Bølgeegenskaper til lys

Størrelse: px
Begynne med side:

Download "Bølgeegenskaper til lys"

Transkript

1 Bølgeegenskaper til lys Alexander Asplin og Einar Baumann 30. oktober

2 Forord Denne rapporten er skrevet som et ledd i lab-delen av TFY4120. Forsøket ble utført under oppsyn av vitenskapelig assistent Marianne Daae 14. oktober NTNU 15/ Alexander Asplin og Einar Baumann 2

3 Sammendrag Vi har i dette eksperimentet sett på noen av lysets bølgeegenskaper ved å studere interferensog diraksjonsmønstrene til monokromatisk lys som ble sendt gjennom en serie med linser og spalter. Vi har bl.a. brukt resultatene av eksperimentet til å beregne bølgelengden av lyset ( λ = (631 ± 11) nm) og bredden til spaltene. Resultatene stemmer godt overens med referanseverdier. 3

4 Innhold 1 Innledning 5 2 Teoretisk Grunnlag Elektromagnetiske bølger [1] Huygens-Fresnels prinsipp Huygens-Fresnels prinsipp brukt på to små spalter Interferens Usikkerhet Eksperimentell framgangsmåte og oppgitte data Oppsett Kontroll av laserens bølgelengde Begrensning av strålebredde Måling av diraksjon fra to faste spalter Måling av tykkelsen på et hårstrå Resultater og diskusjon Kontroll av laserens bølgelengde Begrensing av strålebredde Måling av diraksjon fra to faste spalter Måling av tykkelse på hårstrå Konklusjon 15 6 Litteraturhenvisninger 16 4

5 1 Innledning I laboratorieoppgaven som denne rapporten omhandler ble lysets bølgeegenskaper undersøkt gjennom en rekke eksperimenter. I laboratorieoppgaven ble dataprogrammet FraunDi sammen med en fotodiode og en skinne med påmontert HeNe-laser, linser og utbyttbare spalter brukt for å utføre målinger av intensiteten til lyset etter at det hadde passert gjennom apparaturen. 5

6 2 Teoretisk Grunnlag 2.1 Elektromagnetiske bølger [1] Elektromagnetiske bølger er forplantning i rommet av tidsvariasjoner til elektriske og magnetiske felt. Det viser seg at vi ofte, bl.a. her, får korrekte resultater selv om vi neglisjerer det magnetiske feltet og betrakter det elektriske. En lineærpolarisert laserstråle som går parallelt med x-aksen kan med god tilnærmelse beskrives matematisk ved ( ) E = E 2π 0 cos λ x 2πft ϕ (1) der λ er bølgelengden (633 nm i dette eksperimentet) og f er frekvensen (4, Hz i dette eksperimentet), ϕ er en fasekonstant og E 0 er en amplitude som er avhengig av styrken til laserstrålen, i tillegg til at den angir svingeretningen til det elektriske feltet. Fordi vi ikke kan måle de hurtige variasjonene som det elektriske feltet svinger med, måler vi intensiteten til lyset, som er gitt ved I = cu (2) der c er lyshastigheten og u er gjennomsnittsverdien av energitettheten til summen av det elektriske og det magnetiske feltet som bølgen består av. Energitettheten til et elektrisk felt i vakuum, og med svært god tilnærmelse i luft, er gitt ved u E = 1 2 ɛ 0E 2 (3) og siden vi har at energitettheten for magnetisk felt (u M ) er like stor som energitettheten for det elektriske feltet [1], er den totale enrgitettheten gitt ved u = u E + u M = 2u E = ɛ 0 E 2 (4) som satt inn i Ligning 2 gir intensiteten som funksjon av det elektriske feltet: I = cɛ 0 E 2 (5) Når vi har en bølge som varierer over tid som gitt i Ligning 1 kan det vises ved å midle over en periode T at E 2 = 1 2 E2 0 (6) og dermed at I = 1 2 cɛ 0E 2 0 (7) 6

7 Figur 1: Huygens-Fresnels prinsipp med to spalter med åpning a λ Figur 2: Huygens-Fresnels prinsipp med en spalte med åpning ikke a λ 2.2 Huygens-Fresnels prinsipp Huygens-Fresnels er formulert som følger [1] : Ethvert uhindret punkt på en bølgefront kan ses på som en kilde for sekundære kulebølger med samme bølgelengde som den opprinnelige bølgen. Det totale feltet for ethvert punkt framfor den opprinnelige bølgefronten, er for et gitt tidspunkt lik summen av feltene til de sekundære bølgene. Summeringen må ta både amplitude og fase i betraktning. I Figur 1 er prinsippet illustrert med to spalter som er så smale sammenlignet med λ at vi kan betrakte dem som punktkilder. Dersom spalteåpningen er større, må vi dele spalteåpningen opp i n smale striper som hver har bredde a /n λ (Se Figur 2) Huygens-Fresnels prinsipp brukt på to små spalter Skal se på et tilfelle der et laserlys kommer inn mot to like spalter som er så smale at deres bredde kan neglisjeres sammenlignet med laserlysets λ. Vi skal nne intensitetsvariasjonen i et vilkårlig punkt P på en observasjonsskjerm, som illustrert i Figur 3. 7

8 Figur 3: Intesitetsfordeling for laserlys gjennom to små spalter Når vi vet at ( ) 2π E 1 = E 0 cos λ r 2πft ϕ ( ) 2π E 2 = E 0 cos (r + r) 2πft ϕ λ (8) (9) r = d sin θ = nλ n = 0, ±1, ±2,... (10) og utfører en rekke mellomregninger, nner vi at ( ) πd I (θ) = I 0 cos 2 λl x og det er en slik variasjon av intensiteten avhengig av vinkelen mellom fotodioden og spalten som skal måles i dette eksperimentet. (11) 2.3 Interferens Interferens er fenomenet som oppstår når ere bølger opptar samme plass, og derfor i følge superposisjonsprinsippet danner et nytt bølgebilde, som er summen av bølgene som møtes. Hvis for eksempel to bølger med samme fase møtes i et punkt, vil utslaget i punktet bli summen av de to bølgene. Dette kalles konstruktiv interferens. Hvis de derimot møttes i motfase, vil de oppheve hverandre. Dette kalles destruktiv interferens. Hvis to elektromagnetiske bølger med samme frekvens, men motsatt bevegelsesretning møtes vil de danne en stående bølge. Superposjonen av to elektromagnetiske bølger er gitt ved E ( r, t) = E 1 ( r, t) + E 2 ( r, t) (12) 8

9 2.4 Usikkerhet I denne rapporten er usikkerheten i målningene begenet med Gauss-feilforplantningslov [2]. Denne loven sier at hvis vi har en vilkårlig funksjon f av ere variable f = f (a, b, c,... ), der hver av variablene har en usikkerhet på a, b, c,..., så vil usikkerheten være gitt ved ( f) 2 = ( ) 2 ( ) 2 ( ) 2 f f f a a + b b + c c + (13) 9

10 3 Eksperimentell framgangsmåte og oppgitte data 3.1 Oppsett I dette eksperimentet ble det brukt en HeNe-laser som sender monokromatisk rødt lys (λ = 633 nm). Laseren var montert på en skinne sammen med 3 linser som forstørret og samlet lysstrålene. De tre linsene L 1, L 2 og L 3 hadde brennvidder på henholdsvis f 1 = 50 mm, f 2 = 300 mm og f 3 = 1000 mm. Gjennom L 1 ble lyset forstørret med en faktor på 6, før det gjennom L 2 ble endret slik at lysstrålene gikk parallellt idet de gikk gjennom en port (H) hvor det ble satt inn spalter og stoppere. Etter porten ble lysstrålene igjen samlet i L 3 før de tra fotodioden (F). Figur 4 viser en prinsippskisse av oppsettet. Figur 4: Oppsett Fotodioden var montert i enden av skinna, på en stepmotor som kunne endre posisjonen til fotodioden i horisontal retning normalt på den optiske aksen for systemet. Linsene og fotodioden ble stilt inn slik at fokalpunktet til L 3 tra midt på fotodioden. Fotodioden var koblet sammen med en datamaskin ved hjelp av en analog til digital omformer. På datamaskinen ble programmet FraunDi brukt til å styre stepmotoren og registrere måleresultatene. Stepmotoren hadde en nullposisjon på 50 mm. 3.2 Kontroll av laserens bølgelengde En dobbeltspalte ble montert i porten H slik at laserstrålen tra normalt midt på dobbeltspalten, som vist i gur 5. Det ble så montert et rør på fotodioden for å skygge for annet lys som kunne forstyrre målingen. Fotodioden ble så kjørt med opptak fra mm. Lysintensiteten i interferensmønsteret ble registrert som funksjon av posisjonen på datamaskinen, fremstilt grask og skrevet ut. I programmet ble markøren brukt til å lese av x-verdiene for 5. ordens maksimum på hver side av utgangsposisjonen (0.-ordens maksima. x og bølgelengden til lyset (λ)ble beregnet. 3.3 Begrensning av strålebredde Det ble satt en plate med linjal foran fotodioden og fotodioden ble kjørt til posisjon 50,0 mm L 3 og dobbeltspalten ble fjernet, og en variababel spalte ble satt inn i cirka 30 cm fra fotodioden, og 10

11 Figur 5: Lys treer spalte slik at laseren tra spalten midt på. Spalteåpningen ble variert gradvis fra stor til ingen åpning, mens lysekken på platen foran fotodioden ble observert. 3.4 Måling av diraksjon fra to faste spalter Oppsettet ble tilbakestilt til det opprinnelige, med unntak av L 3 i posisjon 91cm. En plate med to faste spalteåpninger 0, 3 mm og 0, 15 mm ble satt inn i H, og stilt inn slik at laseren strålte midt på den brede spalten. Røret ble satt på fotodioden for å skygge for strølys og det ble gjort opptak fra 30 mm til 70 mm. Så ble FraunDi brukt til å gjøre en simulering med kriteriene fra det faktiske eksperimentet. Resultatene fra eksperimentet og simuleringen ble sammenlignet. Opptaket og simuleringen ble så utført med lyset sendt gjennom den smale spalten. 3.5 Måling av tykkelsen på et hårstrå Det ble montert en plate med hull i porten H og et hårstrå ble plassert midt i laserstrålen foran hullet ved hjelp av et par magneter. Håret ble montert i spenn, vertikalt, slik at interferensmønsteret ble best mulig. Så ble det gjort opptak med fotodioden fra 30 mm til 70 mm, og FraunDi ble brukt til å nne tykkelsen av håret. 11

12 Usikkerhet Usikkerheten i kontroll av laserens bølgelengde avhenger av avlesningsnøyaktigheten, det ble anslått at den graske fremstillingen kunne leses av med 0,03 mm nøyaktighet. I resten av dataene for bergeningen brukte vi bare de oppgitte usikkerhetene. På resten av oppgaven har FraunDi utført beregningene, og det er blitt valgt å se på usikkerheten som neglisjerbar. Den oppgitte verdien for dobbeltspalten og fokallengden f 3 i eksperimentet var: d = 1, 01 ± 0, 01 mm f 3 = 1000 ± 10 mm 12

13 4 Resultater og diskusjon 4.1 Kontroll av laserens bølgelengde Ved avlesning (se vedlegg, Figur V1) fant vi femteordensmaksima x h = 53, 11 mm og x v = 53, 11 46, 86 46, 86 mm. Dette ga en x = mm = 3, 125mm 2 Dersom vi regner med at usikkerhet i avlesningen 0, 03 mm får vi minimumsverdi og maksimumsverdi for x: x min = x maks = Som videre brukes til å regne ut x: x = 53, 08 46, , 14 46, , 155 3, Som gir en verdi for x med usikkerhet x mm = 3, 095 mm mm = 3, 155 mm mm = 0, 030 mm Bølgelengden λ beregnes med formelen Setter inn verdiene og får at: λ = λ λ = x ± x = 3, 125 ± 0, 030 mm λ = xd nf 3 (14) 3, 125 mm 1, 01 mm mm ( d ) 2 + d ( ) 2 x + x = 631 mm ( f3 (0, ) 2 ( ) 2 ( ) 2 λ 01 0, λ = 1, 01 mm + 3, 125 mm mm = 0, 017 Dette gir en beregnet bølgelengde: f 3 ) 2 λ = 0, 017λ = λ = 0, nm = 11 nm λ ± λ = 631 ± 11 nm 13

14 4.2 Begrensing av strålebredde Når den variable spalten ble justert smalere ble også lysekken smalere, inntil en viss bredde hvor den ble bredere igjen, og viste et interferensmønster. Dette skjer på grunn av diraksjon som opptrer når spalteåpningen blir mindre enn λ. Interferensmønsteret viser minima og maksima for intensiteten til strålingen, forårsaket av interferens mellom forskjellige bøyningsvinkler. Generelt gjelder det at når spalteåpningen blir tilstrekkelig liten blir det utslukkning i interfernsmønsteret for alle θ der a sin θ = mλ (der m = ±1, ±2,...) er oppfylt. 4.3 Måling av diraksjon fra to faste spalter Hovedforskjellen mellom de eksperimentelle måledataene og de simulerte dataene er i utslukkingsområdene. Her har de simulerte dataene null intensitet (se vedlegg, Figur V1) i utslukkingsområdene, mens på de eksperimentelle dataene (se vedlegg, Figur V1) har utslukkingsområdene fortsatt en målt lysintensitet. Det er ere årsaker til at dette skjer, for det første er ikke lyset fokusert nok til gi fullstendig utslukking. I tillegg var det en del strølys i laboratoriet som påvirket resultatet. Dette strølyset kunne nok vært betydelig redusert ved å skru av taklyset i rommet. Det er vanskelig å si om det er laserlysets dårlige fokusering eller strølyset som har størst eekt på målingene. I målningene våre kom vi fram til at breddene på spaltene var henholdsvis 0, 303 mm og 0, 169 mm for den brede og den smale spalten. Dette stemmer godt med verdiene oppgitt i oppgavebeskrivelsen [1]. 4.4 Måling av tykkelse på hårstrå Når hårstrå ble plassert foran laserstrålen dukket det opp et interferensmønster som ble målt med fotodioden, og FraunDi beregnet en spaltebredde på 0, 08 mm eller 80 µm. I følge wikipedia [3] er normal tykkelse på et hårstrå fra 17 µm til 181 µm. Det er altså stor grunn til å tro at metoden gir en god beregning av tykkelsen på et hårstrå. Denne intensitetsgrafen ble dessverre ikke tatt vare på, men den var langt i fra like bra som intensitetsgrafene vi kk med laboratorieutstyret. Dette kommer hovedsaklig av to grunner, det er vanskelig å få et hårstrå til å henge helt i ro og helt vertikalt slik at måligen blir bra. I tillegg har hårstrå en ru overate på mirkoskopisk nivå, som gjør at lyset vil spres uregelmessig. 14

15 5 Konklusjon Det ble funnet at bølgelengden til lyset utsendt av laseren var (631 ± 11) nm, som stemmer bra overens med litteraturverdien (633 nm). Interferensanalyse er altså god metode for å bestemme bølgelengden til monokromatisk lys. Det ble observert at når lys blir sendt gjennom en dobbeltspalte, vil det oppstå et interferensmønster pga. interferens mellom de to punktkildene som oppstår ved de to spalteåpningene. Videre ble det observert at når lys blir sendt gjennom en smal spalte, oppstår det et diraksjonsmønster pga. interferens mellom de forskjellige bøyningsvinklene. Når lyset i stedet sendes gjennom en bredere spalte, blir diraksjonen mindre tydelig, og 0.-ordens maksima blir langt høyere. Interferensforsøk kan brukes til å bestemme bredden av smale objekter, f.eks. hårstrå. Det ble også observert at Alexander Asplin har rimelig gjennomsnittlig hårtykkelse (se underseksjon 4.4 samt [3]). 15

16 6 Litteraturhenvisninger [1] Oppgavebeskrivelsen (oppgave4_tfy4120.pdf) [2] En liten innføring i usikkerhetsanalyse [3] 16

Bølgeegenskaper til lys

Bølgeegenskaper til lys Bølgeegenskaper til lys Laboratorieøvelse i TFY4120 Ina Molaug og Anders Leirpoll 14.10.2011 1 Forord Denne rapporten er skrevet som et ledd i laboratorie-delen av TFY4120. Forsøket ble utført under oppsyn

Detaljer

BØLGEEGENSKAPER TIL LYS

BØLGEEGENSKAPER TIL LYS Rapport oppgave 4 Lab i TFY 410 BØLGEEGENSKAPER TIL LYS av Hilde Marie Vaage og Ove Øyås Rapport oppgave 4, Lab i TFY 410 1 Innholdsfortegnelse Forord... 3 Sammendrag... 4 Innledning... 5 Hoveddel... 6

Detaljer

2. Teoretisk grunnlag

2. Teoretisk grunnlag 1 1. Innledning Denne rapporten baserer seg på laboratorieforsøket «Bølgeegenskaper i Lys» der vi, som tittelen tilsier, har sett på bølgeegenskaper i lys. Dette ble gjort ved hjelp av en laser og forskjellige

Detaljer

Bølgeegenskaper til lys. Institutt for fysikk, NTNU

Bølgeegenskaper til lys. Institutt for fysikk, NTNU Oppgave 4 Lab i TFY4180 Bølgeegenskaper til lys Institutt for fysikk, NTNU 1 Innledning Opp gjennom historien har selvsagt tenkere og forskere beskjeftiget seg meget med lysets natur. De gamle grekere

Detaljer

Hensikt I dette forsøket skal brytningsindeksen bestemmes for en sylindrisk linse ut fra målinger av brytningsvinkler og bruk av Snells lov.

Hensikt I dette forsøket skal brytningsindeksen bestemmes for en sylindrisk linse ut fra målinger av brytningsvinkler og bruk av Snells lov. FORSØK I OPTIKK Oppgaven består av 3 forsøk Forsøk 1: Bestemmelse av brytningsindeks Hensikt I dette forsøket skal brytningsindeksen bestemmes for en sylindrisk linse ut fra målinger av brytningsvinkler

Detaljer

Michelson Interferometer

Michelson Interferometer Michelson Interferometer Hensikt Bildet ovenfor viser et sa kalt Michelson interferometer, der laserlys sendes inn mot en bikonveks linse, før det treffer et delvis reflekterende speil og splittes i to

Detaljer

Oblig 11 - Uke 15 Oppg 1,3,6,7,9,10,12,13,15,16,17,19

Oblig 11 - Uke 15 Oppg 1,3,6,7,9,10,12,13,15,16,17,19 Oblig 11 - Uke 15 Oppg 1,3,6,7,9,10,12,13,15,16,17,19 Dersom du oppdager feil i løsningsforslaget, vennligst gi beskjed til Arnt Inge og Maiken. Takk! Oppgave 1 Youngs dobbeltspalteeksperiment med lyd?

Detaljer

Interferensmodell for punktformede kilder

Interferensmodell for punktformede kilder Interferensmodell for punktformede kilder Hensikt Oppsettet pa bildet besta r av to transparenter med identiske sirkelmønstre, og brukes til a illustrere interferens mellom to koherente punktkilder. 1

Detaljer

EKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002 GENERELL FYSIKK II Onsdag 8. desember 2004 kl Bokmål. K. Rottmann: Matematisk formelsamling

EKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002 GENERELL FYSIKK II Onsdag 8. desember 2004 kl Bokmål. K. Rottmann: Matematisk formelsamling Side 1 av 11 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Førsteamanuensis Knut Arne Strand Telefon: 73 59 34 61 EKSAMEN FAG TFY416 BØLGEFYSIKK OG

Detaljer

BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL

BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL Labratorieøvelse i FYSIKK Høst 1994 Institutt for fysisk, NTH BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL av Ola Olsen En lett revidert og anonymisert versjon til eksempel for skriving av lab.-rapport

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 9

Løsningsforslag for øvningsoppgaver: Kapittel 9 Løsningsforslag for øvningsoppgaver: Kapittel 9 Jon Walter Lundberg 10.03.2015 9.04 a) Hva er en elastisk pendel? Definer svingetida, perioden, frekvensen, utslaget og amlituden til en slik pendel. Definisjonene

Detaljer

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36 Institutt for fsikk, NTNU TFY4160/FY1002: Bølgefsikk Høsten 2006, uke 36 Mandag 04.09.06 Del II: BØLGER Innledning Bølger er forplantning av svingninger. Når en bølge forplanter seg i et materielt medium,

Detaljer

EKSAMEN VÅREN 2007 SENSORTEORI. Klasse OM2

EKSAMEN VÅREN 2007 SENSORTEORI. Klasse OM2 SJØKRIGSSKOLEN Tirsdag 29.05.07 EKSAMEN VÅREN 2007 Klasse OM2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Tabeller i fysikk for den videregående skole Formelsamling i matematikk

Detaljer

BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL

BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL Labratorieøvelse i FYSIKK Høst 1994 Institutt for fysisk, NTH BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL av Ola Olsen En lett revidert og anonymisert versjon til eksempel for skriving av lab.-rapport

Detaljer

FYS2140 Kvantefysikk, Oblig 2. Sindre Rannem Bilden, Gruppe 3

FYS2140 Kvantefysikk, Oblig 2. Sindre Rannem Bilden, Gruppe 3 FYS2140 Kvantefysikk, Oblig 2 Sindre Rannem Bilden, Gruppe 3 6. februar 2015 Obliger i FYS2140 merkes med navn og gruppenummer! Denne obligen har oppgaver som tar for seg fotoelektrisk eekt, Comptonspredning

Detaljer

Statisk magnetfelt. Kristian Reed a, Erlend S. Syrdalen a

Statisk magnetfelt. Kristian Reed a, Erlend S. Syrdalen a Statisk magnetfelt Kristian Reed a, Erlend S. Syrdalen a a Institutt for fysikk, Norges Teknisk-Naturvitenskapelige Universitet, N-791 Trondheim, Norway. Sammendrag I det følgende eksperimentet ble en

Detaljer

Vannbølger. 1 Innledning. 2 Teori og metode. Sindre Alnæs, Øistein Søvik Institutt for fysikk, NTNU, N-7491 Trondheim, Norge. 12.

Vannbølger. 1 Innledning. 2 Teori og metode. Sindre Alnæs, Øistein Søvik Institutt for fysikk, NTNU, N-7491 Trondheim, Norge. 12. Vannbølger Sindre Alnæs, Øistein Søvik Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 12. april 2013 Sammendrag I dette eksperimentet ble overatespenningen til vann fastslått til (34,3 ± 7,1) mn/m,

Detaljer

Løsningsforslag til øving 12

Løsningsforslag til øving 12 FY12/TFY416 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 28. Løsningsforslag til øving 12 Oppgave 1 a) Hovedmaksima får vi i retninger som tilsvarer at både teller og nevner blir null, dvs φ = nπ, der

Detaljer

Kapittel 11. Interferens - Diffraksjon. 11.1 Innledning*

Kapittel 11. Interferens - Diffraksjon. 11.1 Innledning* Kapittel 11 Interferens - Diffraksjon [Deler av den matematiske formalismen i kapitlet er delvis kopi av et kompendium som Arne Dahlback skrev i 006. Mange figurer er foreløpig lånt fra andre. Skal tegne

Detaljer

UTSETT EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2

UTSETT EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2 SJØKRIGSSKOLEN Lørdag 16.09.06 UTSETT EKSAMEN VÅREN 2006 Klasse OM2 og KJK2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Teknisk formelsamling Tabeller i fysikk for den videregående

Detaljer

FORSØK I OPTIKK. Forsøk 1: Bestemmelse av brytningsindeks

FORSØK I OPTIKK. Forsøk 1: Bestemmelse av brytningsindeks FORSØK I OPTIKK Forsøk 1: Bestemmelse av brytningsindeks Hensikt I dette forsøket skal brytningsindeksen bestemmes for en sylindrisk linse ut fra måling av brytningsvinkler og bruk av Snells lov. Teori

Detaljer

Enkel introduksjon til kvantemekanikken

Enkel introduksjon til kvantemekanikken Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks

Detaljer

Kan vi forutse en pendels bevegelse, før vi har satt den i sving?

Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Gjør dette hjemme 6 #8 Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Skrevet av: Kristian Sørnes Dette eksperimentet ser på hvordan man finner en matematisk formel fra et eksperiment,

Detaljer

Løsningsforslag til prøveeksamen i FYS 2130 Svingninger og bølger. Våren 2008 (Foreløpig bare for oppgave 1 og 2 (Feil i 1b og 2f rettet opp).

Løsningsforslag til prøveeksamen i FYS 2130 Svingninger og bølger. Våren 2008 (Foreløpig bare for oppgave 1 og 2 (Feil i 1b og 2f rettet opp). Løsningsforslag til prøveeksamen i FYS 230 Svingninger og bølger. Våren 2008 (Foreløpig bare for oppgave og 2 (Feil i b og 2f rettet opp).) Oppgave a En ren stående bølge kan vi tenke oss er satt sammen

Detaljer

Løsningsforslag til øving 11

Løsningsforslag til øving 11 FY2/TFY46 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2. Løsningsforslag til øving Oppgave a) Hovedmaksima får vi i retninger som tilsvarer at både teller og nevner blir null, dvs φ = nπ, der n =,

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FY 5 - Svingninger og bølger Eksamensdag: 5. januar 4 Tid for eksamen: Kl. 9-5 Tillatte hjelpemidler: Øgrim og Lian: Størrelser

Detaljer

Løsningsforslag til FYS2130-konte-eksamen august 2015

Løsningsforslag til FYS2130-konte-eksamen august 2015 Løsningsforslag til FYS2130-konte-eksamen august 2015 Oppgave 1 a) Beskriv en plan, planpolarisert (lineært polarisert) elektromagnetisk bølge matematisk. (Skal ikke utledes!) Forklar hvilke detaljer i

Detaljer

Kommentarer til Oppgave 1b) og e) av Yvonne Rinne & Arnt Inge Vistnes

Kommentarer til Oppgave 1b) og e) av Yvonne Rinne & Arnt Inge Vistnes Kommentarer til Oppgave 1b) og e) av Yvonne Rinne & Arnt Inge Vistnes Oppgave 1 b) Oppgave 1b) var litt forvirrende for de fleste, og jeg har derfor valgt å skrive litt om hva som egentlig skjer når en

Detaljer

Solcellen. Nicolai Kristen Solheim

Solcellen. Nicolai Kristen Solheim Solcellen Nicolai Kristen Solheim Abstract Med denne oppgaven ønsker vi å oppnå kunnskap om hvordan man rent praktisk kan benytte en solcelle som generator for elektrisk strøm. Vi ønsker også å finne ut

Detaljer

RF5100 Lineær algebra Leksjon 10

RF5100 Lineær algebra Leksjon 10 RF5100 Lineær algebra Leksjon 10 Lars Sydnes, NITH 11. november 2013 I. LITT OM LYS OG FARGER GRUNNLEGGENDE FORUTSETNINGER Vi ser objekter fordi de reflekterer lys. Lys kan betraktes som bølger / forstyrrelser

Detaljer

Mal for rapportskriving i FYS2150

Mal for rapportskriving i FYS2150 Mal for rapportskriving i FYS2150 Ditt navn January 21, 2011 Abstract Dette dokumentet viser hovedtrekkene i hvordan vi ønsker at en rapport skal se ut. De aller viktigste punktene kommer i en sjekkliste

Detaljer

Bestemmelse av skjærmodulen til stål

Bestemmelse av skjærmodulen til stål Bestemmelse av skjærmodulen til stål Rune Strandberg Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 9. oktober 2007 Sammendrag Skjærmodulen til stål har blitt bestemt ved en statisk og en dynamisk

Detaljer

Hvordan blir det holografiske bildet registrert, og hvorfor ser vi noe?

Hvordan blir det holografiske bildet registrert, og hvorfor ser vi noe? 1 Hvordan blir det holografiske bildet registrert, og hvorfor ser vi noe? Olav Skipnes Cand real 2 Innhold Hvordan blir det holografiske bildet registrert?... 3 Bildet av et punkt... 3 Interferens...4

Detaljer

Kapittel 8. Varmestråling

Kapittel 8. Varmestråling Kapittel 8 Varmestråling I dette kapitlet vil det bli beskrevet hvordan energi transporteres fra et objekt til et annet via varmestråling. I figur 8.1 er det vist hvordan varmestråling fra en brann kan

Detaljer

Cavendisheksperimentet

Cavendisheksperimentet Cavendisheksperimentet Tobias Grøsfjeld, Benjamin Roaldssønn Hope, John Kåre Jansen 24. november 2010 Sammendrag Vi har målt den newtonske gravitasjonskonstanten via Cavendisheksperimentet, og forsøket

Detaljer

Løsningsforslag. for. eksamen. fysikk forkurs. 3 juni 2002

Løsningsforslag. for. eksamen. fysikk forkurs. 3 juni 2002 Løsningsforslag for eksamen fysikk forkurs juni 00 Løsningsforslag eksamen forkurs juni 00 Oppgave 1 1 7 a) Kinetisk energi Ek = mv, v er farten i m/s. Vi får v= m/s= 0m/s, 6 1 1 6 slik at Ek = mv = 900kg

Detaljer

FYS 2150.ØVELSE 15 POLARISASJON

FYS 2150.ØVELSE 15 POLARISASJON FYS 2150.ØVELSE 15 POLARISASJON Fysisk institutt, UiO 15.1 Polarisasjonsvektorene Vi skal i denne øvelsen studere lineært og sirkulært polarisert lys. En plan, lineært polarisert lysbølge beskrives ved

Detaljer

0.1 Kort introduksjon til komplekse tall

0.1 Kort introduksjon til komplekse tall Enkel introduksjon til matnyttig matematikk Vi vil i denne innledningen introdusere litt matematikk som kan være til nytte i kurset. I noen tilfeller vil vi bare skrive opp uttrykk uten å komme inn på

Detaljer

Elektrisk og Magnetisk felt

Elektrisk og Magnetisk felt Elektrisk og Magnetisk felt Kjetil Liestøl Nielsen 1 Emner for i dag Coulombs lov Elektrisk felt Ladet partikkel i elektrisk felt Magnetisk felt Magnetisk kraft på elektrisk eladninger Elektromagnetiske

Detaljer

ESERO AKTIVITET LAG DITT EGET TELESKOP. Lærerveiledning og elevaktivitet. Klassetrinn 7-8

ESERO AKTIVITET LAG DITT EGET TELESKOP. Lærerveiledning og elevaktivitet. Klassetrinn 7-8 ESERO AKTIVITET Klassetrinn 7-8 Lærerveiledning og elevaktivitet Oversikt Tid Læremål Nødvendige materialer 65 min Å vite at oppfinnelsen av teleskopet gjorde at vi fant bevis for at Jorden ikke er sentrumet

Detaljer

Statiske magnetfelt. Thomas Grønli og Lars A. Kristiansen Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 19. mars 2012

Statiske magnetfelt. Thomas Grønli og Lars A. Kristiansen Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 19. mars 2012 Statiske magnetfelt Thomas Grønli og Lars A. Kristiansen Institutt for fysikk, NTNU, N-79 Trondheim, Norge 9. mars Sammendrag I dette eksperimentet målte vi med en aksial halleffektprobe de statiske magnetfeltene

Detaljer

Prosjektoppgave i FYS2130 våren 2013

Prosjektoppgave i FYS2130 våren 2013 5 6 2 34 5 6-2 - 2 34 5 6-2 - Prosjektoppgave i FYS230 våren 203 Tema: Diffraksjon og optisk kvalitet 2 3 4 2 3 4 5 6 I årets prosjektoppgave inngår det litt forskjellige arbeidsoppgaver, så som numeriske

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 8. juni 2015 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVEITETET I OLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FY1000 Eksamensdag: 17. mars 2016 Tid for eksamen: 15.00-18.00, 3 timer Oppgavesettet er på 6 sider Vedlegg: Formelark (2

Detaljer

Løsningsforslag til eksamen i FYS1000, 13/6 2016

Løsningsforslag til eksamen i FYS1000, 13/6 2016 Løsningsforslag til eksamen i FYS1000, 13/6 2016 Oppgave 1 a) Sola skinner både på snøen og på treet. Men snøen er hvit og reflekterer det meste av sollyset. Derfor varmes den ikke så mye opp. Treet er

Detaljer

Oppgave 3 -Motstand, kondensator og spole

Oppgave 3 -Motstand, kondensator og spole Oppgave 3 -Motstand, kondensator og spole Ole Håvik Bjørkedal, Åge Johansen olehb@stud.ntnu.no, agej@stud.ntnu.no 18. november 2012 Sammendrag Rapporten omhandler hvordan grunnleggende kretselementer opptrer

Detaljer

2.201 Interferens med vannbølger

2.201 Interferens med vannbølger RST 1 2 Lys og bølger 3 2.201 Interferens med vannbølger I denne øvingen skal du observere hva som skjer når bølger møter hindringer undersøke hva formen på hindringen har å si for endringer i bølge mønsteret

Detaljer

Krefter, Newtons lover, dreiemoment

Krefter, Newtons lover, dreiemoment Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har

Detaljer

LABORATORIERAPPORT. RL- og RC-kretser. Kristian Garberg Skjerve

LABORATORIERAPPORT. RL- og RC-kretser. Kristian Garberg Skjerve LABORATORIERAPPORT RL- og RC-kretser AV Kristian Garberg Skjerve Sammendrag Oppgavens hensikt er å studere pulsrespons for RL- og RC-kretser, samt studere tidskonstanten, τ, i RC- og RL-kretser. Det er

Detaljer

Fysikk & ultralyd www.radiolog.no Side 1

Fysikk & ultralyd www.radiolog.no Side 1 Side 1 LYD Lyd er mekaniske bølger som går gjennom et medium. Hørbar lyd har mellom 20 og 20.000 svingninger per sekund (Hz) og disse bølgene overføres ved bevegelser i luften. Når man for eksempel slår

Detaljer

FYS 2150 Modul 3 Polarisasjon

FYS 2150 Modul 3 Polarisasjon FYS 2150 Modul 3 Polarisasjon Fysisk institutt, Universitetet i Oslo Vår 2004 Redigert høst 2013 1 Polarisasjonsvektorene Vi skal i denne øvelsen studere lineært og sirkulært polarisert lys. En plan, lineært

Detaljer

Brukerhåndbok - Sikkerhetspresenning manuell med skinner

Brukerhåndbok - Sikkerhetspresenning manuell med skinner 1. Godkjent person sikring Tåler noe snøbelastning 2. Manuell opprulling med sveiv eller tau hvor utrekkstanga føres med støttehjul 3. Hele presenningen trekkes manuelt ut med tau 4. Dekker ovale, runde

Detaljer

Universitetet i Stavanger Institutt for petroleumsteknologi

Universitetet i Stavanger Institutt for petroleumsteknologi Universitetet i Stavanger Institutt for petroleumsteknologi Side 1 av 6 Faglig kontakt under eksamen: Professor Ingve Simonsen Telefon: 470 76 416 Eksamen i PET110 Geofysikk og brønnlogging Mar. 09, 2015

Detaljer

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1 AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 Innhold Mekanikk Termodynamikk Elektrisitet og magnetisme Elektromagnetiske bølger Mekanikk Newtons bevegelseslover Et legeme som ikke

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer

Forelesning nr.4 INF 1411 Elektroniske systemer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer 1 Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondesator Oppbygging,

Detaljer

Rapport Kraft på strømførende leder i statisk magnetfelt

Rapport Kraft på strømførende leder i statisk magnetfelt Rapport Kraft på strømførende leder i statisk magnetfelt Kristian S Sagmo 1 ved Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 4. april 2011 Sammendrag Vi undersøkte magnetiske krefter i et homogent

Detaljer

16 Bølger. 16.1 Bølgebevegelse. 134 16 Bølger 16.106 16.101 16.102 + 16.107 16.108 16.109 + 16.103 16.104 16.105

16 Bølger. 16.1 Bølgebevegelse. 134 16 Bølger 16.106 16.101 16.102 + 16.107 16.108 16.109 + 16.103 16.104 16.105 134 16 Bølger 16 Bølger 16.1 Bølgebevegelse 16.101 Et lodd som henger i en snor, blir trukket ut til siden og så sluppet. Da svinger loddet fram og tilbake som en planpendel. Tida for ti hele svingninger

Detaljer

Braggdiffraksjon. Nicolai Kristen Solheim

Braggdiffraksjon. Nicolai Kristen Solheim Braggdiffraksjon Nicolai Kristen Solheim Abstract Gjennom denne øvelsen skal vi gjøre oss kjent med røntgenstråling og elektrondiffraksjon. Herunder finner vi bremsestråling, karakteristisk stråling, energispektrum,

Detaljer

Experiment Norwegian (Norway) Hoppende frø - En modell for faseoverganger og ustabilitet (10 poeng)

Experiment Norwegian (Norway) Hoppende frø - En modell for faseoverganger og ustabilitet (10 poeng) Q2-1 Hoppende frø - En modell for faseoverganger og ustabilitet (10 poeng) Vennligst les de generelle instruksjonene som ligger i egen konvolutt, før du begynner på denne oppgaven. Introduksjon Faseoverganger

Detaljer

ABELGØY MATEMATIKKONKURRANSE FOR 9. TRINN. 9. april 2015

ABELGØY MATEMATIKKONKURRANSE FOR 9. TRINN. 9. april 2015 ABELGØY MATEMATIKKONKURRANSE FOR 9. TRINN 9. april 2015 Sekskantede stjerner i en sekskantet stjerne, stråler som alltid forgrener seg i mindre stråler er de ikke fantastiske, disse fnuggene? Målsetting:

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Obligatorisk oppgave nr 4 FYS-2130. Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 4 FYS-2130. Lars Kristian Henriksen UiO Obligatorisk oppgave nr 4 FYS-2130 Lars Kristian Henriksen UiO 23. februar 2015 Diskusjonsoppgaver: 3 Ved tordenvær ser vi oftest lynet før vi hører tordenen. Forklar dette. Det finnes en enkel regel

Detaljer

Fourier-analyse. Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner

Fourier-analyse. Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner Fourier-analyse Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner som yxt (, ) = Asin( kx ωt+ ϕ) En slik bølge kan karakteriseres ved en enkelt frekvens

Detaljer

LABORATORIERAPPORT. Halvlederdioden AC-beregninger. Christian Egebakken

LABORATORIERAPPORT. Halvlederdioden AC-beregninger. Christian Egebakken LABORATORIERAPPORT Halvlederdioden AC-beregninger AV Christian Egebakken Sammendrag I dette prosjektet har vi forklart den grunnleggende teorien bak dioden. Vi har undersøkt noen av bruksområdene til vanlige

Detaljer

Av David Karlsen, NTNU, Erling Tønne og Jan A. Foosnæs, NTE Nett AS/NTNU

Av David Karlsen, NTNU, Erling Tønne og Jan A. Foosnæs, NTE Nett AS/NTNU Av David Karlsen, NTNU, Erling Tønne og Jan A. Foosnæs, NTE Nett AS/NTNU Sammendrag I dag er det lite kunnskap om hva som skjer i distribusjonsnettet, men AMS kan gi et bedre beregningsgrunnlag. I dag

Detaljer

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 Mandag 19.03.07 Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Likespenningskilde

Detaljer

Kabelanlegg Side: 1 av 5

Kabelanlegg Side: 1 av 5 Kabelanlegg Side: 1 av 5 1 HENSIKT OG OMFANG... 2 2 MÅLEMETODER... 3 2.1 Kobberkabel... 3 2.1.1 Karakteristisk impedans... 3 2.1.2 Dempning/dempningsforvrengning... 3 2.1.3 Faseforvrengning... 3 2.1.4

Detaljer

Regnbuen. Descartes var den første som forstod den. Hvilke egenskaper har du lagt merke til? E.H.Hauge

Regnbuen. Descartes var den første som forstod den. Hvilke egenskaper har du lagt merke til? E.H.Hauge Regnbuen Descartes var den første som forstod den. Hvilke egenskaper har du lagt merke til? Eksperimenter, tenkning, matematiske hjelpemidler, forklaringer, mysterier, klassiske teorier, nyere teorier.

Detaljer

INF L4: Utfordringer ved RF kretsdesign

INF L4: Utfordringer ved RF kretsdesign INF 5490 L4: Utfordringer ved RF kretsdesign 1 Kjøreplan INF5490 L1: Introduksjon. MEMS i RF L2: Fremstilling og virkemåte L3: Modellering, design og analyse Dagens forelesning: Noen typiske trekk og utfordringer

Detaljer

FYS2140 Kvantefysikk, Obligatorisk oppgave 2. Nicolai Kristen Solheim, Gruppe 2

FYS2140 Kvantefysikk, Obligatorisk oppgave 2. Nicolai Kristen Solheim, Gruppe 2 FYS2140 Kvantefysikk, Obligatorisk oppgave 2 Nicolai Kristen Solheim, Gruppe 2 Obligatorisk oppgave 2 Oppgave 1 a) Vi antar at sola med radius 6.96 10 stråler som et sort legeme. Av denne strålingen mottar

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november. TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =

Detaljer

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA656 16.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for eksamen i matematikke 3MX er gratis, og

Detaljer

Manual til laboratorieøvelse. Solceller. Foto: Túrelio, Wikimedia Commons. Versjon 10.02.14

Manual til laboratorieøvelse. Solceller. Foto: Túrelio, Wikimedia Commons. Versjon 10.02.14 Manual til laboratorieøvelse Solceller Foto: Túrelio, Wikimedia Commons Versjon 10.02.14 Teori Energi og arbeid Arbeid er et mål på bruk av krefter og har symbolet W. Energi er et mål på lagret arbeid

Detaljer

Elektrondiffraksjon. Hanne Synnøve Pettersen Linde, Magnus Holter-Sørensen Dahle Institutt for fysikk, NTNU, N-7491 Trondheim, Norge.

Elektrondiffraksjon. Hanne Synnøve Pettersen Linde, Magnus Holter-Sørensen Dahle Institutt for fysikk, NTNU, N-7491 Trondheim, Norge. Elektrondiffraksjon Hanne Synnøve Pettersen Linde, Magnus Holter-Sørensen Dahle Institutt for fysikk, NTNU, N-7491 Trondheim, Norge Februar 2013 Sammendrag Det ble i dette forsøket fremstilt bilder av

Detaljer

Denne ligninga beskriver en udempet harmonisk oscillator. Torsjons-svingning. En stav er festet midt på en tråd som er festet i begge ender.

Denne ligninga beskriver en udempet harmonisk oscillator. Torsjons-svingning. En stav er festet midt på en tråd som er festet i begge ender. Side av 6 Periodiske svingninger (udempede) Masse og fjær, med fjærkonstant k. Massen glir på friksjonsfritt underlag. Newtons. lov gir: mx kx dvs. x + x 0 hvor ω0 k m som gir løsning: xt () C cos t +

Detaljer

Bølgeledere. Figur 1: Eksempler på bølgeledere. (a) parallell to-leder (b) koaksial (c) hul rektangulær (d) hul sirkulær (e) hul, generell form

Bølgeledere. Figur 1: Eksempler på bølgeledere. (a) parallell to-leder (b) koaksial (c) hul rektangulær (d) hul sirkulær (e) hul, generell form Bølgeledere Vi skal se hvordan elektromagnetiske bølger forplanter seg gjennom såkalte bølgeledere. Eksempel på bølgeledere vi kjenner fra tidligere som transportrerer elektromagnetiske bølger er fiberoptiske

Detaljer

Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1.

Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. FYS2130 Våren 2008 Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. Vi har på forelesning gått gjennom foldingsfenomenet ved diskret Fourier transform, men ikke vært pinlig nøyaktige

Detaljer

ELEVARK. ...om å tømme en beholder for vann. Innledning. Utarbeidet av Skolelaboratoriet ved NTNU - NKR

ELEVARK. ...om å tømme en beholder for vann. Innledning. Utarbeidet av Skolelaboratoriet ved NTNU - NKR ELEVARK...om å tømme en beholder for vann Innledning Problemstilling: Vi har et sylindrisk beger med et sirkulært hull nær bunnen. Vi ønsker å bestemme sammenhengen mellom væskehøyden som funksjon av tiden

Detaljer

Pendler, differensialligninger og resonansfenomen

Pendler, differensialligninger og resonansfenomen Pendler, differensialligninger og resonansfenomen Hensikt Oppsettet pa bildet kan brukes til a illustrere ulike fenomen som opptrer i drevede svingesystemer, slik som for eksempel resonans. Labteksten

Detaljer

SENSURVEILEDNING FYSIKKDEL: Oppgave 1 (15 %) Oppgave 2 (20 %) EMNEKODE OG NAVN SEMESTER/ ÅR/ EKSAMENSTYPE. 6 timers skriftlig eksamen

SENSURVEILEDNING FYSIKKDEL: Oppgave 1 (15 %) Oppgave 2 (20 %) EMNEKODE OG NAVN SEMESTER/ ÅR/ EKSAMENSTYPE. 6 timers skriftlig eksamen SENSURVEILEDNING EMNEKODE OG NAVN Naturfag 1, Na130-E SEMESTER/ ÅR/ EKSAMENSTYPE 6 timers skriftlig eksamen Fysikk er 50 %, Biologi 50 % FYSIKKDEL: Oppgave 1 (15 %) Et kompetansemål etter 10. trinn under

Detaljer

RAPPORT Skanning med Georadar Prosjekt nr. 13123

RAPPORT Skanning med Georadar Prosjekt nr. 13123 Forsand RAPPORT Skanning med Georadar Prosjekt nr. 13123 INNHOLD: Side 1. Innledning 2 2. Sammenfatning 2 3. Måleprogram 2 4. Feltarbeid 2 5. Utstyr 2 6. Nøyaktighet 3 7. Prosessering og tolkning av data

Detaljer

Elektrolaboratoriet RAPPORT. Oppgave nr. 1. Spenningsdeling og strømdeling. Skrevet av xxxxxxxx. Klasse: 09HBINEA. Faglærer: Tor Arne Folkestad

Elektrolaboratoriet RAPPORT. Oppgave nr. 1. Spenningsdeling og strømdeling. Skrevet av xxxxxxxx. Klasse: 09HBINEA. Faglærer: Tor Arne Folkestad Elektrolaboratoriet RAPPORT Oppgave nr. 1 Spenningsdeling og strømdeling Skrevet av xxxxxxxx Klasse: 09HBINEA Faglærer: Tor Arne Folkestad Oppgaven utført, dato: 5.10.2010 Rapporten innlevert, dato: 01.11.2010

Detaljer

Laboratorieoppgave 3: Fordampingsentalpi til sykloheksan

Laboratorieoppgave 3: Fordampingsentalpi til sykloheksan Laboratorieoppgave 3: Fordampingsentalpi til sykloheksan Åge Johansen agej@stud.ntnu.no Ole Håvik Bjørkedal olehb@stud.ntnu.no Gruppe 60 17. mars 2013 Sammendrag Rapporten omhandler hvordan fordampningsentalpien

Detaljer

Fouriersyntese av lyd

Fouriersyntese av lyd Fouriersyntese av lyd Hensikt Laboppsettet vist p a bildet er kjent under navnet Fouriersyntese av lyd. Hensikten med oppsettet er a erfare hvordan ulike kombinasjoner av en grunntone og dens overharmoniske

Detaljer

Kvalitetskontroll ved UUS. Charlotte Kile Larsen Kompetansesenter for Diagnostisk Fysikk Ullevål Universitetssykehus HF

Kvalitetskontroll ved UUS. Charlotte Kile Larsen Kompetansesenter for Diagnostisk Fysikk Ullevål Universitetssykehus HF Kvalitetskontroll ved UUS Charlotte Kile Larsen Kompetansesenter for Diagnostisk Fysikk Ullevål Universitetssykehus HF KDF - røntgen 5,5 stillinger 18 sykehus 250 modaliteter sjekkes hvert år CT Gjennomlysning

Detaljer

FORSØK MED ROTERENDE SYSTEMER

FORSØK MED ROTERENDE SYSTEMER FORSØK MED ROTERENDE SYSTEMER Laboratorieøvelsen består av 3 forsøk. Forsøk 1: Bestemmelse av treghetsmomentet til roterende punktmasser Hensikt Hensikt med dette forsøket er å bestemme treghetsmomentet

Detaljer

antall db = 10 log 10 ( I I ref X = 10 log 10 (Z) = et tall

antall db = 10 log 10 ( I I ref X = 10 log 10 (Z) = et tall Løsningsforslag Eksamen i FYS 230 Svingninger og bølger, 4. juni 2009. Oppgave a Uttrykkene og 3 er ekvivalente. Begge kan angi en svingning både med vilkårlig amplitude og vilkårlig fase. Uttrykk 2 kan

Detaljer

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I EMNE TFY4120 FYSIKK

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I EMNE TFY4120 FYSIKK Studentnummer: Studieretning: Bokmål Side 1 av 1 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Jon Otto Fossum,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveisksamen i: FYS1000 Eksamensdag: 27. mars 2014 Tid for eksamen: 15.00-17.00, 2 timer Oppgavesettet er på 6 sider Vedlegg: Formelark

Detaljer

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 23. februar, 2012 Tid for eksamen : kl. 9.00-13.00 Sted : Administrasjonsbygget, Rom B154 Hjelpemidler : K. Rottmann: Matematisk Formelsamling,

Detaljer

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge Avdeling for lærerutdanning Lineær algebra for allmennlærerutdanningen Inger Christin Borge 2006 Innhold Notasjon iii 1 Lineære ligningssystemer 1 1.1 Lineære ligninger......................... 1 1.2 Løsningsmengde

Detaljer

Institutt for fysikk Fakultet for naturvitenskap og teknologi. Løsningsforslag til eksamen i TFY4170 Fysikk 2 Onsdag 6.

Institutt for fysikk Fakultet for naturvitenskap og teknologi. Løsningsforslag til eksamen i TFY4170 Fysikk 2 Onsdag 6. NTNU Side 1 av 5 Institutt for fysikk Fakultet for naturvitenskap og teknologi Merk: Hver deloppgave teller like mye. Dette løsningsforslaget er på 5 sider. Løsningsforslag til eksamen i TFY417 Fysikk

Detaljer

Mekaniske svingesystemer. Institutt for fysikk, NTNU

Mekaniske svingesystemer. Institutt for fysikk, NTNU Oppgave 2 Lab TFY4120 Mekaniske svingesystemer Institutt for fysikk, NTNU 1.1 Innledning I denne oppgaven skal vi studere begrepene fri og tvungne svingninger i et enkelt svingesystem. Vi skal spesielt

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 4 Oppgave 1 a) D = D 0 [ cos (kx ωt) + sin (kx ωt) ] 1/ = D 0 for alle x og t. Med andre ord, vi har overalt

Detaljer

Universets inflasjonsfase i lys av BICEP2-observasjonene

Universets inflasjonsfase i lys av BICEP2-observasjonene Universets inflasjonsfase i lys av BICEP2-observasjonene Øyvind Grøn HIOA 17.juni 2014 1 2 3 4 5 Universet kan ha oppstått som en kvantefluktuasjon allerede ved Plancktiden t P =10-43 s dominert av mørk

Detaljer

3 x = 27 x ln 3 = ln 27 ln 27 x = ln 3 x = 3. 10 x2 = 10 x log(10 x2 ) = log(10 x ) x 2 = x x(x 1)=0 x = 0 x = 1. x +3=2

3 x = 27 x ln 3 = ln 27 ln 27 x = ln 3 x = 3. 10 x2 = 10 x log(10 x2 ) = log(10 x ) x 2 = x x(x 1)=0 x = 0 x = 1. x +3=2 4 oppgave. a..i) 3 x = 7 x ln 3 = ln 7 ln 7 x = ln 3 x = 3. a..ii) 0 x = 0 x log(0 x ) = log(0 x ) x = x x(x )=0 x = 0 x =.3 a..i) Kvadrerer x +3= x +3= x = Setterikkeprøve,forjegseratsvareterriktig,menhuskåsetteprøvepå

Detaljer

Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( )

Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 ( ) Kapittel 7 Atomstruktur og periodisitet Repetisjon 1 (04.11.01) 1. Generell bølgeteori - Bølgenatur (i) Bølgelengde korteste avstand mellom to topper, λ (ii) Frekvens antall bølger pr tidsenhet, ν (iii)

Detaljer

Kapittel 4. Bølger, del 1. 4.1 Innledning* viser hvordan bølgen brer seg i rommet etter som tiden går For en harmonisk bølge (form som en sinuseller

Kapittel 4. Bølger, del 1. 4.1 Innledning* viser hvordan bølgen brer seg i rommet etter som tiden går For en harmonisk bølge (form som en sinuseller Kapittel 4 Bølger, del 1 [Copyright 2009: A.I.Vistnes.] 4.1 Innledning* Bølger utgjør hovedparten av kurset vårt, og vi skal dvele med mange aspekter av bølger. I dette kapittelet skal vi først og fremst

Detaljer