BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL

Størrelse: px
Begynne med side:

Download "BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL"

Transkript

1 Labratorieøvelse i FYSIKK Høst 1994 Institutt for fysisk, NTH BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL av Ola Olsen En lett revidert og anonymisert versjon til eksempel for skriving av lab.-rapport i TFY410/TFY4104/TFY4106/TFY4115/ TFY410/TFY415 Fysikk (150311)

2 - I - Forord Denne rapporten er skrevet som et ledd i Laboratorium i FYSIKK høsten Jeg vil takke samarbeidspartner Nils Nilsen for samarbeidet om utførelsen av selve oppgaven på laboratoriet. Jeg vil også takke forsker dr. ing. Hans Hansen for at han har skaffet til veie en laboratorie-oppgavetekst (om bruk av pendel til å måle g) fra 1978 som han selv hadde hatt da han var fysikkstudent. Denne oppgaveteksten har jeg hatt stor nytte av i arbeidet med denne rapporten. (Den er henvist til som referanse [1].) Jeg vil takke Hans Hansen også for den hjelp han personlig har gitt meg i arbeidet med denne rapporten. NTH 4/ Ola Olsen

3 - II - Sammendrag Vi har i dette arbeidet bestemt tyngdens akselerasjon g ved å gjøre 5 målinger av svingetiden for en pendel. Vi valgte opphengningsaksen slik at svingetiden ble imal og derfor kunne bestemmes med best mulig nøyaktighet. Resultatet vårt ble g = (9,83 0,00) m/s. Det er ikke innenfor usikkerhet i overensstemmelse med den verdien vi har funnet i referanse [1]. Vi har ikke funnet forklaringen på uoverensstemmelsen.

4 - III - Innholdsfortegnelse Forord...s. I Sammendrag...s. II Innholdsfortegnelse...s. III 1. Innledning...s. 1. Teoretisk grunnlag...s. 3. Eksperimentell framgangsmåte og oppgitte data...s Resultater og diskusjon...s Måling av svingetid T som funksjon av h...s Beskrivelse av tyngdens akselrasjon g basert på måling av T...s Konklusjon...s Litteraturhenvisninger...s. 1 Vedlegg 1...s. 13

5 Innledning I laboratorieoppgaven som denne rapporten omhandler, har vi på to forskjellige måter bestemt tyngdens akselerasjon g, begge ved å måle svingetider for en pendel. Jeg har valgt å legge hovedarbeidet i rapporten på den metoden jeg mener er mest nøyaktig, dvs den som går ut på å måle svingetiden for en slik opphengningsakse at svingetiden blir imal. Der har jeg drøftet usikkerhet nøye. I den andre metoden (som omtales først i kapittel 4) der g bestemmes ved å måle svingetid for forskjellige opphengningsakser, har jeg helt utelatt usikkerhetsdrøfting.

6 - -. Teoretisk grunnlag I læreboka i FYSIKK1 [] er det vist at svingetida T for en fysisk pendel er gitt ved T 1/ ( I A / mgh), (.1) der m er pendelens masse, g er tyngdens akselrasjon, h er avstanden fra pendelens tyngdepunkt til svingaksen A og I A er treghetsmomentet til pendelen om svingaksen A, som vist i Figur 1. En forutsetning for (.1) er at utslagene er tilstrekkelig små. Figur 1. Skisse av pendel med opphengningspunkt h fra tyngdepunktet. Fra samme lærebok i et annet kapittel [3] har vi A 0, (.) I I mh der I 0 er treghetsmomentet om tyngdepunktet. Fra referanse [3] har vi også under forutsetning av at tykkelsen av pendelen kan neglisjeres: der l er pendelens lengde og b er dens bredde. Treghetsradien defineres ved 0 /1 og for dette tilfellet får vi da for treghetsradien r : I m l b, (.3) I0 mr, (.4)

7 Lign. (.) og (.4) innsatt i lign. (.1) gir: T r l b /1. (.5) / I0 mh / mgh, (.6) h r h g som er i samsvar med en unummerert ligning i oppgaveteksten [4] på s.. Merk at r i lign. (.6) er gitt ved lign. (.5). Ligning (.6) kan omskrives til T 1/ 1/ g r h rh / h, (.7) som viser at T har et imum for h nær eller lik r. I oppgaveteksten [4] er det vist ved derivasjon at dette imum er for h r. For den imale svingetiden T får vi da fra lign. (.7): T r/ g, (.8) som altså er gyldig for h r. Vi merker oss at T altså har et imum for h r, og at derfor en gitt usikkerhet i h her fører til st mulig usikkerhet i T. Skal en derfor bestemme g ved å måle T bør en velge h r. Vi kan omforme ligning (.6) til 4 / g r 4 / g ht h. (.9) Sammenligner vi dette uttrykket med det generelle utrykket for en rett linje: y y0 kx, (.10) ser vi at vi vi kan finne vinkelkoeffisient og skjæringspunkt med y aksen ved å fremstille verdier for ht som funksjon av h og tilpasse til en rett linje: Ligningene (.11) og (.1) kan omformes til 4 / g k (.11) 4 / g r y0 (.1) og r 4 g (.13) k yg 0 0. (.14) y k

8 - 4 - Både tyngdens akselerasjon g og treghetsradien r for pendelen kan altså finnes på denne måten. Mitt fysiske skjønn tyder imidlertid på at vi får bedre nøyaktighet i bestemmelse av g ved å bruke vår tid på beregning av g ut fra måling av T i ligning (.8) og verdi for r beregnet fra oppgitte data for l og b. Omforg av ligning (.8) for beregning av g fra målte verdier av T og r gir g. (.15) 8 r T

9 Eksperimentell framgangsmåte og oppgitte data Vi målte svingetiden for pendelen ved hjelp av en lysstråle, fotodiode og en frekvensteller som anvist i oppgaveteksten [4]. En skisse av oppsettet hentet fra oppgaveteksten er vist i Figur nedenfor. Frekvensteller Fotodiode Motstand Lyskilde Fysisk pendel Spenningskilde Jord Figur. Skisse av oppsett for måling av svingetid for fysisk pendel. Avstanden h mellom opphengningsaksen A og tyngdepunktet ble målt ved hjelp av en linjal. Usikkerhet Jeg har valgt å anta at systematisk usikkerhet i T er neglisjerbar og at jeg derfor kan regne usikkerheten i T som kun den statistiske vi har funnet ved gjentatte målinger. Usikkerheten i h anslår jeg er 0,5 mm. Oppgitte data Følgende data var oppgitt i oppgaveteksten: Innsatt i ligning (.5) gir dette Vi kaller usikkerheten i r for b l: Lengde: l Bredde: b 0,005 r, i l for 100,00 0, 0 cm,540 cm. r 8,877 cm. l og i b for b. Vi har da siden b l og r r l l 0, (3.1) og r r r 0,006 cm. (3.) r

10 - 6 - For r med usikkerhet har vi da r 8,877 0,006 cm, (3.3) som innenfor usikkerhet ikke er i overensstemmelse med den tilnærmelsen som ble brukt i oppgaveteksten [4] på s..

11 Resultater og diskusjon 4.1 Måling av svingetid T som funksjon av h Vi målte T som funksjon av h (avstand mellom tyngdepunkt og opphengningsakse). Vi tok 5 målinger for hver verdi av h og beregnet middelverdi for T for hver verdi av h. Vi beregnet h og ht for hver middelverdi. Alle disse resultatene er gitt i tabellform som Vedlegg 1. I Figur 3 nedenfor har vi vist T som funksjon av h. I Figur 4 har vi framstilt funksjon av h og tilpasset en rett linje med resutat: ht som y 0, 0404x 33,309. (4.1) Ved hjelp av ligning (.13) og (.14) får vi da for henholdsvis tyngdens akselerasjon g og treghetsradien r : og g 4 / k 4 / 0,0404cm/s 9,77m/s (4.) r y / k 33,31/ 0,0404 cm 8,7 cm. (4.3) 0 Vi har ikke beregnet usikkerhet for y 0 og k og kan derfor heller ikke beregne usikkerhet for g og r. Vi merker oss likevel at avviket for r fra det beregnet i kapittel 3 er ca. 0,5 %. For g vil vi komme med en usikkerhetsbetraktning i kap. 4. der vi har målt g mer nøyaktig Svingetiden T [s] h [cm] Figur 3. Svingetiden T som funksjon av h.

12 - 8 - ht [cm s ] y = x h [cm ] Figur 4. ht framstilt som funksjon av h. 4. Bestemmelse av tyngdens akselerasjon g basert på måling av T Vi gjorde 5 målinger av svingetiden T ved den innstilling av h som gjør at T T, dvs. h r. Det betyr at h var innstilt lik (8,88 ± 0,05) cm. Middelverdien for alle de 5 målingene ble: der s er usikkerheten for middelverdien. Dette gir for g ved lign. (.15) og verdi for r fra (3.3): T 1,580 0,00004 s, (4.4) g 8 r/ T 9,833 m/s. (4.5) For usikkerheten i g har vi fra s. 7 i oppgaveteksten [4] (som kan utledes fra ligning på s. 5 i referanse [5]): r T 4 g g r T, (4.6) som gir med innsatte verdier fra (3.1) og (4.4): g g , , 5. (4.7)

13 - 9 - Resultatet (4.7) vil si at det er usikkerheten i r som doerer fullstendig usikkerheten i g og at statistisk usikkerhet i T altså er neglisjerbar. For g med usikkerhet har vi da: 9, 83 0,00 m/s g. (4.8) Dette resultatet stemmer ikke innenfor usikkerheten med den verdien jeg har fra referanse [1] for målinger i kjelleren på Fysisk institutt, NTH i Der fant en som et ledd i et internasjonalt måleprogram: 9, , m/s g. (4.9) Jeg har ikke vært i stand til å finne ut hva denne uoverensstemmelsen skyldes. Det jeg vet er at den ikke kan skyldes at vi har vært på et litt høyere nivå enn kjelleren på Fysisk institutt (dvs kjelleren på gamle fysikk ) fordi det skulle påvirke g i motsatt retning. Dersom det skal skyldes tidsmålingen må denne ha en systematisk feil som gjør at som ved ligning (4.6) gir: 3 g / g 9,83 9,8 / 9,8 1 10, (4.10) 3 T / T (4.11) Det vi si at den systematisk feilen i T er: T systematisk 1, 5 s s 1 10 s. Jeg kjenner ikke nok til apparaturen til å kunne bedømme om dette er rimelig systematisk feil for det oppsettet vi har nyttet, men jeg hadde trodd en slik tidsmåling kunne gjøres mer nøyaktig. (Her burde jeg ha sjekket databladet for periodetelleren, men det har jeg dessverre ikke fått gjort innen fristen for innlevering.) Jeg har kommet på to mulige feilkilder til (dvs. jeg har funnet dem i referanse [1]). Den første er en eventuell feilstilling av h r, men jeg er overbevist om at feilstillingen har vært maksimalt 1 mm. Det gir i følge referanse [6] en relativ feil i svingetiden T gitt ved: T feilstilling T Thr h Thr 1h T hr 4 r 4 89 Denne feilen er ca en faktor 300 dre enn den statistiske usikkerheten og altså helt uvesentlig. Den andre mulige feilkilden er at pendelutslaget har vært så stort at lign. (.8) og dermed lign. (.15) ikke er gyldig. Fra referanse [1] har vi følgende første-ordens korreksjon for stort utslag av pendelen: Tstort T x T 4( l/ r), (4.1)

14 der x er horisontalt utsving av nedre ende av pendelen. Jeg merket meg dessverre ikke under forsøket hvor stort utslag pendelen hadde, men vil regne ut hvor stor x må være for å forklare det avviket i g vi har målt. Ved hjelp av samme argumentasjon som den som ga lign. (4.11) har vi: som gir Tstort T x T 4 l / r l r, (4.13) 3 x / 7 cm. (4.14) Jeg er overbevist om at utslaget var vesentlig dre enn 7 cm. Jeg mener å huske at pendelen skygget for fotodioden når den hang i likevektsposisjon. Dvs at utslaget maksimalt har vært noe dre enn 3 3, 75 cm b. (4.15) Jeg vil se hvilken korreksjon et utslag på 3,5 cm (som jeg mener var det maksimale) fører til for T og g. Fra lign. (4.13) har vi: Tstort T x 3,5 T 4 l/ r 4 78,9 (4.16) som gir Ved hjelp av lign. (.15) gir dette følgende verdi for g : Med usikkerhet blir det Tstort T T 3,5 / 478,9 1,8880 s 1 0,0001. (4.17) 1,5307 s g 9,889 m/s. (4.18) 9, 89 0,00 m/s g, (4.19) som heller ikke stemmer med verdien for g fra referanse [1]. Jeg har imidlertid fått korrigert for ca 30 % av aviket med det jeg tror har vært maksimalt utslag. Jeg må altså konkludere dette avsnittet med at jeg ikke har funnet noen feilkilde som kan forklare hele avviket mellom vår målte verdi for g og den fra referanse [1], men jeg har funnet en feilkilde som alene kanskje kan forklare 30 % av avviket. Nye målinger der en kontrollerte at utslaget x var de enn cm og dermed uvesentlig innenfor den usikkerheten r fører til, burde vært foretatt, men det rekker jeg dessverre ikke innenfor leveringsfristen.

15 De andre usikkerhetene jeg har drøftet i dette avsnittet, er hver for seg og også til sammen uvesentlige (bortsett fra r/ r som er omregnet til usikkerhet for g og tatt med når g er angitt).

16 Konklusjon Vi har i dette arbeidet gjort målinger av tyngeaksellerasjonen på to forskjellige måter. Vi bestemte først tyngdens akselerasjon g og treghetsradien r for en pendel ved å måle svingetiden T som funskjon av avstanden h fra pendelens tyngdepunkt til opphengningsaksen. Vi fikk verdier både for r og g som hadde ca 0,5 % avvik fra verdier målt på mer nøyaktig vis. Videre gjorde vi 5 målinger av svingetiden T der T hadde imum og brukte middelverdien av disse til å bestemme g med usikkerhet. Vi fant følgende verdi for g : g 9, 83 0,00 m/s som avviker utover sikkerhet fra verdien fra referanse [1]: 9, , m/s g. Vi forsøkte å finne en årsak til dette avviket uten å lykkes. Konklusjonen for dette punktet som etter mening er det mest interessante, er at forsøket burde gjentas og at vi da burde være mer observante på mulige feilkilder enn vi var da forsøket ble utført. (Jeg mener ikke med dette at jeg ønsker å bli pålagt å gjøre dette på nytt.) Jeg er imidlertid ikke sikker på at vi ville lykkes med å finne en forklaring da heller fordi det avviket vi har målt fra verdien gitt i referanse [1], kun er på ca 1. Jeg vil også legge til at jeg vet tyngdens akselerasjon på et gitt sted forandres litt med tiden, men jeg ville bli svært overrasket om det skulle være så meget som 1 siden 1964, så jeg tror avviket skyldes et eller annet ved våre målinger.

17 Litteraturhenvisninger [1] Magne Kringlebotn: Fysisk Pendel, Oppgave 401. (Laboratorium i generell fysikk, NTH, revidert 1973/1978). [] P. M. Fishbane, S. Gasiorowicz, S. T. Thornton: Physics For Scientists And Engineers, (Prentice Hall, New Jersey 1990), kapittel [3] P. M. Fishbane et al., op. cit., kapittel 9-4. [4] Ukjent forfatter: Laboratorieøvelse i fysikk, bestemmelse av tyngdens akselerasjon ved fysisk pendel. (Insitutt for fysikk, NTNU). [5] Ukjent forfatter: Måleusikkerhet og Usikkerhetsberegning. (Institutt for fysikk, NTNU). [6] Forsker dr. ing. Hans Hansen, personlig kommunikasjon 1/

18 Vedlegg 1. Resultater for svingetid T som funksjon av h for 5 måleserier M1-M5. h [cm] T [s] M1 M M3 M4 M5 < T > [s] St.avvik [s] h [cm ] h< T > [cm s ] 10 1, , , , , ,9309 9, , , , , , , , , , , , , , , ,573830, , , , , , , , , , , , , , , , , , , , , , , ,53714, ,6961

BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL

BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL Labratorieøvelse i FYSIKK Høst 1994 Institutt for fysisk, NTH BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL av Ola Olsen En lett revidert og anonymisert versjon til eksempel for skriving av lab.-rapport

Detaljer

Veiledningshefte for rapportskriving i TFY4102/TFY4104/TFY4106 TFY4115/TFY4120/TFY4125

Veiledningshefte for rapportskriving i TFY4102/TFY4104/TFY4106 TFY4115/TFY4120/TFY4125 Veiledningshefte for rapportskriving i TFY4102/TFY4104/TFY4106 TFY4115/TFY4120/TFY4125 Innhold 1 Generelle retningslinjer for rapportskriving 1 2 Rapportens struktur 2 2.1 Forord...................................

Detaljer

Bestemmelse av skjærmodulen til stål

Bestemmelse av skjærmodulen til stål Bestemmelse av skjærmodulen til stål Rune Strandberg Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 9. oktober 2007 Sammendrag Skjærmodulen til stål har blitt bestemt ved en statisk og en dynamisk

Detaljer

Mal for rapportskriving i FYS2150

Mal for rapportskriving i FYS2150 Mal for rapportskriving i FYS2150 Ditt navn January 21, 2011 Abstract Dette dokumentet viser hovedtrekkene i hvordan vi ønsker at en rapport skal se ut. De aller viktigste punktene kommer i en sjekkliste

Detaljer

Kan vi forutse en pendels bevegelse, før vi har satt den i sving?

Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Gjør dette hjemme 6 #8 Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Skrevet av: Kristian Sørnes Dette eksperimentet ser på hvordan man finner en matematisk formel fra et eksperiment,

Detaljer

Bestemmelse av tyngdens akselerasjon med fysisk pendel

Bestemmelse av tyngdens akselerasjon med fysisk pendel Bestemmelse av tyngdens akselerasjon med fysisk pendel Troels Arnfred Bojesen Institutt for fysikk, NTNU, NO-7491 Trondheim 19. oktober 2011 Sammendrag En enkel og relativt presis metode til å finne tyngdeakselerasjonen,

Detaljer

Bølgeegenskaper til lys

Bølgeegenskaper til lys Bølgeegenskaper til lys Alexander Asplin og Einar Baumann 30. oktober 2012 1 Forord Denne rapporten er skrevet som et ledd i lab-delen av TFY4120. Forsøket ble utført under oppsyn av vitenskapelig assistent

Detaljer

2. Teoretisk grunnlag

2. Teoretisk grunnlag 1 1. Innledning Denne rapporten baserer seg på laboratorieforsøket «Bølgeegenskaper i Lys» der vi, som tittelen tilsier, har sett på bølgeegenskaper i lys. Dette ble gjort ved hjelp av en laser og forskjellige

Detaljer

EN LITEN INNFØRING I USIKKERHETSANALYSE

EN LITEN INNFØRING I USIKKERHETSANALYSE EN LITEN INNFØRING I USIKKERHETSANALYSE 1. Forskjellige typer feil: a) Definisjonsusikkerhet Eksempel: Tenk deg at du skal måle lengden av et noe ullent legeme, f.eks. en sau. Botemiddel: Legg vekt på

Detaljer

side 1 av 8 Fysikk 3FY (Alf Dypbukt) Rune, Jon Vegard, Øystein, Erlend, Marthe, Hallvard, Anne Berit, Lisbeth

side 1 av 8 Fysikk 3FY (Alf Dypbukt) Rune, Jon Vegard, Øystein, Erlend, Marthe, Hallvard, Anne Berit, Lisbeth side 1 av 8 Fysikk 3FY (Alf Dypbukt) Racerbilkjøring Mål: Regne ut alt vi kan ut i fra de målingene vi tar. Innledning: I denne rapporten har vi gjort diverse utregninger, basert på tall vi har fra et

Detaljer

ELEVARK. ...om å tømme en beholder for vann. Innledning. Utarbeidet av Skolelaboratoriet ved NTNU - NKR

ELEVARK. ...om å tømme en beholder for vann. Innledning. Utarbeidet av Skolelaboratoriet ved NTNU - NKR ELEVARK...om å tømme en beholder for vann Innledning Problemstilling: Vi har et sylindrisk beger med et sirkulært hull nær bunnen. Vi ønsker å bestemme sammenhengen mellom væskehøyden som funksjon av tiden

Detaljer

Vannbølger. 1 Innledning. 2 Teori og metode. Sindre Alnæs, Øistein Søvik Institutt for fysikk, NTNU, N-7491 Trondheim, Norge. 12.

Vannbølger. 1 Innledning. 2 Teori og metode. Sindre Alnæs, Øistein Søvik Institutt for fysikk, NTNU, N-7491 Trondheim, Norge. 12. Vannbølger Sindre Alnæs, Øistein Søvik Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 12. april 2013 Sammendrag I dette eksperimentet ble overatespenningen til vann fastslått til (34,3 ± 7,1) mn/m,

Detaljer

5.201 Galilei på øret

5.201 Galilei på øret RST 1 5 Bevegelse 20 5.201 Galilei på øret undersøke bevegelsen til en tung sylinder ved hjelp av hørselen Eksperimenter Fure Startstrek Til dette forsøket trenger du to høvlede bordbiter som er over en

Detaljer

EKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002 GENERELL FYSIKK II Onsdag 8. desember 2004 kl Bokmål. K. Rottmann: Matematisk formelsamling

EKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002 GENERELL FYSIKK II Onsdag 8. desember 2004 kl Bokmål. K. Rottmann: Matematisk formelsamling Side 1 av 11 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Førsteamanuensis Knut Arne Strand Telefon: 73 59 34 61 EKSAMEN FAG TFY416 BØLGEFYSIKK OG

Detaljer

KJ1042 Termodynamikk laboratoriekurs Oppgave 1. Partielle molare volum

KJ1042 Termodynamikk laboratoriekurs Oppgave 1. Partielle molare volum KJ1042 Termodynamikk laboratoriekurs Oppgave 1. Partielle molare volum Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 21 Utført 14. februar 2012 Innhold 1 Innledning

Detaljer

Statisk magnetfelt. Kristian Reed a, Erlend S. Syrdalen a

Statisk magnetfelt. Kristian Reed a, Erlend S. Syrdalen a Statisk magnetfelt Kristian Reed a, Erlend S. Syrdalen a a Institutt for fysikk, Norges Teknisk-Naturvitenskapelige Universitet, N-791 Trondheim, Norway. Sammendrag I det følgende eksperimentet ble en

Detaljer

Øving 2. a) I forelesningene har vi sett at det mekaniske svingesystemet i figur A ovenfor, med F(t) = F 0 cosωt, oppfyller bevegelsesligningen

Øving 2. a) I forelesningene har vi sett at det mekaniske svingesystemet i figur A ovenfor, med F(t) = F 0 cosωt, oppfyller bevegelsesligningen FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2012. Veiledning: Mandag-Tirsdag 3-4. september. Innleveringsfrist: Mandag 10. september kl 12:00. Øving 2 A k b m F B V ~ q C q L R I a)

Detaljer

Kontroll av bremser på tyngre kjøretøy ved teknisk utekontroll

Kontroll av bremser på tyngre kjøretøy ved teknisk utekontroll Sammendrag: TØI-rapport 701/2004 Forfatter(e): Per G Karlsen Oslo 2004, 52 sider Kontroll av bremser på tyngre kjøretøy ved teknisk utekontroll Med hensyn på trafikksikkerhet er det viktig at kjøretøy

Detaljer

En del utregninger/betraktninger fra lab 8:

En del utregninger/betraktninger fra lab 8: En del utregninger/betraktninger fra lab 8: Fra deloppgave med ukjent kondensator: Figur 1: Krets med ukjent kondensator og R=2,2 kω a) Skal vise at når man stiller vinkelfrekvensen ω på spenningskilden

Detaljer

Realstart og Teknostart ROTASJONSFYSIKK. PROSJEKTOPPGAVE for BFY, MLREAL og MTFYMA

Realstart og Teknostart ROTASJONSFYSIKK. PROSJEKTOPPGAVE for BFY, MLREAL og MTFYMA FY1001 og TFY4145 Mekanisk fysikk Institutt for fysikk, august 2015 Realstart og Teknostart ROTASJONSFYSIKK PROSJEKTOPPGAVE for BFY, MLREAL og MTFYMA Mål Dere skal i denne prosjektoppgaven utforske egenskaper

Detaljer

KJ1042 Termodynamikk laboratoriekurs Oppgave 3. Fordampningsentalpi av ren væske Aceton

KJ1042 Termodynamikk laboratoriekurs Oppgave 3. Fordampningsentalpi av ren væske Aceton KJ1042 Termodynamikk laboratoriekurs Oppgave 3. Fordampningsentalpi av ren væske Aceton Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 21 Lab C2-107 Utført 21. februar

Detaljer

Impuls, bevegelsesmengde, energi. Bevaringslover.

Impuls, bevegelsesmengde, energi. Bevaringslover. Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde

Detaljer

RAPPORTSKRIVING FOR ELEKTROSTUDENTER

RAPPORTSKRIVING FOR ELEKTROSTUDENTER RAPPORTSKRIVING FOR ELEKTROSTUDENTER FORORD Dette notatet er skrevet av Åge T. Johansen, Høgskolen i Østfold. Det er skrevet for å gi studenter en veiledning i rapportskriving. Informasjonen er ment å

Detaljer

TFY4108. Trening i eksperimentelt arbeid Demonstrere fysiske fenomener Opplæring i usikkerhetsanalyse

TFY4108. Trening i eksperimentelt arbeid Demonstrere fysiske fenomener Opplæring i usikkerhetsanalyse !1 TFY4108 Trening i eksperimentelt arbeid Demonstrere fysiske fenomener Opplæring i usikkerhetsanalyse Fysikk lab Fysikk lab Elektron og ionelaboratorium fs-laserspektroskopilaboratorium Lysspredningslaboratium

Detaljer

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)

Detaljer

Laboratorieoppgave 3: Fordampingsentalpi til sykloheksan

Laboratorieoppgave 3: Fordampingsentalpi til sykloheksan Laboratorieoppgave 3: Fordampingsentalpi til sykloheksan Åge Johansen agej@stud.ntnu.no Ole Håvik Bjørkedal olehb@stud.ntnu.no Gruppe 60 17. mars 2013 Sammendrag Rapporten omhandler hvordan fordampningsentalpien

Detaljer

Oppgave 3 -Motstand, kondensator og spole

Oppgave 3 -Motstand, kondensator og spole Oppgave 3 -Motstand, kondensator og spole Ole Håvik Bjørkedal, Åge Johansen olehb@stud.ntnu.no, agej@stud.ntnu.no 18. november 2012 Sammendrag Rapporten omhandler hvordan grunnleggende kretselementer opptrer

Detaljer

Læreplanen: Ønsker vi oss forandringer og eventuelt hvilke? Innspill v/ Tor Jan Aarstad

Læreplanen: Ønsker vi oss forandringer og eventuelt hvilke? Innspill v/ Tor Jan Aarstad Læreplanen: Ønsker vi oss forandringer og eventuelt hvilke? Innspill v/ Tor Jan Aarstad ToF X, ToF 1, ToF 2 ToF X ToF 1 Hvor skal vi legge listen? ToF 2 Elevenes forventninger og lærerens ønsker Hvordan

Detaljer

Angivelse av usikkerhet i måleinstrumenter og beregning av total usikkerhet ved målinger.

Angivelse av usikkerhet i måleinstrumenter og beregning av total usikkerhet ved målinger. Vedlegg A Usikkerhet ved målinger. Stikkord: Målefeil, absolutt usikkerhet, relativ usikkerhet, følsomhet og total usikkerhet. Angivelse av usikkerhet i måleinstrumenter og beregning av total usikkerhet

Detaljer

Obligatorisk oppgave i fysikk våren 2002

Obligatorisk oppgave i fysikk våren 2002 Obligatorisk oppgave i fysikk våren 2002 Krav til godkjenning av oppgaven: Hovedoppgave 1 kinematikk Hovedoppgave 2 dynamikk Hovedoppgave 3 konserveringslovene Hovedoppgave 4 rotasjonsbevegelse og svigninger

Detaljer

FORSØK I OPTIKK. Forsøk 1: Bestemmelse av brytningsindeks

FORSØK I OPTIKK. Forsøk 1: Bestemmelse av brytningsindeks FORSØK I OPTIKK Forsøk 1: Bestemmelse av brytningsindeks Hensikt I dette forsøket skal brytningsindeksen bestemmes for en sylindrisk linse ut fra måling av brytningsvinkler og bruk av Snells lov. Teori

Detaljer

EKSAMEN RF3100 Matematikk og fysikk

EKSAMEN RF3100 Matematikk og fysikk Side 1 av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF3100 Matematikk og fysikk Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 4.juni 2015 Emneansvarlig: Lars Sydnes

Detaljer

Vannbølger. 3. Finn gruppehastigheten (u), ved bruk av EXCEL, som funksjon av bølgetallet k ( u = 2π ). Framstille u i samme diagram som c.

Vannbølger. 3. Finn gruppehastigheten (u), ved bruk av EXCEL, som funksjon av bølgetallet k ( u = 2π ). Framstille u i samme diagram som c. Institutt for fysikk, NTNU FY12 Bølgefysikk, høst 27 Laboratorieøvelse 2 Vannbølger Oppgave A: for harmoniske vannbølger 1. Mål bølgelengden () som funksjon av frekvensen (f). 2. Beregn fasehastigheten

Detaljer

Lengde, hastighet og aksellerasjon

Lengde, hastighet og aksellerasjon Lengde, hastighet og aksellerasjon Dag Kristian Dysthe and Anja Røyne Fysisk institutt, UiO (Dated: February 8, 2017) (Sist endret February 8, 2017) Målet er å få et forhold til sammenhengen mellom lengde,

Detaljer

LABORATORIERAPPORT. RL- og RC-kretser. Kristian Garberg Skjerve

LABORATORIERAPPORT. RL- og RC-kretser. Kristian Garberg Skjerve LABORATORIERAPPORT RL- og RC-kretser AV Kristian Garberg Skjerve Sammendrag Oppgavens hensikt er å studere pulsrespons for RL- og RC-kretser, samt studere tidskonstanten, τ, i RC- og RL-kretser. Det er

Detaljer

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk

Detaljer

ELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø 18.01.02.

ELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø 18.01.02. ELEKTRISITET - Sammenhengen mellom spenning, strøm og resistans Lene Dypvik NN Øyvind Nilsen Naturfag 1 Høgskolen i Bodø 18.01.02.2008 Revidert av Lene, Øyvind og NN Innledning Dette forsøket handler om

Detaljer

EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK

EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK LØSNINGSFORSLAG (5 sider): EKSAMEN I TFY445 OG FY00 MEKANISK FYSIKK Fredag 8. desember 2009 kl. 0900-00 Oppgave. Tolv flervalgsspørsmål

Detaljer

FORSØK MED ROTERENDE SYSTEMER

FORSØK MED ROTERENDE SYSTEMER FORSØK MED ROTERENDE SYSTEMER Laboratorieøvelsen består av 3 forsøk. Forsøk 1: Bestemmelse av treghetsmomentet til roterende punktmasser Hensikt Hensikt med dette forsøket er å bestemme treghetsmomentet

Detaljer

MÅLING AV TYNGDEAKSELERASJON

MÅLING AV TYNGDEAKSELERASJON 1. 9. 2009 FORSØK I NATURFAG HØGSKOLEN I BODØ MÅLING AV TYNGDEAKSELERASJON Foto: Mari Bjørnevik Mari Bjørnevik, Marianne Tymi Gabrielsen og Marianne Eidissen Hansen 1 Innledning Hensikten med forsøket

Detaljer

Veiledning til rapportskriving for elektrostudenter

Veiledning til rapportskriving for elektrostudenter Veiledning til rapportskriving for elektrostudenter 1. Forord Dette notatet er skrevet for å gi studentene veiledningen i rapportskriving på Elektroseksjonen for typiske laboratorierapporter. Notatet er

Detaljer

Fysisk pendel Bestemmelse av tyngdens akselerasjon

Fysisk pendel Bestemmelse av tyngdens akselerasjon Institutt for fysikk, NTNU FY100 Bølefysikk, høst 007 Laboratorieøvelse 3 Fysisk pendel Bestemmelse av tyndens akselerasjon Hensikt Hensikten med denne øvelsen er å bli kjent med den fysiske pendelen som

Detaljer

Newtons (og hele universets...) lover

Newtons (og hele universets...) lover Newtons (og hele universets...) lover Kommentarer og referanseoppgaver (2.25, 2.126, 2.136, 2.140, 2.141, B2.7) Newtons 4 lover: (Gravitasjonsloven og Newtons første, andre og tredje lov.) GL: N I: N III:

Detaljer

NA Dok 26C Krav til kalibrering og kontroll av volumetrisk utstyr for akkrediterte prøvingslaboratorier

NA Dok 26C Krav til kalibrering og kontroll av volumetrisk utstyr for akkrediterte prøvingslaboratorier Norsk akkreditering NA Dok 26C: Krav til kalibrering og kontroll av volumetrisk Mandatory/Krav Utarbeidet av: Saeed Behdad Godkjent av: Morten Bjørgen Versjon: 1.01 Gjelder fra: 01.03.2012 Sidenr: 1 av

Detaljer

Løsningsforslag til midtsemesterprøve i fag MA1101 Grunnkurs i analyse 1 Bokmål Fredag 10. oktober 2008 Kl

Løsningsforslag til midtsemesterprøve i fag MA1101 Grunnkurs i analyse 1 Bokmål Fredag 10. oktober 2008 Kl Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Faglig kontakt: Heidi Dahl Telefon: 735 98141 Løsningsforslag til midtsemesterprøve i fag MA1101 Grunnkurs i analyse

Detaljer

Bestemmelse av Newtons gravitasjonskonstant med torsjonsvekt

Bestemmelse av Newtons gravitasjonskonstant med torsjonsvekt Bestemmelse av Newtons gravitasjonskonstant med torsjonsvekt K. Reed a, E. S. Syrdalen a a Institutt for fysikk, Norges Teknisk-Naturvitenskapelige Universitet, N-7491 Trondheim, Norway. Abstract Cavendisheksperimentet

Detaljer

ERGO Fysikk. 3FY. AA (Reform 94) - 8. Relativitetsteori - 8.4 Tid - Fagstoff. Innholdsfortegnelse

ERGO Fysikk. 3FY. AA (Reform 94) - 8. Relativitetsteori - 8.4 Tid - Fagstoff. Innholdsfortegnelse ERGO Fysikk. 3FY. AA (Reform 94) - 8. Relativitetsteori - 8.4 Tid - Fagstoff Innholdsfortegnelse Tvillingparadokset-8.4 2 Simulering Relativitetsteori 3 Veiledning til simulering Relativitetsteori 4 Oppgavetekst

Detaljer

søndag 7. september 14

søndag 7. september 14 3 Mål Få en førståelse for: Hvordan bruker bruker man sin kunnskap på en vitenskaplig måte? Hvordan man arbeider rasjonellt med åpen problemstilling Hvordan fysikk/eksperiment er viktigt i de sammanhangen.

Detaljer

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28.

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28. NTNU Institutt for matematiske fag MA1103 Flerdimensjonal Analyse våren 2011 Maple-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid

Detaljer

Både besvarelsene du leverer inn og det du gjør underveis blir vurdert. (Gruppe 1 starter med oppgave 1, gruppe 2 starter med oppgave 2 osv.) 10.

Både besvarelsene du leverer inn og det du gjør underveis blir vurdert. (Gruppe 1 starter med oppgave 1, gruppe 2 starter med oppgave 2 osv.) 10. INSTRUKS Du har 30 minutter til hver oppgave og skal gå fra stasjon til stasjon. Alle de praktiske øvelsene bortsett fra én kan gjøres i par/grupper. Læreren bestemmer gruppene. Du må levere besvarelsene

Detaljer

Statiske magnetfelt. Thomas Grønli og Lars A. Kristiansen Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 19. mars 2012

Statiske magnetfelt. Thomas Grønli og Lars A. Kristiansen Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 19. mars 2012 Statiske magnetfelt Thomas Grønli og Lars A. Kristiansen Institutt for fysikk, NTNU, N-79 Trondheim, Norge 9. mars Sammendrag I dette eksperimentet målte vi med en aksial halleffektprobe de statiske magnetfeltene

Detaljer

RETNINGSLINJER FOR SKRIVING AV SLUTTRAPPORT VED BACHELOROPPGAVE

RETNINGSLINJER FOR SKRIVING AV SLUTTRAPPORT VED BACHELOROPPGAVE RETNINGSLINJER FOR SKRIVING AV SLUTTRAPPORT VED BACHELOROPPGAVE Det gis ulike anbefalinger for hvordan en prosjektrapport skal se ut. Noen krav til innhold og utseende er beskrevet i forslaget nedenfor.

Detaljer

4.201 Brønndyp. Eksperimenter. Tips. I denne øvingen skal du lage en modell for beregning av fallhøyde teste modellen

4.201 Brønndyp. Eksperimenter. Tips. I denne øvingen skal du lage en modell for beregning av fallhøyde teste modellen RST 2 4 Bevegelse 20 4.201 Brønndyp lage en modell for beregning av fallhøyde teste modellen Eksperimenter Når en fysiker slipper en mynt i en ønskebrønn, er det for å måle hvor dyp brønnen er. Hun måler

Detaljer

Fysikkolympiaden 1. runde 27. oktober 7. november 2008

Fysikkolympiaden 1. runde 27. oktober 7. november 2008 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 27. oktober 7. november 2008 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Løsningsforslag for obligatorisk øving 1

Løsningsforslag for obligatorisk øving 1 TFY4185 Måleteknikk Institutt for fysikk Løsningsforslag for obligatorisk øving 1 Oppgave 1 a Vi starter med å angi strømmen i alle grener For Wheatstone-brua trenger vi 6 ukjente strømmer I 1 I 6, som

Detaljer

Parallell 1: Rapportskriving i utforskende arbeidsmåter

Parallell 1: Rapportskriving i utforskende arbeidsmåter Parallell 1: Rapportskriving i utforskende arbeidsmåter Lære å argumentere naturvitenskapelig 15.00 16.00 Prof. Stein Dankert Kolstø Stip. Idar Mestad Universitetet i Bergen, Institutt for fysikk og teknologi

Detaljer

Sikkerhetsrisiko:lav. fare for øyeskade. HMS ruoner

Sikkerhetsrisiko:lav. fare for øyeskade. HMS ruoner Reaksjonskinetikk. jodklokka Risiko fare Oltak Sikkerhetsrisiko:lav fare for øyeskade HMS ruoner Figur 1 :risikovurdering Innledning Hastigheten til en kjemisk reaksjon avhenger av flere faktorer: Reaksjonsmekanisme,

Detaljer

Eksamen 05.12.2012. MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere DEL 2. Bokmål

Eksamen 05.12.2012. MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere DEL 2. Bokmål Eksamen 05.12.2012 MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere DEL 2 Bokmål Bokmål Eksamensinformasjon for Del 2 Eksamenstid Hjelpemidler til Del 2 09.00 14.00, totalt 5 timer Del 1 og Del

Detaljer

TRANSISTORER. Navn: Navn: Kurs: FY-IN204 Elektronikk med prosjektoppgaver - 4 vekttall. Oppgave: LABORATORIEØVELSE NR 2.

TRANSISTORER. Navn:   Navn:   Kurs: FY-IN204 Elektronikk med prosjektoppgaver - 4 vekttall. Oppgave: LABORATORIEØVELSE NR 2. Kurs: FY-IN204 Elektronikk med prosjektoppgaver - 4 vekttall Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 2 Omhandler: TRANSISTORER Revidert utgave 23.02.2001 Utført dato: Utført av: Navn: email:

Detaljer

Tid og Frekvens. Nicolai Kristen Solheim

Tid og Frekvens. Nicolai Kristen Solheim Tid og Frekvens Nicolai Kristen Solheim Abstract I denne oppgaven har vi målt tid på forskjellige måter for å få et bevisst forhold til tid og forskjellige målemetoder. Vi har startet fra helt grunnleggende

Detaljer

Wheel Track Ringanalyse2016

Wheel Track Ringanalyse2016 Wheel Track Ringanalyse2016 Einar Aasprong Statens vegvesen Sentrallaboratoriet Trondheim Oslo 25.10.2016 Materialer Fire varianter (2 masser x 2 utførelser) Asfaltmasse Ab 11 70/100 Ab 11 PMB Utførelse

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

EKSAMEN I SOS4006 KULTURELL MOTSTAND TRASSENS SOSIOLOGI HØST STUDIEPOENG HJEMMEEKSAMEN

EKSAMEN I SOS4006 KULTURELL MOTSTAND TRASSENS SOSIOLOGI HØST STUDIEPOENG HJEMMEEKSAMEN EKSAMEN I SOS4006 KULTURELL MOTSTAND TRASSENS SOSIOLOGI HØST 2007 10 STUDIEPOENG HJEMMEEKSAMEN Oppgaven deles ut tirsdag 11. desember kl. 10.00 fra emnesiden på web. Oppgaven leveres inn tirsdag 18. desember

Detaljer

Side 1 Versjon

Side 1 Versjon Side 1 BEHANDLING AV AVVIKENDE EKV-RESULTAT Ekstern kvalitetsvurdering (EKV) er en viktig del av kvalitetssikringen ved medisinske laboratorier fordi resultatene herfra kontinuerlig forteller noe om kvaliteten

Detaljer

Rapport. Lab 1. Absoluttverdikrets - portkretser

Rapport. Lab 1. Absoluttverdikrets - portkretser TFE4105 Digitalteknikk og datamaskiner Rapport Lab 1 Absoluttverdikrets - portkretser av Even Wiik Thomassen Broen van Besien Gruppe 193 Lab utført: 8. september 2004 Rapport levert: 12. november 2004

Detaljer

BACHELOR I IDRETTSVITENSKAP MED SPESIALISERING I IDRETTSBIOLOGI 2011/2013. Individuell skriftlig eksamen i IBI 225- Fysikk og målinger

BACHELOR I IDRETTSVITENSKAP MED SPESIALISERING I IDRETTSBIOLOGI 2011/2013. Individuell skriftlig eksamen i IBI 225- Fysikk og målinger BACHELOR I IDRETTSVITENSKAP MED SPESIALISERING I IDRETTSBIOLOGI 2011/2013 Individuell skriftlig eksamen i IBI 225- Fysikk og målinger Onsdag 30. november 2011 kl. 10.00-12.00 Hjelpemidler: kalkulator Formelsamling

Detaljer

EKSAMENSOPPGAVE I FYS-1001

EKSAMENSOPPGAVE I FYS-1001 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE I FYS-1001 Eksamen i : Fys-1001 Mekanikk Eksamensdato : 06.12.2012 Tid : 09.00-13.00 Sted : Åsgårdvegen 9 Tillatte hjelpemidler

Detaljer

Eksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 27.01.2012 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Universitetet i Stavanger Institutt for petroleumsteknologi

Universitetet i Stavanger Institutt for petroleumsteknologi Universitetet i Stavanger Institutt for petroleumsteknologi Side 1 av 6 Faglig kontakt under eksamen: Professor Ingve Simonsen Telefon: 470 76 416 Eksamen i PET110 Geofysikk og brønnlogging Mar. 09, 2015

Detaljer

Løsningsforslag, Øving 10 MA0001 Brukerkurs i Matematikk A

Løsningsforslag, Øving 10 MA0001 Brukerkurs i Matematikk A Løsningsforslag, Øving MA Brukerkurs i Matematikk A Læreboka s. 9-95 8. Anta at en endring i biomasse B(t) vei, t [, ], følger ligningen for t. d B(t) = cos ( ) πt 6 (a) Tegn grafen til d B(t) som funksjon

Detaljer

Juleprøve i matematikk for 8. trinn 2015

Juleprøve i matematikk for 8. trinn 2015 Juleprøve i matematikk for 8. trinn 2015 Navn: Klasse: Prøveinformasjon Prøvetid: Kl 08.15 11.20 Hjelpemidler på Del 1 og 2: På Del 1 kan du bruke vanlige skrivesaker, passer, linjal med centimetermål

Detaljer

Fysikkolympiaden 1. runde 26. oktober 6. november 2009

Fysikkolympiaden 1. runde 26. oktober 6. november 2009 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Uniersitetet i Oslo Fysikkolympiaden. runde 6. oktober 6. noember 009 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Endring av fartsgrenser. Effekt på kjørefart og ulykker

Endring av fartsgrenser. Effekt på kjørefart og ulykker Sammendrag: Endring av fartsgrenser. Effekt på kjørefart og ulykker TØI-rapport 784/2005 Forfatter(e): Arild Ragnøy Oslo 2005, 31 sider Innledning Ut fra kunnskap om sammenhengen mellom kjørefart og ulykker

Detaljer

Lengde, hastighet og aksellerasjon

Lengde, hastighet og aksellerasjon Lengde, hastighet og aksellerasjon Nicolai Kristen Solheim Abstract I denne oppgaven har vi målt lengde, hastighet og akselerasjon for å få et bedre forhold til sammenhengen mellom disse. Et annet fokus

Detaljer

Kap. 3 Arbeid og energi. Energibevaring.

Kap. 3 Arbeid og energi. Energibevaring. Kap. 3 Arbeid og energi. Energibevaring. Definisjon arbeid, W Kinetisk energi, E k Potensiell energi, E p. Konservative krefter Energibevaring Energibevaring når friksjon. Arbeid = areal under kurve F(x)

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer.

Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer. Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: Veiledning om vurderingen: Andre opplysninger: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2

Detaljer

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 23. februar, 2012 Tid for eksamen : kl. 9.00-13.00 Sted : Administrasjonsbygget, Rom B154 Hjelpemidler : K. Rottmann: Matematisk Formelsamling,

Detaljer

Hos tannlegen Hippokrates

Hos tannlegen Hippokrates Eksamen 21.05.2013 MT0010 Matematikk Hos tannlegen Hippokrates Del 2 X-Fighters Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 2: 5 timer totalt: Del 1 skal du levere innen 2 timer.

Detaljer

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:

Detaljer

SOS4011 Teorifordypning i sosiologi HØST STUDIEPOENG HJEMMEEKSAMEN

SOS4011 Teorifordypning i sosiologi HØST STUDIEPOENG HJEMMEEKSAMEN SOS4011 Teorifordypning i sosiologi HØST 2009 10 STUDIEPOENG HJEMMEEKSAMEN Oppgaven deles ut fredag 27. november kl. 09.00. Oppgaven leveres inn fredag 4. desember mellom kl. 11.00 og 14.00 til instituttets

Detaljer

Fysikkonkurranse 1. runde 6. - 17. november 2000

Fysikkonkurranse 1. runde 6. - 17. november 2000 Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning Fysikkonkurranse 1. runde 6. - 17. november 000 Hjelpemidler: Tabeller og formler i fysikk og matematikk Lommeregner Tid: 100

Detaljer

Test of English as a Foreign Language (TOEFL)

Test of English as a Foreign Language (TOEFL) Test of English as a Foreign Language (TOEFL) TOEFL er en standardisert test som måler hvor godt du kan bruke og forstå engelsk på universitets- og høyskolenivå. Hvor godt må du snake engelsk? TOEFL-testen

Detaljer

KJ1042 Termodynamikk laboratoriekurs Oppgave 2. Partiell molar entalpi

KJ1042 Termodynamikk laboratoriekurs Oppgave 2. Partiell molar entalpi KJ104 Termodynamikk laboratoriekurs Oppgave. Partiell molar entalpi Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 1 Lab C-107 Utført 8. februar 01 Innhold 1 Innledning

Detaljer

1+2 x, dvs. løse ligningen mhp. x. y = 100. y(1+2 x ) = = 2 x = y. xln2 = ln 100 y. x = 1 ln2 ln. f 1 (x) = 1 ln2 ln x

1+2 x, dvs. løse ligningen mhp. x. y = 100. y(1+2 x ) = = 2 x = y. xln2 = ln 100 y. x = 1 ln2 ln. f 1 (x) = 1 ln2 ln x NTNU Institutt for matematiske fag TMA400 Matematikk Høsten 20 Løsningsforslag - Øving Avsnitt.5 59 a) Vi skal invertere y f(x) 00 +2 x, dvs. løse ligningen mhp. x. y 00 +2 x y(+2 x ) 00 2 x 00 00 y y

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning. 1 En kort oppsummering Adaptiv filtrering 2. 3 Prediksjon 4

Generell informasjon om faget er tilgjengelig fra It s learning. 1 En kort oppsummering Adaptiv filtrering 2. 3 Prediksjon 4 Stavanger, 13. august 2013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 2013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 1 En kort oppsummering. 1 2 Adaptiv

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 22 mars 2017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

Om flo og fjære og kunsten å veie Månen

Om flo og fjære og kunsten å veie Månen Om flo og fjære og kunsten å veie Månen Jan Myrheim Institutt for fysikk NTNU 28. mars 2012 Innhold Målt flo og fjære i Trondheimsfjorden Teori for tidevannskrefter Hvordan veie Sola og Månen Friksjon

Detaljer

Opplevelse av vibrasjoner i bolig fra veg- og skinnegående trafikk

Opplevelse av vibrasjoner i bolig fra veg- og skinnegående trafikk Sammendrag: TØI rapport 443/1999 Forfatter: Ronny Klæboe og Aslak Fyhri Oslo 1999, 56 sider Opplevelse av vibrasjoner i bolig fra veg- og skinnegående trafikk Bakgrunn ny norsk standard I forbindelse med

Detaljer

VEILEDNING TIL LABORATORIEØVELSE NR 2

VEILEDNING TIL LABORATORIEØVELSE NR 2 VEILEDNING TIL LABORATORIEØVELSE NR 2 «TRANSISTORER» FY-IN 204 Revidert utgave 2000-03-01 Veiledning FY-IN 204 : Oppgave 2 1 2. Transistoren Litteratur: Millman, Kap. 3 og Kap. 10 Oppgave: A. TRANSISTORKARAKTERISTIKKER:

Detaljer

Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig

Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig Sensurveiledning Emnekode: 4MX230UM1 Emnenavn: Matematikk 2 (5-10) KfK, emne 1 Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig Oppgave 1 I denne oppgaven får du oppgitt tre situasjoner som

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

R2 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

R2 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka R kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka E Bruker formelen cos 36 cos( 8 ) E sin 8 v og sin8 5 cos v sin sin8 5 5 6 5 5 8 5 5 8 6 5 8 6 5 8 8 3 5 5 5 a f ( ) sin 5 cos f ( ) 5cos

Detaljer

SINUS R1, kapittel 5-8

SINUS R1, kapittel 5-8 Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173

Detaljer

Bakgrunn og metode. 1. Før- og etteranalyse på strekninger med ATK basert på automatiske målinger 2. Måling av fart ved ATK punkt med lasterpistol

Bakgrunn og metode. 1. Før- og etteranalyse på strekninger med ATK basert på automatiske målinger 2. Måling av fart ved ATK punkt med lasterpistol TØI rapport Forfatter: Arild Ragnøy Oslo 2002, 58 sider Sammendrag: Automatisk trafikkontroll () Bakgrunn og metode Mangelfull kunnskap om effekten av på fart Automatisk trafikkontroll () er benyttet til

Detaljer

SOS4011 Teorifordypning i sosiologi HØST STUDIEPOENG HJEMMEEKSAMEN

SOS4011 Teorifordypning i sosiologi HØST STUDIEPOENG HJEMMEEKSAMEN SOS4011 Teorifordypning i sosiologi HØST 2008 10 STUDIEPOENG HJEMMEEKSAMEN Oppgaven deles ut fredag 28. november kl. 12.00 fra emnesiden på nett. Oppgaven leveres inn fredag 5. desember mellom kl. 11.00

Detaljer

Bokmål. Eksamensinformasjon. Del 2 skal leveres etter 5 timer.

Bokmål. Eksamensinformasjon. Del 2 skal leveres etter 5 timer. Eksamen 02.12.2008 MAT1003 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Framgangsmåte og forklaring: 5

Detaljer

Egil Lillestøll, Lillestøl,, CERN & Univ. i Bergen,

Egil Lillestøll, Lillestøl,, CERN & Univ. i Bergen, I partikkelfysikken (CERN) studeres materiens minste byggestener og alle kreftene som virker mellom dem. I astrofysikken studeres universets sammensetting (stjerner og galakser) og utviklingen fra Big

Detaljer

Sammendrag: Bilers alder og risiko. Bakgrunn. Formål. Metode

Sammendrag: Bilers alder og risiko. Bakgrunn. Formål. Metode Sammendrag: Bilers alder og risiko TØI rapport 386/1998 Forfattere: Stein Fosser, Peter Christensen Oslo 1998, 28 sider Bakgrunn I de senere år er det ofte blitt fremholdt at den norske bilparken er forholdsvis

Detaljer

Cavendisheksperimentet

Cavendisheksperimentet Cavendisheksperimentet Tobias Grøsfjeld, Benjamin Roaldssønn Hope, John Kåre Jansen 24. november 2010 Sammendrag Vi har målt den newtonske gravitasjonskonstanten via Cavendisheksperimentet, og forsøket

Detaljer