KJ1042 Termodynamikk laboratoriekurs Oppgave 3. Fordampningsentalpi av ren væske Aceton

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "KJ1042 Termodynamikk laboratoriekurs Oppgave 3. Fordampningsentalpi av ren væske Aceton"

Transkript

1 KJ1042 Termodynamikk laboratoriekurs Oppgave 3. Fordampningsentalpi av ren væske Aceton Kjetil F. Veium Audun F. Buene Gruppe 21 Lab C2-107 Utført 21. februar 2012

2 Innhold 1 Innledning 3 2 Prinsipp 3 3 Utførelse 4 4 Resultat og diskusjon Bestemmelse av fordampningsentalpi Usikkerhet i fordampningsentalpi Feilkilder Konklusjon 8 A Måleusikkerhet 11 B Måleskjema 12 1

3 Sammendrag I denne oppgaven er det blitt undersøkt hvordan man kan bestemme fordampningsentalpien for en væske. Dette ble gjort ved å endre trykket, inntil gassfase og væskefase var i likevekt. ln p ble plottet som funksjon av 1/RT, og en lineær regresjon ble gjennomført. Vinkelkoeffisienten for regresjonskurven er verdien for vap H. Fordampningsentalpien til aceton ble bestemt til 25 ± 2 kj/mol, mens litteraturverdien er oppgitt til å være 31 kj/mol. 2

4 1 Innledning Denne oppgaven ble utført i forbindelse med laboratoriekurs som en del av faget KJ1042 Termodynamikk GK med laboratorium ved NTNU våren Hensikten med oppgaven er å bestemme den molare fordamningsentalpien for aceton. Dette skal gjøres ved å måle damptrykket for aceton ved forskjellige temperaturer. Målingene skal gjennomføres i et vakuumsystem, slik at man kan oppnå lavere trykk enn atmosfæretrykket. Fordampningsentalpien bestemmes ved hjelp av Clausius-Clapeyrons ligning (2.1), som beskriver sammenhengen mellom trykk, temperatur og fordampningsentalpi. 2 Prinsipp Fordampningsentalpi er den varmemengden som må tilsettes en bestemt væske for å få den over i gassfase. Dette skjer under betingelsen konstant trykk. Temperaturen ved denne overgangen vil være lik kokepunktet for væsken ved det aktuelle trykket. Fordampningsentalpien kan bestemmes ved å undersøke sammenhengen mellom temperaturvariasjonen og damptrykket over væsken. Denne sammenhengen er gitt ved Clausius-Clapeyrons ligning: lnp = vaph RT + K (2.1) hvor p er trykket, vap H er fordampningsentalpien, R er gasskonstanten, T er temperaturen og K er en konstant. Ved å plotte ln p mot 1/RT kan fordampningsentalpien bestemmes fra vinkelkoeffisienten. 3

5 3 Utførelse Forsøksoppsettet er vist i figur 3.1, som er hentet fra oppgaveteksten i labheftet [1]. Detaljer er beskrevet i tabell 1. Figur 3.1: Apparat for måling av damptrykk og temperatur. A-beholderen med væske, B-lukket kapillar, C-hane til vakuumpumpe, D-hane for å slippe inn luft. Manometeret er ikke vist i figuren, men er koblet mellom systemet og vakuumpumpen. Termometeret målte temteraturen i beholderen (A). Varmespiralen er ikke gitt noe symbol i figuren, men det er innretningen helt til venstre i vannbadet. 4

6 Tabell 1: Detaljeliste over komponenter i apparaturet Symbol Navn Funksjon A Væskebeholder Holder væsken i systemet. B Kapillar Lite rør med væske hvor dampen fanges. C Vakuumhane Åpner systemet mot vakuumpumpen. Senker trykket. D Luftehane Lufter systemet mot omgivelsene. Øker trykket. Manometer Trykkmåler koblet til vakuumsystemet. Varmespiral Øker temperaturen i vannbadet. Termometer Måler temperatur i væskefasen. Fremgangsmåten er hentet fra labheftet [1]. Referanser i teksten til deler av apparaturet er beskrevet i tabell 1. Kapillaret (B) ble fylt opp med aceton til det var en liten luftboble igjen. Beholderen (A) ble også fylt med aceton. Kapillaret ble deretter snudd og festet til termometeret, fortsatt med en fanget luftboble i toppen av røret. Åpningen på røret røret ble festet omtrent 1,5 cm under væskeoverflaten i beholderen (A). Oppsettet ble senket ned i et vannbad med justerbar temperatur. Hanen (C) som gikk til vakuumpumpen ble åpnet forsiktig, til væsken i kapillaret kokte. For at luftboblen i kapillaret (B) skulle erstattes med damp, kokte væsken i ca. 5 minutter. Hanen (D) ble justert inntil væsken sluttet å koke. Deretter ble trykket finjustert til væskenivået i beholderen (A) og kapillaret (B) var lik. Da væskenivåene var like og hadde stabilisert deg, ble trykket lest av på manometeret, og temperaturen ble notert. Temperaturen i vannbadet ble endret fire ganger, og det ble gjort fem målinger av damptrykk og temperatur. 5

7 4 Resultat og diskusjon 4.1 Bestemmelse av fordampningsentalpi Måledataene, vist i tabell 2, ble analysert i Excel. Deretter ble lnp plottet som funksjon av 1/RT, som vist i figur 4.1. Ved bruk av lineær regresjon ble trendlinjen bestemt til: y = x (4.1) Fra Clausius-Clapeyrons ligning (2.1) vil vap H være vinkelkoeffisienten til kurven 4.1 funnet ved regresjon. Det kan derfor leses fra regresjonen at vap H har verdien kj/mol. 6

8 Figur 4.1: Plott av måleverdiene med regresjonslinje. Verdiene ln p er plottet som funksjon av 1/RT, hvor R er gasskonstanten, T er den målte temperaturen, og p er det målte trykket. 4.2 Usikkerhet i fordampningsentalpi Usikkerheten i fordampningsentalpien er funnet ved hjelp av to metoder. Den ene metoden er Gauss feilforplantningslov, hvor standardavviket er vist i ligning (A.5) i appendix A. Denne usikkerhetsverdien ble bestemt til kj/mol. Den andre metoden for å finne usikkerheten for fordampningsentalpien er å bruke en innebygd funksjon i Excel, som heter "Analysis Toolpack". Denne metoden gav et standardavvik på kj/mol. Utregningene for standardavvikene til ln p og 1/RT er vist i appendix A. De utregnede verdiene er vist i tabell 2 og er lagt inn som feilskranker i figur

9 Standardavviket for 1/RT var såpass lite, og oppløsningen i figuren var ikke stor nok til at feilskranken for 1/RT vises i figuren. Når man sammenlikner verdiene fra de to metodene, ser man at verdien fra Gauss feilforplantningslov er svært liten i forhold til standardavviket gitt fra Excel. Dermed ble denne verdien neglisjert. Den totale usikkehet i fordampningsentalpi for aceton er dermed valgt til 2 standardavvik, som gir en verdi for fordampningsentalpien på 25 ± 2 kj/mol. 4.3 Feilkilder Det er flere faktorer som kan ha bidratt til usikkerhet i fordamningsentalpien. Avlesningsfeil av temperaturen er en mulig feilkilde, såvel som ukalibrerte måleinstrumenter. Det var også litt utfordrende å se når væskenivåene var like, så dette kan ha påvirket usikkerheten i verdien for trykk. Det er også mulig at acetonen ikke var helt ren, noe som vil påvirke fordampningsentalpien. Det er naturlig å anta at disse feilkildene er med på å bidra til at den bestemte verdi for fordamningsentalpien til aceton (25 ± 2 kj/mol) er noe avvikende fra litteraturverdien [2] (31 kj/mol). 5 Konklusjon Fordampningsentalpien til aceton ble bestemt til å være 25 ± 2 kj/mol. Litteraturverdien [2] for fordampningsentalpien er 31 kj/mol. Resultatet er i samme størrelseorden som litteraturverdien, så det er naturlig å kunne anta at forsøket var vellykket. Avviket fra litteraturverdien kan skyldes feilkilder som ukalibrert måleutstyr og avlesningsfeil. 8

10 Symbolliste Symbolene brukt i rapporten er samlet og beskrevet i listen under. Symbol Dimensjon Betegnelse vap H kj/mol Fordampningsentalpi p Pa Trykk R J K 1mol 1 Gasskonstanten T K Temperatur s lnp Pa Standardavvik for ln p s 1/RT mol/kj Standardavvik for 1/RT n mol Stoffmengde J kg m 2 s 2 Energi Trondheim, 27. februar 2012 Kjetil F. Veium Audun F. Buene 9

11 Referanser [1] Kjelstrup, S.; Prosjekter i fysikalsk kjemi grunnkurs, 7. utgave, Tapir Akademiske Forlag, Kompendieforlaget, [2] Aylward, G. Findley, T.; SI Chemical Data, 6th edition, John Wiley & Sons Australia, Ltd.,

12 A Måleusikkerhet Usikkerheten til parameter y er gitt ved: s y p ( ) 2 f s χ (A.1) i=1 χ i hvor s χ er standardavviket for komponent i. Usikkerheten for henholdsvis ln p og 1/RT er derfor gitt ved: s lnp = ( ) 2 p (lnp) s 2 p (A.2) s 1/RT = ( T ( )) 2 1 s 2 T RT (A.3) hvor s p og s T ble oppgitt på laboratoriet til å være henholdsvis 100 Pa og 0,1 K. Tabell 2: Måleskjema og usikkerhet T [ C] p [Pa] ln p s lnp 1/RT s 1/RT Omforming av Clausius-Clapeyrons ligning gir: vap H = ln prt + KRT (A.4) Usikkerheten til vap H er da gitt ved s vaph = ( vaph p ) 2 s 2 p + ( vap H T ) 2 s 2 T (A.5) 11

13 B Måleskjema 12

Laboratorieoppgave 3: Fordampingsentalpi til sykloheksan

Laboratorieoppgave 3: Fordampingsentalpi til sykloheksan Laboratorieoppgave 3: Fordampingsentalpi til sykloheksan Åge Johansen agej@stud.ntnu.no Ole Håvik Bjørkedal olehb@stud.ntnu.no Gruppe 60 17. mars 2013 Sammendrag Rapporten omhandler hvordan fordampningsentalpien

Detaljer

KJ1042 Termodynamikk laboratoriekurs Oppgave 2. Partiell molar entalpi

KJ1042 Termodynamikk laboratoriekurs Oppgave 2. Partiell molar entalpi KJ104 Termodynamikk laboratoriekurs Oppgave. Partiell molar entalpi Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 1 Lab C-107 Utført 8. februar 01 Innhold 1 Innledning

Detaljer

KJ1042 Termodynamikk laboratoriekurs Oppgave 1. Partielle molare volum

KJ1042 Termodynamikk laboratoriekurs Oppgave 1. Partielle molare volum KJ1042 Termodynamikk laboratoriekurs Oppgave 1. Partielle molare volum Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 21 Utført 14. februar 2012 Innhold 1 Innledning

Detaljer

Oppgave 3. Fordampningsentalpi av ren væske

Oppgave 3. Fordampningsentalpi av ren væske Oppgave 3 Fordampningsentalpi av ren væske KJ1042 Rom C2-107 Gruppe 45 Anders Leirpoll & Kasper Linnestad andersty@stud.ntnu.no kasperjo@stud.ntnu.no 29.02.2012 i Sammendrag I forsøket ble damptrykket

Detaljer

KJ1042 Termodynamikk laboratoriekurs Oppgave 4. Tokomponent - faselikevekt

KJ1042 Termodynamikk laboratoriekurs Oppgave 4. Tokomponent - faselikevekt KJ1042 Termodynamikk laboratoriekurs Oppgave 4. Tokomponent - faselikevekt Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 21 Lab C2-107 Utført 16. mars 2012 Innhold 1

Detaljer

Oppgave 1. Bestemmelse av partielle molare volum

Oppgave 1. Bestemmelse av partielle molare volum Oppgave 1 Rom C2-107 Gruppe 45 Anders Leirpoll & Kasper Linnestad andersty@stud.ntnu.no kasperjo@stud.ntnu.no 22.02.2012 i Sammendrag Hensikten med dette forsøket var å bestemme de partielle molare volum

Detaljer

KJ1042 Termodynamikk laboratoriekurs Oppgave 5. Standard reduksjonspotensial

KJ1042 Termodynamikk laboratoriekurs Oppgave 5. Standard reduksjonspotensial KJ1042 Termodynamikk laboratoriekurs Oppgave 5. Standard reduksjonspotensial Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 21 Lab C2-107 Utført 27. mar012 Innhold 1

Detaljer

Laboratorieoppgave 4: Tokomponent faselikevekt

Laboratorieoppgave 4: Tokomponent faselikevekt Laboratorieoppgave 4: Tokomponent faselikevekt Åge Johansen agej@stud.ntnu.no Ole Håvik Bjørkedal olehb@stud.ntnu.no Gruppe 60 29. september 2013 Sammendrag Dette forsøket ble utført for å bestemme aktivitetskoesienten

Detaljer

Oppgave 4. Tokomponent faselikevekt

Oppgave 4. Tokomponent faselikevekt Oppgave 4 Tokomponent faselikevekt KJ1042 Rom C2-107 Gruppe 45 Anders Leirpoll & Kasper Linnestad andersty@stud.ntnu.no kasperjo@stud.ntnu.no 15.02.2012 i Sammendrag Forsøkets hensikt var å beregne aktivitetskoeffisienten,,

Detaljer

Laboratorieoppgave 1: Partielle molare volum

Laboratorieoppgave 1: Partielle molare volum Laboratorieoppgave 1: Partielle molare volum Åge Johansen Ole Håvik Bjørkedal 30. januar 2015 Sammendrag Rapporten omhandler hvordan partielle molare volum varierer med molfraksjonen Innhold 1 Innledning

Detaljer

Laboratorieoppgave 5: Standard Reduksjonspotensial. Åge Johansen Ole Håvik Bjørkedal Gruppe 60 1.

Laboratorieoppgave 5: Standard Reduksjonspotensial. Åge Johansen Ole Håvik Bjørkedal Gruppe 60 1. Laboratorieoppgave 5: Standard Reduksjonspotensial Åge Johansen agej@stud.ntnu.no Ole Håvik Bjørkedal olehb@stud.ntnu.no Gruppe 60 1. mai 2013 Sammendrag Hensikten med dette forsøket var å bestemme standard

Detaljer

Oppgave 5. Standard elektrodepotensial

Oppgave 5. Standard elektrodepotensial Oppgave 5 Standard elektrodepotensial KJ1042 Rom C2-107 Gruppe 45 Anders Leirpoll & Kasper Linnestad andersty@stud.ntnu.no kasperjo@stud.ntnu.no 28.03.2012 i Sammendrag Hensikten med dette forsøket er

Detaljer

Den spesifike (molare) smeltevarmen for is er den energi som trengs for å omdanne 1 kg (ett mol) is med temperatur 0 C til vann med temperatur 0 C.

Den spesifike (molare) smeltevarmen for is er den energi som trengs for å omdanne 1 kg (ett mol) is med temperatur 0 C til vann med temperatur 0 C. Øvelse 1 Faseoverganger Denne øvelsen går ut på å bestemme smeltevarmen for is og fordampningsvarmen for vann ved 100 C. Trykket skal i begge tilfeller være lik atmosfæretrykket. 1.1 Smeltevarmen Den spesifike

Detaljer

EKSAMENSOPPGAVE. Eksamen i: Kje-1005 Termodynamikk og Kinetikk Dato: Torsdag 6.juni 2013 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 3

EKSAMENSOPPGAVE. Eksamen i: Kje-1005 Termodynamikk og Kinetikk Dato: Torsdag 6.juni 2013 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 3 EKSAMENSOPPGAVE Eksamen i: Kje-1005 Termodynamikk og Kinetikk Dato: Torsdag 6.juni 2013 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 3 Tillatte hjelpemidler: Enkel lommeregner Millimeterpapir

Detaljer

FYS2160 Laboratorieøvelse 1

FYS2160 Laboratorieøvelse 1 FYS2160 Laboratorieøvelse 1 Faseoverganger (H2013) Denne øvelsen går ut på å bestemme smeltevarmen for is og fordampningsvarmen for vann ved 100 C (se teori i del 5.3 i læreboka 1 ). Trykket skal i begge

Detaljer

KJ1042 Øving 3: Varme, arbeid og termodynamikkens første lov

KJ1042 Øving 3: Varme, arbeid og termodynamikkens første lov KJ1042 Øving 3: arme, arbeid og termodynamikkens første lov Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hvordan ser Ideell gasslov ut? Ideell gasslov kan skrives P nrt der P er trykket, volumet,

Detaljer

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger Side 1 av 11 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger Oppgave 1 a) Gibbs energi for et system er definert som og entalpien er definert som Det gir En liten endring

Detaljer

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger Side 1 av 10 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger Oppgave 1 a) Et forsøk kan gjennomføres som vist i figur 1. Røret er isolert, dvs. at det ikke tilføres varme

Detaljer

FYS2160 Laboratorieøvelse 1

FYS2160 Laboratorieøvelse 1 FYS2160 Laboratorieøvelse 1 Faseoverganger (H2016) Denne øvelsen går ut på å bestemme smeltevarmen for is og fordampningsvarmen for vann ved 100 C (se teori i del 5.3 i læreboka 1 ). Trykket skal i begge

Detaljer

Bestemmelse av skjærmodulen til stål

Bestemmelse av skjærmodulen til stål Bestemmelse av skjærmodulen til stål Rune Strandberg Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 9. oktober 2007 Sammendrag Skjærmodulen til stål har blitt bestemt ved en statisk og en dynamisk

Detaljer

Løsningsforslag til øving 10

Løsningsforslag til øving 10 FY1005/TFY4165 Termisk fysikk Institutt for fysikk, NTNU Våren 2015 Løsningsforslag til øving 10 Oppgave 1 a) Helmholtz fri energi er F = U TS, slik at df = du TdS SdT = pdv SdT +µdn, som viser at Entalpien

Detaljer

TBT4135 Biopolymerkjemi Laboratorieoppgave 3: Syrehydrolyse av mannuronan Gruppe 5

TBT4135 Biopolymerkjemi Laboratorieoppgave 3: Syrehydrolyse av mannuronan Gruppe 5 TBT4135 Biopolymerkjemi Laboratorieoppgave 3: Syrehydrolyse av mannuronan Gruppe 5 Hilde M. Vaage hildemva@stud.ntnu.no Malin Å. Driveklepp malinad@stud.ntnu.no Oda H. Ramberg odahera@stud.ntnu.no Audun

Detaljer

Kan vi forutse en pendels bevegelse, før vi har satt den i sving?

Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Gjør dette hjemme 6 #8 Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Skrevet av: Kristian Sørnes Dette eksperimentet ser på hvordan man finner en matematisk formel fra et eksperiment,

Detaljer

Regneøving 9. (Veiledning: Fredag 18. mars kl og mandag 21. mars kl )

Regneøving 9. (Veiledning: Fredag 18. mars kl og mandag 21. mars kl ) Institutt for fysikk, NTNU TFY4165 og FY1005 Termisk fysikk, våren 011. Regneøving 9. (Veiledning: Fredag 18. mars kl. 1.15-14.00 og mandag 1. mars kl. 17.15-19.00.) Oppgave 1 Damptrykket for vann ved

Detaljer

KJ1042 Øving 5: Entalpi og entropi

KJ1042 Øving 5: Entalpi og entropi KJ1042 Øving 5: Entalpi og entropi Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hva er varmekapasitet og hva er forskjellen på C P og C? armekapasiteten til et stoff er en målbar fysisk størrelse

Detaljer

Varmepumpe. Institutt for fysikk, NTNU, N-7491 Trondheim, Norge

Varmepumpe. Institutt for fysikk, NTNU, N-7491 Trondheim, Norge Varmepumpe Anette Fossum Morken a, Sindre Gjerde Alnæs a, Øistein Søvik a a FY1002 Termisk Fysikk, laboratoriekurs, Vår 2013, Gruppe 4. Institutt for fysikk, NTNU, N-7491 Trondheim, Norge Sammendrag I

Detaljer

TBT4135 Biopolymerkjemi Laboratorieoppgave 2: Nedbryting av biopolymerer undersøkt med viskometri Gruppe 5

TBT4135 Biopolymerkjemi Laboratorieoppgave 2: Nedbryting av biopolymerer undersøkt med viskometri Gruppe 5 TBT4135 Biopolymerkjemi Laboratorieoppgave 2: Nedbryting av biopolymerer undersøkt med viskometri Gruppe 5 Hilde M. Vaage hildemva@stud.ntnu.no Malin Å. Driveklepp malinad@stud.ntnu.no Oda H. Ramberg odahera@stud.ntnu.no

Detaljer

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger Side 1 av 6 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger Oppgave 1 a) Termodynamikkens tredje lov kan formuleres slik: «Entropien for et rent stoff i perfekt krystallinsk

Detaljer

KJ2053 Kromatografi Oppgave 5: Bestemmelse av molekylmasser ved hjelp av eksklusjonskromatografi/gelfiltrering (SEC) Rapport

KJ2053 Kromatografi Oppgave 5: Bestemmelse av molekylmasser ved hjelp av eksklusjonskromatografi/gelfiltrering (SEC) Rapport KJ2053 Kromatografi Oppgave 5: Bestemmelse av molekylmasser ved hjelp av eksklusjonskromatografi/gelfiltrering (SEC) Rapport Pia Haarseth piakrih@stud.ntnu.no Audun Formo Buene audunfor@stud.ntnu.no Laboratorie:

Detaljer

Eksperiment 14; Grignard reaksjon: Syntese av trifenylmetanol

Eksperiment 14; Grignard reaksjon: Syntese av trifenylmetanol Eksperiment 14; Grignard reaksjon: Syntese av trifenylmetanol Åge Johansen 29. oktober 2012 Sammendrag Rapporten omhandler hvordan trifenylmetanol blir syntetisert via Grignardreagenset som skal reageres

Detaljer

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET FULLSTENDIG

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET FULLSTENDIG Høgskolen i Østfold Avdeling for ingeniørfag EKSAMENSOPPGAVE Fag: IRK21015 Fysikalsk kjemi 10 studiepoeng Fagansvarlige: Ole Kr. Forrisdahl, Loan Che, Grupper: K2 Dato: 10.12.2015 Tid: 0900-1300 Antall

Detaljer

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET

Detaljer

Kjemisk likevekt. La oss bruke denne reaksjonen som et eksempel når vi belyser likevekt.

Kjemisk likevekt. La oss bruke denne reaksjonen som et eksempel når vi belyser likevekt. Kjemisk likevekt Dersom vi lar mol H-atomer reager med 1 mol O-atomer så vil vi få 1 mol H O molekyler (som vi har diskutert tidligere). H + 1 O 1 H O Denne reaksjonen er irreversibel, dvs reaksjonen er

Detaljer

TKP 4105 Separasjonsteknikk (kontinuasjonseksamen) 16. august 2005

TKP 4105 Separasjonsteknikk (kontinuasjonseksamen) 16. august 2005 TKP 4105 Separasjonsteknikk (kontinuasjonseksamen) 16. august 2005 Oppgave 1 (50%) Ventilasjonsluften fra et anlegg hvor aceton er brukt som løsningsmiddel inneholder 8 mol% aceton. Det meste av acetonen

Detaljer

Kinetic studies using UV-VIS spectroscopy Fenton reaction

Kinetic studies using UV-VIS spectroscopy Fenton reaction TKP/TKP Kinetic studies using UV-VIS spectroscopy Fenton reaction Øyvind Eraker, Kjetil Sonerud and Ove Øyås Group B Supervisor: Tom-Gøran Skog. oktober Innhold Spørsmål til veileder Teoretisk bakgrunn

Detaljer

BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL

BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL Labratorieøvelse i FYSIKK Høst 1994 Institutt for fysisk, NTH BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL av Ola Olsen En lett revidert og anonymisert versjon til eksempel for skriving av lab.-rapport

Detaljer

Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839. EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Onsdag 22. mai 2013 Tid: 09.00 13.

Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839. EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Onsdag 22. mai 2013 Tid: 09.00 13. Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Onsdag

Detaljer

EN LITEN INNFØRING I USIKKERHETSANALYSE

EN LITEN INNFØRING I USIKKERHETSANALYSE EN LITEN INNFØRING I USIKKERHETSANALYSE 1. Forskjellige typer feil: a) Definisjonsusikkerhet Eksempel: Tenk deg at du skal måle lengden av et noe ullent legeme, f.eks. en sau. Botemiddel: Legg vekt på

Detaljer

Sikkerhetsrisiko:lav. fare for øyeskade. HMS ruoner

Sikkerhetsrisiko:lav. fare for øyeskade. HMS ruoner Reaksjonskinetikk. jodklokka Risiko fare Oltak Sikkerhetsrisiko:lav fare for øyeskade HMS ruoner Figur 1 :risikovurdering Innledning Hastigheten til en kjemisk reaksjon avhenger av flere faktorer: Reaksjonsmekanisme,

Detaljer

Fasit til norsk finale

Fasit til norsk finale Kjemi OL Fasit til norsk finale Kvalifisering til den 47. Internasjonale Kjemiolympiaden 2015 i Baku, Aserbajdsjan Oppgave 1 1) D 2) A 3) C 4) B 5) B 6) B 7) C 8) D 9) A 10) C 11) C 12) A 13) C 14) A 15)

Detaljer

Øving 12 TKP

Øving 12 TKP Øving 12 724144 3.5.13 i Innhold Oppgave 1 1 a) Simulering 1 b) Estimering av størrelse på varmevekslere og separator og kompressoreffekt 1 Estimering av størrelse på varmeveksler E-101 1 Estimering av

Detaljer

(12) PATENT (19) NO (11) (13) B1 NORGE. (51) Int Cl. Patentstyret

(12) PATENT (19) NO (11) (13) B1 NORGE. (51) Int Cl. Patentstyret (12) PATENT (19) NO (11) 332779 (13) B1 NORGE (1) Int Cl. F24H 4/02 (2006.01) F24H 4/04 (2006.01) Patentstyret (21) Søknadsnr 20130 (86) Int.inng.dag og søknadsnr (22) Inng.dag 2011.02.24 (8) Videreføringsdag

Detaljer

Detaljert modellering av 'gas blowby'

Detaljert modellering av 'gas blowby' Bilag Innhold BILAG 1 FLYTSKJEMA... 57 B1.1 MODELL 1... 57 B1.2 MODELL2... 58 B1.3 MODELL 3... 59 B1.4 MODELL 4... 60 BILAG 2 DIMENSJONER PÅ UTSTYR... 61 B2.1 DIMENSJONER FOR MODELL 1-3... 61 B2.2 MODELL

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I TE 335 Termodynamikk VARIGHET: 9.00 14.00 (5 timer). DATO: 24/2 2001 TILLATTE HJELPEMIDLER: Lommekalkulator OPPGAVESETTET BESTÅR AV 2 oppgaver på 5 sider (inklusive tabeller) HØGSKOLEN I STAVANGER

Detaljer

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka:

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka: MOT30 Statistiske metoder, høsten 2006 Løsninger til regneøving nr. 8 (s. ) Oppgaver fra boka: Oppgave.5 (.3:5) ) Først om tolking av datautskriften. Sammendrag gir følgende informasjon: Multippel R =R,

Detaljer

Vannbølger. 1 Innledning. 2 Teori og metode. Sindre Alnæs, Øistein Søvik Institutt for fysikk, NTNU, N-7491 Trondheim, Norge. 12.

Vannbølger. 1 Innledning. 2 Teori og metode. Sindre Alnæs, Øistein Søvik Institutt for fysikk, NTNU, N-7491 Trondheim, Norge. 12. Vannbølger Sindre Alnæs, Øistein Søvik Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 12. april 2013 Sammendrag I dette eksperimentet ble overatespenningen til vann fastslått til (34,3 ± 7,1) mn/m,

Detaljer

Hvordan temperatur påvirker reaksjonshastigheten til knekklys

Hvordan temperatur påvirker reaksjonshastigheten til knekklys Hvordan temperatur påvirker reaksjonshastigheten til knekklys Av Ano og Nym Oppgave: Å undersøke hvordan lysintensiteten til knekklys påvirkes av temperatur ved å måle lysintensiteten for tre knekklys

Detaljer

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG Høgskolen i Østfold Avdeling for ingeniørfag EKSAMENSOPPGAVE Fag: IRK21014 Fysikalsk kjemi 10 studiepoeng Emneansvarlig: Ole Kr. Førrisdahl, mobil 974 873 78 Grupper: K2 Dato: 11.12.2014 Tid: 0900-1300

Detaljer

gass Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd A.Blekkan, tlf.:

gass Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd A.Blekkan, tlf.: NORGES TEKNISKE NTUR- VITENSKPELIGE UNIVERSITETET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI Side 1 av 5 Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd.Blekkan, tlf.: 73594157 EKSMEN

Detaljer

Løsningsforslag til øving 1

Løsningsforslag til øving 1 Oppgave 1 FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. åren 2013. a) i deriverer på begge sider og finner ( ) α p ( ) κt T T p Løsningsforslag til øving 1 = p = T ( 1 ( 1 ) = 1 T ) = 1 p

Detaljer

2. Termodynamikkens lover Termodynamikkens 1. lov Energiutveksling i form av varme og arbeid Trykk-volum arbeid

2. Termodynamikkens lover Termodynamikkens 1. lov Energiutveksling i form av varme og arbeid Trykk-volum arbeid Fysikk / Termodynamikk åren 2001 2. Termodynamikkens lover 2.1. Termodynamikkens 1. lov Termodynamikkens første lov kan formuleres å mange måter. En vanlig formulering er: Energien til et isolert system

Detaljer

BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL

BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL Labratorieøvelse i FYSIKK Høst 1994 Institutt for fysisk, NTH BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL av Ola Olsen En lett revidert og anonymisert versjon til eksempel for skriving av lab.-rapport

Detaljer

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær) Side 1 av 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk

Detaljer

Mal for rapportskriving i FYS2150

Mal for rapportskriving i FYS2150 Mal for rapportskriving i FYS2150 Ditt navn January 21, 2011 Abstract Dette dokumentet viser hovedtrekkene i hvordan vi ønsker at en rapport skal se ut. De aller viktigste punktene kommer i en sjekkliste

Detaljer

Experiment Norwegian (Norway) Hoppende frø - En modell for faseoverganger og ustabilitet (10 poeng)

Experiment Norwegian (Norway) Hoppende frø - En modell for faseoverganger og ustabilitet (10 poeng) Q2-1 Hoppende frø - En modell for faseoverganger og ustabilitet (10 poeng) Vennligst les de generelle instruksjonene som ligger i egen konvolutt, før du begynner på denne oppgaven. Introduksjon Faseoverganger

Detaljer

Statisk magnetfelt. Kristian Reed a, Erlend S. Syrdalen a

Statisk magnetfelt. Kristian Reed a, Erlend S. Syrdalen a Statisk magnetfelt Kristian Reed a, Erlend S. Syrdalen a a Institutt for fysikk, Norges Teknisk-Naturvitenskapelige Universitet, N-791 Trondheim, Norway. Sammendrag I det følgende eksperimentet ble en

Detaljer

Oppgave 1. Svaralternativer. Oppgave 2. Svaralternativer

Oppgave 1. Svaralternativer. Oppgave 2. Svaralternativer Oppgave 1 To biljardkuler med samme masse m kolliderer elastisk. Den ene kulen er blå og ligger i ro før kollisjonen, den andre er rød og beveger seg med en fart v 0,r = 5 m s mot sentrum av den blå kula

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to

Detaljer

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær) Side 1 av 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk

Detaljer

Preparativ oppgave Ammoniumjern(III)sulfatdodekahydrat NH 4 Fe(SO 4 ) 2 12 H 2 O. Audun Formo Buene Lab 1 Plass 17

Preparativ oppgave Ammoniumjern(III)sulfatdodekahydrat NH 4 Fe(SO 4 ) 2 12 H 2 O. Audun Formo Buene Lab 1 Plass 17 Preparativ oppgave Ammoniumjern(III)sulfatdodekahydrat NH 4 Fe(SO 4 12 H 2 O Audun Formo Buene Lab 1 Plass 17 27. september 2011 Innhold 1 Sammendrag 1 2 Innledning 2 3 Fremstillingsmetode 2 3.1 Fremgangsmåte

Detaljer

Oppgave 3 -Motstand, kondensator og spole

Oppgave 3 -Motstand, kondensator og spole Oppgave 3 -Motstand, kondensator og spole Ole Håvik Bjørkedal, Åge Johansen olehb@stud.ntnu.no, agej@stud.ntnu.no 18. november 2012 Sammendrag Rapporten omhandler hvordan grunnleggende kretselementer opptrer

Detaljer

Øvelse 4. Fredrik Thomassen. Rapport: Woods metall eller faseoverganger. Naturfag

Øvelse 4. Fredrik Thomassen. Rapport: Woods metall eller faseoverganger. Naturfag Rapport: Woods metall eller faseoverganger Webmaster ( 10.09.04 17:11 ) Videregående -> Naturfag -> Grunnkurs Karakater: 6 Referanse: Ø2.7 alt. 3, Studiebok s.71. Grunnkurs Naturfag Øvelse 4 Vi finner

Detaljer

Kraft på strømførende leder

Kraft på strømførende leder Kraft på strømførende leder Magnus Holter-Sørensen Dahle Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 29. mars 2011 Sammendrag Det er i dette forsøket gjort undersøkelser på hvorvidt magnetiske

Detaljer

Løsningsforslag Øving 4

Løsningsforslag Øving 4 Løsningsforslag Øving 4 TEP4100 Fluidmekanikk, Vår 2016 Oppgave 3-162 Løsning En halvsirkelformet tunnel skal bygges på bunnen av en innsjø. Vi ønsker å finne den totale hydrostatiske trykkraften som virker

Detaljer

EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 måndag 16. august 2010 Tid:

EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 måndag 16. august 2010 Tid: (Termo.2 16.8.2010) Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK

Detaljer

SAMMENDRAG AV FORELESNING I TERMODYNAMIKK ONSDAG 23.02.00

SAMMENDRAG AV FORELESNING I TERMODYNAMIKK ONSDAG 23.02.00 SAMMENDRAG A FORELESNING I TERMODYNAMIKK ONSDAG 3.0.00 Tema for forelesningen var termodynamikkens 1. hovedsetning. En konsekvens av denne loven er: Energien til et isolert system er konstant. Dette betyr

Detaljer

EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 måndag 15. august 2011 Tid: 09.00 13.00

EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 måndag 15. august 2011 Tid: 09.00 13.00 Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 Oppgåveteksten finst også på bokmål. EKSAMEN

Detaljer

Fuktig luft. Faseovergang under trippelpunktet < > 1/71

Fuktig luft. Faseovergang under trippelpunktet < > 1/71 Fuktig luft 1/71 Faseovergang under trippelpunktet Fuktig luft som blanding at to gasser 2/71 Luft betraktes som en ren komponent Vanndamp og luft oppfører seg som en blanding av nær ideelle gasser 3/71

Detaljer

Varmepumpe. Innledning. Teori. Tobias Grøsfjeld Espen Auseth Nilsen Peter Kristoersen. 1. desember Generell teori

Varmepumpe. Innledning. Teori. Tobias Grøsfjeld Espen Auseth Nilsen Peter Kristoersen. 1. desember Generell teori Varmepumpe Tobias Grøsfjeld Espen Auseth Nilsen Peter Kristoersen 1. desember 2012 Sammendrag Eektiviteten til en R-134a-varmpepumpe mellom to varmereservoar ble målt til å være mellom 3 og 4. Innledning

Detaljer

Elektriske kretser. Innledning

Elektriske kretser. Innledning Laboratorieøvelse 3 Fys1000 Elektriske kretser Innledning I denne oppgaven skal du måle elektriske størrelser som strøm, spenning og resistans. Du vil få trening i å bruke de sentrale begrepene, samtidig

Detaljer

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN

Detaljer

Kulde- og varmepumpetekniske prosesser Mandag 5. november 2012

Kulde- og varmepumpetekniske prosesser Mandag 5. november 2012 TEP 4115 Termodynamikk I Kulde- og varmepumpetekniske prosesser Mandag 5. november 2012 Trygve M. Eikevik Professor Norges teknisk-naturvitenskapelige universitet (NTNU) trygve.m.eikevik@ntnu.no http://folk.ntnu.no/tme

Detaljer

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 17. desember 2012 Tid: kl. 09:00-13:00

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 17. desember 2012 Tid: kl. 09:00-13:00 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 17. desember 2012 Tid: kl. 09:00-13:00

Detaljer

Løsningsforslag Øving 1

Løsningsforslag Øving 1 Løsningsforslag Øving 1 TEP4100 Fluidmekanikk, Vår 2016 Oppgave 1-59 Løsning Luftstrømmen gjennom en vindturbin er analysert. Basert på en dimensjonsanalyse er et uttrykk for massestrømmen gjennom turbinarealet

Detaljer

NA Dok. 26b Dokumentets tittel: Krav til kalibrering og kontroll av termometre for akkrediterte laboratorier.

NA Dok. 26b Dokumentets tittel: Krav til kalibrering og kontroll av termometre for akkrediterte laboratorier. Side: 1 av 6 Norsk akkreditering NA Dok. 26b: Krav til kalibrering og kontroll av termometre for Utarbeidet av: Saeed Behdad Godkjent av: ICL Versjon: 3.01 Mandatory/Krav Gjelder fra: 03.03.2008 Sidenr:

Detaljer

Fasit eksamen Fys1000 vår 2009

Fasit eksamen Fys1000 vår 2009 Fasit eksamen Fys1000 vår 2009 Oppgave 1 a) Klossen A er påvirka av tre krefter: 1) Tyngda m A g som peker loddrett nedover. Denne er det lurt å dekomponere i en komponent m A g sinθ langs skråplanet nedover

Detaljer

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab For grunnleggende bruk av Matlab vises til slides fra basisintroduksjon til Matlab som finnes på kursets hjemmeside. I denne øvingen skal vi analysere

Detaljer

Eksperiment 12; Oksidasjon av isoborneol til Kamfer

Eksperiment 12; Oksidasjon av isoborneol til Kamfer Eksperiment 12; Oksidasjon av isoborneol til Kamfer Åge Johansen 3. november 2012 Sammendrag Rapporten omhandler hvordan ketonet Kamfer blir dannet fra alkoholet isoborneol TMT4122- Åge Johansen - Side

Detaljer

a) Stempelet står i en posisjon som gjør at V 1 = 0.0200 m 3. Finn det totale spesikte volumet v 1 til inneholdet i tanken. Hva er temperaturen T 1?

a) Stempelet står i en posisjon som gjør at V 1 = 0.0200 m 3. Finn det totale spesikte volumet v 1 til inneholdet i tanken. Hva er temperaturen T 1? 00000 11111 00000 11111 00000 11111 DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I BIT 130 Termodynamikk VARIGHET: 900 1300 (4 timer). DATO: 22/5 2007 TILLATTE HJELPEMIDLER: Godkjent lommekalkulator

Detaljer

TFY4115 Fysikk. Emneoversyn: Mekanikk ( 50 %) Newtons lover Energi, bevegelsesmengde, kollisjoner Rotasjon, spinn Statisk likevekt Svingninger

TFY4115 Fysikk. Emneoversyn: Mekanikk ( 50 %) Newtons lover Energi, bevegelsesmengde, kollisjoner Rotasjon, spinn Statisk likevekt Svingninger TFY4115 Fysikk Emneoversyn: Mekanikk ( 50 %) Newtons lover Energi, bevegelsesmengde, kollisjoner Rotasjon, spinn Statisk likevekt Svingninger Termodynamikk ( 50 %): Def. Temperatur og varme. Termodynamikkens

Detaljer

EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator «Huskelapp» -A4 ark med skrift på begge sider Enkel norsk-engelsk/engelsk-norsk ordbok

EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator «Huskelapp» -A4 ark med skrift på begge sider Enkel norsk-engelsk/engelsk-norsk ordbok EKSAMENSOPPGAVE Eksamen i: KJE-1001 Introduksjon til kjemi og kjemisk biologi Dato: Tirsdag 15. desember 2015 Tid: Kl 09:00 15:00 Sted: Teorifagbygget, Hus 1, plan 2 og plan 3 Tillatte hjelpemidler: Kalkulator

Detaljer

Wheel Track Ringanalyse2016

Wheel Track Ringanalyse2016 Wheel Track Ringanalyse2016 Einar Aasprong Statens vegvesen Sentrallaboratoriet Trondheim Oslo 25.10.2016 Materialer Fire varianter (2 masser x 2 utførelser) Asfaltmasse Ab 11 70/100 Ab 11 PMB Utførelse

Detaljer

TFY4115 Fysikk. Emneoversyn: Mekanikk ( 50 %) Newtons lover Energi, bevegelsesmengde, kollisjoner Rotasjon, spinn Statisk likevekt Svingninger

TFY4115 Fysikk. Emneoversyn: Mekanikk ( 50 %) Newtons lover Energi, bevegelsesmengde, kollisjoner Rotasjon, spinn Statisk likevekt Svingninger TFY4115 Fysikk Emneoversyn: Mekanikk ( 50 %) Newtons lover Energi, bevegelsesmengde, kollisjoner Rotasjon, spinn Statisk likevekt Svingninger Termodynamikk ( 50 %): Def. Temperatur og varme. Termodynamikkens

Detaljer

2. Hva er formelen for den ioniske forbindelsen som dannes av kalsiumioner og nitrationer?

2. Hva er formelen for den ioniske forbindelsen som dannes av kalsiumioner og nitrationer? Side 1 av 6 Del 1 (50 p). Flervalgsoppgaver. Hvert riktig svar med riktig forklaring gir 2.5 poeng. Riktig svar uten forklaring eller med feil forklaring gir 1.5 poeng. Feil svar (med eller uten forklaring)

Detaljer

EKSAMENSOPPGAVE. Eksamen i: KJE-1005 Termodynamikk og kinetikk Dato: Torsdag 24. mai 2012 Tid: Kl 09:00 14:00 Sted: Åsgårdveien 9

EKSAMENSOPPGAVE. Eksamen i: KJE-1005 Termodynamikk og kinetikk Dato: Torsdag 24. mai 2012 Tid: Kl 09:00 14:00 Sted: Åsgårdveien 9 EKSAMENSOPPGAVE Eksamen i: KJE-1005 Termodynamikk og kinetikk Dato: Torsdag 24. mai 2012 Tid: Kl 09:00 14:00 Sted: Åsgårdveien 9 Tillatte hjelpemidler: Enkel lommeregner Millimeterpapir utleveres Oppgavesettet

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

Veiledningshefte for rapportskriving i TFY4102/TFY4104/TFY4106 TFY4115/TFY4120/TFY4125

Veiledningshefte for rapportskriving i TFY4102/TFY4104/TFY4106 TFY4115/TFY4120/TFY4125 Veiledningshefte for rapportskriving i TFY4102/TFY4104/TFY4106 TFY4115/TFY4120/TFY4125 Innhold 1 Generelle retningslinjer for rapportskriving 1 2 Rapportens struktur 2 2.1 Forord...................................

Detaljer

4 Viktige termodynamiske definisjoner ΔG = ΔH - T ΔS

4 Viktige termodynamiske definisjoner ΔG = ΔH - T ΔS 1 2 1 J = 0.239 cal = energi som trengs for å løfte 1 kg 1m mot en 1N kraft, eller 100 g 1meter mot tyngdekraften (10N) (ett eple en meter) Energioverføringene i biokjemiske reaksjoner følger de samme

Detaljer

Prosjekt i prosessteknikk Metanolproduksjon pa Tjeldbergodden

Prosjekt i prosessteknikk Metanolproduksjon pa Tjeldbergodden 8. april 2011 1 Prosjekt i prosessteknikk Metanolproduksjon pa Tjeldbergodden Brage Braathen Kjeldby Øystein Stenerud Skeie Anders Tyseng Leirpoll Kasper Johnsen Linnestad 8. april 2011 2 Innhold Introduksjon...

Detaljer

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa.

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa. Oppgave 1 Vi har et legeme som kun beveger seg langs x-aksen. Finn den gjennomsnittlige akselerasjonen når farten endres fra v 1 =4,0 m/s til v = 0,10 m/s i løpet av et tidsintervall Δ t = 1,7s. a) = -0,90

Detaljer

Figur 1: Skisse av den ene armen til en sentrifuge; kjerne i beholder. dp = ρω 2 Z 2 1. rdr; = 1 2 ρω2 (r 2 2 r2 1):

Figur 1: Skisse av den ene armen til en sentrifuge; kjerne i beholder. dp = ρω 2 Z 2 1. rdr; = 1 2 ρω2 (r 2 2 r2 1): Skisse til løsning Eksamen i Reservoarteknikk 3. september, 999 Oppgave Figur : Skisse av den ene armen til en sentrifuge; kjerne i beholder. a Akselerasjonen er ω r. Kraftbidraget df fra masse dm i volumelement

Detaljer

De viktigste formlene i KJ1042

De viktigste formlene i KJ1042 De viktigste formlene i KJ1042 Kollisjonstall Midlere fri veilengde Z AB = πr2 AB u A 2 u 2 B 1/2 N A N B 2πd 2 V 2 Z A = A u A N A V λ A = u A z A = V 2πd 2 A N A Ideell gasslov. Antar at gassmolekylene

Detaljer

1 J = cal = energi som trengs for å løfte 1 kg 1m mot en 1N kraft, eller 100 g 1meter mot tyngdekraften (10N) (ett eple en meter)

1 J = cal = energi som trengs for å løfte 1 kg 1m mot en 1N kraft, eller 100 g 1meter mot tyngdekraften (10N) (ett eple en meter) 1 1 J = 0.239 cal = energi som trengs for å løfte 1 kg 1m mot en 1N kraft, eller 100 g 1meter mot tyngdekraften (10N) (ett eple en meter) 2 Energioverføringene i biokjemiske reaksjoner følger de samme

Detaljer

Løsningsforslag Øving 8

Løsningsforslag Øving 8 Løsningsforslag Øving 8 TEP4100 Fluidmekanikk, Vår 016 Oppgave 5-78 Løsning En vannslange koblet til bunnen av en tank har en dyse som er rettet oppover. Trykket i slangen økes med en pumpe og høyden av

Detaljer

Utvalgte løsninger oppgavesamlingen

Utvalgte løsninger oppgavesamlingen P kapittel Modellering Utvalgte løsninger oppgavesamlingen 01 a Snitthøyden i 1910 lir 170,0 171, 4 170,7. I 1970 lir den 177,1 179, 4 178,3. Med som antall år etter 1900 og y som snitthøyden i entimeter

Detaljer

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bokmål Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Mandag 17. desember 2007, kl. 09-14. Oppgave 1 Gitt f(x) = x + x 2 1, 1 x 1. a) Finn og

Detaljer

1. UTTAKSPRØVE.

1. UTTAKSPRØVE. Kjemi OL 1. UTTAKSPRØVE til den 3. Nordiske kjemiolympiaden 2018 i Oslo og den 50. Internasjonale kjemiolympiaden 2018 i Bratislava, Slovakia & Praha, Tsjekkia Tidspunkt: En dag i ukene 40-42 Varighet:

Detaljer

Side 1 av 10 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK

Side 1 av 10 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Side 1 av 10 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.:

Detaljer