = ma a = F/m = 2m/s 2 b) Vi bruker v = v 0 + at og får v = 16 m/s c) s = v 0 t + 1/2at 2 gir s = 64 m Oppgave 2.19 a) a =
DetaljerUNIVERSITETET I OSLO
vx [m/s] vy [m/s] Side UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: 3 mars 8 Tid for eksamen: 9: : (3 timer) Oppgavesettet er på 3 sider Vedlegg: Formelark
DetaljerEksempelsett R2, 2008
Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 7 59 6 6 / 45 45 55 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag.
DetaljerHØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning
HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning EKSAMEN I Matematisk analyse og vektoralgebra, FOA150 KLASSE : Alle DATO : 11. august 006 TID: : Kl. 0900-100 (4 timer) ANTALL OPPGAVER : 5 VARIGHET ANTALL
DetaljerLøsningsforslag til midtveiseksamen i FYS1001, 26/3 2019
Løsningsforslag til midtveiseksamen i FYS1001, 26/3 2019 Oppgave 1 Løve og sebraen starter en avstand s 0 = 50 m fra hverandre. De tar hverandre igjen når løven har løpt en avstand s l = s f og sebraen
DetaljerPrøveeksamen i MAT 1100, H-03 Løsningsforslag
Prøveeksamen i MAT, H- Løsningsforslag. Integralet cos x dx er lik: +sin x Riktig svar: c) arctan(sin x) + C. Begrunnelse: Sett u = sin x, da er du = cos x dx og vi får: cos x + sin x dx = du du = arctan
DetaljerSIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag
SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver
DetaljerLøsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/
Løsningsforslag Eksamen i MA0/MA60 Grunnkurs i analyse II 7/ 008 Oppgave y = y +, y(0) = 0 a) n n y n y = n y n + y = y y n+ 0 0 0 / / / / / 5/4 / 5/8 9/8 9/8 så Eulers metode med steglengde / gir oss
DetaljerLØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005
LØSNINGSFORSLAG TMA45 Matematikk 8. August 5 Oppgave Vi introduserer funksjonen g(x, y, z) x +y z slik at flaten z x + y er gitt ved g(x, y, z). I dette tilfellet utgjør gradienten til g en normalvektor
DetaljerLøsningsforslag, Øving 10 MA0001 Brukerkurs i Matematikk A
Løsningsforslag, Øving MA Brukerkurs i Matematikk A Læreboka s. 9-95 8. Anta at en endring i biomasse B(t) vei, t [, ], følger ligningen for t. d B(t) = cos ( ) πt 6 (a) Tegn grafen til d B(t) som funksjon
DetaljerLøsningsforslag til øving 4
1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 4 Oppgave 1 a) D = D 0 [ cos (kx ωt) + sin (kx ωt) ] 1/ = D 0 for alle x og t. Med andre ord, vi har overalt
DetaljerFasit eksamen Fys1000 vår 2009
Fasit eksamen Fys1000 vår 2009 Oppgave 1 a) Klossen A er påvirka av tre krefter: 1) Tyngda m A g som peker loddrett nedover. Denne er det lurt å dekomponere i en komponent m A g sinθ langs skråplanet nedover
DetaljerTMA4105 Matematikk2 Vår 2008
TMA4105 Matematikk2 Vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 5 11.4.1 Vi ser på kurven i xy-planet gitt ved r(t) ti + (ln(cos t))j π/2
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
Detaljerdx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk vår 9 øsningsforslag til eksamen 15. august 9 1 Treghetsmoment med hensyn på x-aksen er gitt ved x [ ] y I
DetaljerLøsningsforslag til eksamen i MAT 1100, H06
Løsningsforslag til eksamen i MAT, H6 DEL. poeng Hva er den partiellderiverte f z xyz cosxyz x sinyz + xyz cosyz xy cosyz x sinyz + xz cosyz cosyz xyz sinyz når fx, y, z = xz sinyz? Riktig svar b: x sinyz
DetaljerUNIVERSITETET I OSLO
Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 1100 Feltteori og vektoranalyse. Eksamensdag: Fredag 29 mai 2009. Tid for eksamen: 14:30 17:30. Oppgavesettet er på 6 sider.
Detaljer