Oppgave 3 -Motstand, kondensator og spole
|
|
- Arild Markussen
- 9 år siden
- Visninger:
Transkript
1 Oppgave 3 -Motstand, kondensator og spole Ole Håvik Bjørkedal, Åge Johansen olehb@stud.ntnu.no, agej@stud.ntnu.no 18. november 2012 Sammendrag Rapporten omhandler hvordan grunnleggende kretselementer opptrer i likestrøm og vekselstrømkretser. Den beskriver også hvordan hvordan spenning og strøm varierer ved ulike kretselementer. 1
2 Innhold 1 Forord 3 2 Teori Kondensator Bestemmelse av resistans ved måling av strøm og spenning Innledning Resultater Diskusjon Resistansmåling med digitalmultimeter Resultater Utladning av kondensator Innledning Konstanter Resultater Diskusjon Vedlegg 10
3 1 Forord Denne rapporten er basert på resultater fra laboratoriedelen av fysikkurset TFY4120. Rapporten omhandler "Oppgave 3 motstand, kondensator og spole". Hovedfokuset har vært på likestrøms RC-kretser. Vi vil gjerne Lene Guddal for ypperlig veilledning gjennom hele kurset. 2 Teori 2.1 Kondensator En kondensator består av to ladningsbærere adskilt av et vakuum, eller en isolator. Kondensatorer kan lades opp ved å påføre dem en spenning V, noe som vil lade de to sidene med en ladning hhv. + og - Q. Om kretsen brytes eller spenningen slås av, vil kondensatoren da ha en lagret potensiell energi som kan utløses ved å lukke kretsen. (Ligning 1). 1 U = 1 QV (1) 2 Kondensatorens lagringsevne blir kalt dens kapasitans (C) og har enhet Farad [F]. Kapasitans er denert i ligning 2, der Q er ladningen lagret, og V a b dieransen i potensiale mellom de to sidene. C = Q V ab (2) L = NΦ I (3) 3 Bestemmelse av resistans ved måling av strøm og spenning 3.1 Innledning I denne oppgaven skal strømmen og spenningen bestemmes i en krets bestående av et amperemeter, voltmeter og en motstand. Ved å koble på to forskjellige måter får man faktiske målinger, se gur 1. I kobling a) vil man måle korrekt spenning, mens amperemeteret vil vise summen av strømmen I R gjennom både R og I V. Dermed vil strømmen i kobling a) vise I R = I I V. 3
4 Hensikten med oppgaven blir derfor å beregne reell strøm og spenning ved hjelp av korrigerte verdier. Ved å løse med hensyn på R får man: V = R(1 I V ) = I V R V (4) R = V 1 I V = V I V R v (5) R = V I (6) Problemet som oppstår kan man se ved å sammenligne ligning 5 og 6. Problemet løser vi ved å koble kretsen om til kobling b). Der er det strømmen som viser den riktige verdien, mens spenningen viser summen av spenningsfallene over R og amperemeteret. Spenningen over voltmeteret blir da: V = I(R A + R) (7) Løser igjen med hensyn på R, for å få den korrigerte: R = V R AI I = V I R A (8) Den korrigerte ligningen 8 er igjen forskjellig fra den ukorrigerte (ligning 6. 4
5 Figur 1: Figuren viser koblingsskjemaet for oppsettet a) og b) 3.2 Resultater Kobling a) R 3,ukorrigert = 217, 4Ω R 1,ukorrigert = 6818, 18Ω R 3,korrigert = 227, 3Ω R 1,korrigert = 1034Ω Prosentvis-forskjell: R 3 = 3, 4% R 1 = 4, 4% 5
6 Kobling b) R 3,ukorrigert = 277, 8Ω R 1,ukorrigert = 10kΩ R 3,korrigert = 226, 27Ω R 1,korrigert = 9, 948kΩ Prosentvis-forskjell: R 3 = 18, 5% R 1 = 0, 5% 3.3 Diskusjon Forskjellen mellom ukorrigert og korrigert verdi ligger innenfor 5%, med unntak av R 3 for kobling b). For denne var imidlertid utslaget svært lite, slik at det var vanskelig å lese av nøyaktige verdier, som mest sannsynlig har påvirket nøyaktigheten. Grunnet lavere motstand vil også selvsagt R A utgjøre en tilsvarende større del siden den er koblet i samme paralell som R. Dette står i motsetning til kobling a) der R V og R A står utenfor parallellen R går i. 4 Resistansmåling med digitalmultimeter Den indre resistansen R A i amperemeteret som ble brukt som kretselement i oppgave (6.1.1), samt R1, R2, R3 ble målt ved hjelp av et digitalt multimeter, ved å koble kretselementene direkte inn i det digitale multimeteret. 4.1 Resultater Tabell 1: Resulater av motstandsbestemmelse Kretselement Motstand [Ω] R 3 228,0 R 2 1, R 1 10, R A 51,5 6
7 5 Utladning av kondensator 5.1 Innledning Motstanden R vil utlade kondensatoren, gjenstående lading (S = k I) kan leses av på galvanometeret. Først måles gjenstående ladning med kondensator C. Utslaget ble lest av som funksjon av tiden med intervaller på 30 sekunder og senere ett minutt. Deretter ble utladningskurven plottet. Formålet med oppgaven er å nne tidskonstanten τ for RC-kretsen, sammenligne eksperimentell og sammenlign denne med den teoretiske, gitt med konstnantene for R og C. τ er denert som: τ = RC (9) strømmen gjennom kretsen vil nå bli gitt av uttrykkene: I 1 = I 0 /e = 0, 368I 0 (10) τ bestemmes ekspreminentelt ved å måle tiden det tar å redusere strømmen fra I = I 0 til I = I 0 /e. I 0 kan bestemmes hvor som helst på utladningskurven. For kondensatoren C x vet man ikke kapasitansen. τ x skal bestemmes eksprimentelt, ved å måle utladningen 10 ganger. Deretter bestemmes kapasitansen C x fra tidskonstanten og motstanden (som er kjent) fra ligning (9). Figur 2: Figuren viser koblingsskjemaet for oppgaven 7
8 5.1.1 Konstanter Tabell 2: Konstanter gitt i forsøket C F R Ω S Resultater Figur 3: Figuren viser S plottet mot τ, y-aksen er logaritmisk, noe som gjør at grafen blir lineær. Finner tidskonstanten, τ: 0, = 35, 3 = S 1 (11) Leser av τ verdi ut fra S 1 på gur 3. τ = 255 s Sammenligner med verdi for τ = R C = 240s (12) For motstanden C x ble τ x målt til 49,5 s, ved utladning fra S 0 = 96 til S 1 = 20 Regner ut C x : C = τ x (13) R 49, = 2, F 8
9 Finner usikkerheten: Regner ut τ og R: C C = ( τ τ )2 + ( R R )2 (14) C x C x = τ = 1, 2s R = Ω ( 1, 2 49, 5 )2 + ( )2 = 0, 024 (15) C x = 0, 024 2, = 5, F (16) 5.3 Diskusjon Tidskonstanten for motstand C x er trolig feil, da det ble målt utladning fra S 0 = 96 til S 1 = 20. I ettertid ble det oppdaget at dette vil gi en feilaktig τ, da tidskonstanten egentlig burde vært målt ut ifra 0, 368 I 0. Ved S 1 = 20 vil dette gi 0, 208 I 0. Resultatene fra de andre delene av oppgaven samsvarer bra med de forventede verdiene, noe som tyder på at forsøket er blitt utført på en nøyaktig og god måte. 9
10 6 Vedlegg 1. Måledata Referanser [1] Young H.D, Freedman R.A, Ford A.L Univeristy physics with Modern Physics, 13th ed.; Pearson Education Limited, USA, 2011 Ole Håvik Bjørkedal Trondheim, 18. november 2012 Åge Johansen Trondheim, 18. november
Elektriske kretser. Innledning
Laboratorieøvelse 3 Fys1000 Elektriske kretser Innledning I denne oppgaven skal du måle elektriske størrelser som strøm, spenning og resistans. Du vil få trening i å bruke de sentrale begrepene, samtidig
DetaljerLABORATORIERAPPORT. RL- og RC-kretser. Kristian Garberg Skjerve
LABORATORIERAPPORT RL- og RC-kretser AV Kristian Garberg Skjerve Sammendrag Oppgavens hensikt er å studere pulsrespons for RL- og RC-kretser, samt studere tidskonstanten, τ, i RC- og RL-kretser. Det er
DetaljerMotstand, kondensator og spole
Oppgave 3 Lab i TFY4108 Motstand, kondensator og spole Institutt for fysikk, NTNU Side 2 av 15 1. Innledning Motstander, kondensatorer og spoler er de grunnleggende elementene i elektriske kretser. Med
DetaljerUniversitetet i Oslo FYS Labøvelse 1. Skrevet av: Sindre Rannem Bilden Kristian Haug
Universitetet i Oslo FYS20 Labøvelse Skrevet av: Sindre Rannem Bilden Kristian Haug 7. november 204 PRELAB-Oppg. Setter inn i U = U 0 e t/τ og får PRELAB-Oppg. 2 C = µf U = 2 U 0 t = 20s τ = RC 2 U 0 =
DetaljerMandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12
nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 Mandag 19.03.07 Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Likespenningskilde
DetaljerLaboratorieøvelse 3 - Elektriske kretser
Laboratorieøvelse 3 - Elektriske kretser FYS1000, Fysisk institutt, UiO Våren 2014 (revidert 15. april 2016) Innledning I denne oppgaven skal du måle elektriske størrelser som strøm, spenning og resistans.
DetaljerElektrisitetslære TELE1002-A 13H HiST-AFT-EDT
Elektrisitetslære TELE002-3H HiST-FT-EDT Øving 4; løysing Oppgave R R 3 R 6 E R 2 R 5 E 2 R 4 Figuren over viser et likestrømsnettverk med ideelle spenningskilder og resistanser. Verdiene er: E = 40,0
DetaljerForelesning nr.7 INF 1410. Kondensatorer og spoler
Forelesning nr.7 IF 4 Kondensatorer og spoler Oversikt dagens temaer Funksjonell virkemåte til kondensatorer og spoler Konstruksjon Modeller og fysisk virkemåte for kondensatorer og spoler Analyse av kretser
DetaljerELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø 18.01.02.
ELEKTRISITET - Sammenhengen mellom spenning, strøm og resistans Lene Dypvik NN Øyvind Nilsen Naturfag 1 Høgskolen i Bodø 18.01.02.2008 Revidert av Lene, Øyvind og NN Innledning Dette forsøket handler om
DetaljerEn del utregninger/betraktninger fra lab 8:
En del utregninger/betraktninger fra lab 8: Fra deloppgave med ukjent kondensator: Figur 1: Krets med ukjent kondensator og R=2,2 kω a) Skal vise at når man stiller vinkelfrekvensen ω på spenningskilden
DetaljerRapport laboratorieøving 2 RC-krets. Thomas L Falch, Jørgen Faret Gruppe 225
Rapport laboratorieøving 2 RC-krets Thomas L Falch, Jørgen Faret Gruppe 225 Utført: 12. februar 2010, Levert: 26. april 2010 Rapport laboratorieøving 2 RC-krets Sammendrag En RC-krets er en seriekobling
DetaljerKondensator. Symbol. Lindem 22. jan. 2012
UKE 5 Kondensatorer, kap. 12, s. 364-382 RC kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 Spoler, kap. 10, s. 289-304 1 Kondensator Lindem 22. jan. 2012 Kondensator
DetaljerSammendrag, uke 13 (30. mars)
nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2005 Sammendrag, uke 13 (30. mars) Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Spenningskilde
DetaljerLaboratorieoppgave 3: Fordampingsentalpi til sykloheksan
Laboratorieoppgave 3: Fordampingsentalpi til sykloheksan Åge Johansen agej@stud.ntnu.no Ole Håvik Bjørkedal olehb@stud.ntnu.no Gruppe 60 17. mars 2013 Sammendrag Rapporten omhandler hvordan fordampningsentalpien
DetaljerTFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng)
TFE411 Vår 216 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon Løsningsforslag Øving 3 1 Teorispørsmål. (2 poeng) a) Beskriv følgende med egne ord: Nodespenningsmetoden.
DetaljerOnsdag isolator => I=0
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 13 Onsdag 26.03.08 RC-kretser [FGT 27.5; YF 26.4; TM 25.6; AF Note 25.1; LHL 22.4; DJG Problem 7.2] Rommet mellom de
DetaljerOppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene:
3. juni 2010 Side 2 av 16 Oppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene: Reduser motstandsnettverket til én enkelt resistans og angi størrelsen
DetaljerForelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov
Forelesning nr.2 INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslov Dagens temaer Sammenheng mellom strøm, spenning, energi og effekt Strøm og resistans i serielle kretser
DetaljerMal for rapportskriving i FYS2150
Mal for rapportskriving i FYS2150 Ditt navn January 21, 2011 Abstract Dette dokumentet viser hovedtrekkene i hvordan vi ønsker at en rapport skal se ut. De aller viktigste punktene kommer i en sjekkliste
DetaljerModul nr Elektrisitet med digitale hjelpemidler - vgs
Modul nr. 1219 Elektrisitet med digitale hjelpemidler - vgs Tilknyttet rom: Ikke tilknyttet til et rom 1219 Newton håndbok - Elektrisitet med digitale hjelpemidler - vgs Side 2 Kort om denne modulen Denne
DetaljerForelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester
Forelesning nr.7 INF 1411 Elektroniske systemer Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Dagens temaer Nøyaktigere modeller for ledere, R, C og L Tidsrespons til reaktive
DetaljerAv denne ligningen ser vi at det bare er spenning over spolen når strømmen i spolen endrer seg.
ABORATORIEØVING 5 SPOE OG KONDENSATOR INTRODUKSJON TI ABØVINGEN Kondensatorer og spoler kaller vi med en fellesbetegnelse for reaktive komponenter. I Dsammenheng kan disse komponentene ikke beskrives ut
DetaljerForelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov
Forelesning nr.2 INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslov Dagens temaer Sammenheng mellom strøm, spenning, energi og effekt Strøm og resistans i serielle kretser
DetaljerUKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s.
UKE 5 Kondensatorer, kap. 12, s. 364-382 R kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 1 Kondensator Lindem 22. jan. 2012 Kondensator (apacitor) er en komponent
DetaljerLøsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011
Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011 Oppgave 1. a) Vi velger her, og i resten av oppgaven, positiv retning oppover. Dermed gir energibevaring m 1 gh = 1 2 m 1v 2 0 v 0 = 2gh. Rett
DetaljerForelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer
Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon
DetaljerTFE4100 Kretsteknikk Kompendium. Eirik Refsdal <eirikref@pvv.ntnu.no>
TFE4100 Kretsteknikk Kompendium Eirik Refsdal 16. august 2005 2 INNHOLD Innhold 1 Introduksjon til elektriske kretser 4 1.1 Strøm................................ 4 1.2 Spenning..............................
Detaljerog P (P) 60 = V 2 R 60
Flervalgsoppgaver 1 Forholdet mellom elektrisk effekt i to lyspærer på henholdsvis 25 W og 60 W er, selvsagt, P 25 /P 60 = 25/60 ved normal bruk, dvs kobla i parallell Hva blir det tilsvarende forholdet
DetaljerLøsningsforslag til ukeoppgave 10
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 10 Oppgave 17.15 Tegn figur og bruk Kirchhoffs 1. lov for å finne strømmene. Vi begynner med I 3 : Mot forgreningspunktet kommer det to strømmer,
DetaljerElevverksted Elektronikk Bruk av transistor som bryter
Skolelaboratoriet for matematikk, naturfag og teknologi Elevverksted Elektronikk Bruk av transistor som bryter Bakgrunnskunnskap: - Å kunne beregne strøm, spenning og resistans i elektriske kretser. Dvs.
DetaljerSolcellen. Nicolai Kristen Solheim
Solcellen Nicolai Kristen Solheim Abstract Med denne oppgaven ønsker vi å oppnå kunnskap om hvordan man rent praktisk kan benytte en solcelle som generator for elektrisk strøm. Vi ønsker også å finne ut
DetaljerForelesning nr.4 IN 1080 Mekatronikk. Vekselstrøm Kondensatorer
Forelesning nr.4 IN 1080 Mekatronikk Vekselstrøm Kondensatorer Dagens temaer Mer om Thévenins og Nortons teoremer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser
DetaljerElektrisitetslære TELE1002-A 13H HiST-AFT-EDT
Elektrisitetslære TELE2-A 3H HiST-AFT-EDT Øving ; løysing Oppgave En ladning på 65 C passerer gjennom en leder i løpet av 5, s. Hvor stor blir strømmen? Strømmen er gitt ved dermed blir Q t dq. Om vi forutsetter
DetaljerEnkle kretser med kapasitans og spole- bruk av datalogging.
Laboratorieøvelse i FY3-Elektrisitet og magnetisme Vår Fysisk Institutt, NTNU Enkle kretser med kapasitans og spole- bruk av datalogging. Oppgave -Spenning i krets a: Mål inngangsspenningen og spenningsfallet
DetaljerForelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer
Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon
DetaljerLøsningsforslag eksamen inf 1410 våren 2009
Løsningsforslag eksamen inf 1410 våren 2009 Oppgave 1- Strøm og spenningslover. (Vekt: 15%) a) Finn den ukjente strømmen I 5 i Figur 1 og vis hvordan du kom frem til svaret Figur 1 Løsning: Ved enten å
DetaljerKondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C = 1volt
Kondensator - apacitor Lindem jan.. 008 Kondensator - en komponent som kan lagre elektrisk ladning. Symbol Kapasiteten ( - capacity ) til en kondensator måles i Farad. Som en teknisk definisjon kan vi
DetaljerForelesning nr.4 INF 1411 Elektroniske systemer
Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer 1 Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondesator Oppbygging,
DetaljerHalvledere. Vg1 Vg3 Antall elever: Maksimum 15 Varighet: 90 minutter. Passer for:
Halvledere Lærerveiledning Passer for: Vg1 Vg3 Antall elever: Maksimum 15 Varighet: 90 minutter Halvledere er et skoleprogram hvor elevene får en innføring i halvlederelektronikk. Elevene får bygge en
DetaljerForelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer
Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon
DetaljerForelesning nr.2 INF 1411 Elektroniske systemer
Forelesning nr. INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslo 1 Dagens temaer Sammenheng, strøm, spenning, energi og effekt Strøm og motstand i serielle kretser Bruk
DetaljerSammenhengen mellom strøm og spenning
Sammenhengen mellom strøm og spenning Naturfag 1 30. oktober 2009 Camilla Holsmo Karianne Kvernvik Allmennlærerutdanningen Innhold 1.0 Innledning... 2 2.0 Teori... 3 2.1 Faglige begreper... 3 2.2 Teoriforståelse...
DetaljerUtsatt eksamen i Matematikk 1000 MAFE ELFE KJFE 1000 Dato: 2. mars 2017 Løsningsforslag.
Utsatt eksamen i Matematikk 1 MAFE ELFE KJFE 1 Dato: 2. mars 217 Løsningsforslag. Oppgave 1 Gitt matrisene 1 2 1 3 A = 2 1, B = 7, C = 2 4 1 2 3 [ ] 1 2 1, v = 1 1 4 [ ] 5 1 og w =. 1 6 a) Regn ut følgende
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Elektroniske systemer Eksamensdag: 4. juni 2012 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg: Ingen
DetaljerEksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG
Side 1 av 15 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 317 (Digitaldel) Ingulf Helland
DetaljerForelesning nr.7 IN 1080 Elektroniske systemer. Spoler og induksjon Praktiske anvendelser Nøyaktigere modeller for R, C og L
Forelesning nr.7 IN 1080 Elektroniske systemer Spoler og induksjon Praktiske anvendelser Nøyaktigere modeller for R, C og L Dagens temaer Induksjon og spoler RL-kretser og anvendelser Fysiske versus ideelle
DetaljerRAPPORT. Elektrolaboratoriet. Oppgave nr.: 1. Tittel: Spenningsdeling og strømdeling. Skrevet av: Ole Johnny Berg
Elektrolaboratoriet APPOT Oppgave nr.: Tittel: Spenningsdeling og strømdeling Skrevet av: Ole Johnny Berg Klasse: Fleksing Gruppe: 4.a Øvrige deltakere: Gudbrand i Lia Faglærer: Nomen Nescio Lab.ingeniør.:
DetaljerUKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s
UKE 5 Kondensatorer, kap. 2, s. 364-382 R kretser, kap. 3, s. 389-43 Frekvensfilter, kap. 5, s. 462-500 kap. 6, s. 50-528 Kondensator Lindem 22. jan. 202 Kondensator (apacitor) er en komponent som kan
DetaljerLab 1 Innføring i simuleringsprogrammet PSpice
Universitetet i Oslo FYS1210 Elektronikk med prosjektoppgave Lab 1 Innføring i simuleringsprogrammet PSpice Sindre Rannem Bilden 10. februar 2016 Labdag: Tirsdag Labgruppe: 3 Sindre Rannem Bilden 1 Oppgave
DetaljerLab 6 Klokkegenerator, tellerkretser og digital-analog omformer
Universitetet i Oslo FYS1210 Elektronikk med prosjektoppgave Lab 6 Klokkegenerator, tellerkretser og digital-analog omformer 4. april 2016 Labdag: Tirsdag Labgruppe: 3 Oppgave 1: Klokkegenerator En klokkegenerator
DetaljerKondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C. 1volt
Kondensator - apacitor Lindem. mai 00 Kondensator - en komponent som kan lagre elektrisk ladning. Symbol Kapasiteten ( - capacity ) til en kondensator måles i Farad. Som en teknisk definisjon kan vi si
DetaljerBINGO - Kapittel 11. Enheten for elektrisk strøm (ampere) Kretssymbolet for en lyspære (bilde side 211) Enheten for elektrisk ladning (coulomb)
BINGO - Kapittel 11 Bingo-oppgaven anbefales som repetisjon etter at kapittel 11 er gjennomgått. Klipp opp tabellen (nedenfor) i 24 lapper. Gjør det klart for elevene om det er en sammenhengende rekke
DetaljerLaboratorieoppgave 1: Partielle molare volum
Laboratorieoppgave 1: Partielle molare volum Åge Johansen Ole Håvik Bjørkedal 30. januar 2015 Sammendrag Rapporten omhandler hvordan partielle molare volum varierer med molfraksjonen Innhold 1 Innledning
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: Prøveeksamen 2017 Oppgavesettet er på 9 sider Vedlegg: Tillatte hjelpemidler: Formelark
DetaljerModul nr Elektrisk energi - 7. trinn
Modul nr. 1371 Elektrisk energi - 7. trinn Tilknyttet rom: Newton Alta 1371 Newton håndbok - Elektrisk energi - 7. trinn Side 2 Kort om denne modulen 7. klassetrinn Modulen tar for seg produksjon av elektrisk
DetaljerModul nr Produksjon av elektrisk energi kl
Modul nr. 1729 Produksjon av elektrisk energi 8.-10.kl Tilknyttet rom: Newton Meløy 1729 Newton håndbok - Produksjon av elektrisk energi 8.-10.kl Side 2 Kort om denne modulen Modulen tar for seg grunnleggende
DetaljerElektrolaboratoriet RAPPORT. Oppgave nr. 1. Spenningsdeling og strømdeling. Skrevet av xxxxxxxx. Klasse: 09HBINEA. Faglærer: Tor Arne Folkestad
Elektrolaboratoriet RAPPORT Oppgave nr. 1 Spenningsdeling og strømdeling Skrevet av xxxxxxxx Klasse: 09HBINEA Faglærer: Tor Arne Folkestad Oppgaven utført, dato: 5.10.2010 Rapporten innlevert, dato: 01.11.2010
Detaljer7.3 RESISTANS - SPOLE - KONDENSATOR KOPLET I KOMBINASJONER 7.3 RESISTANS - SPOLE - KONDENSATOR KOPLET TIL VEKSELSTRØM I KOMBINASJONER
78,977 7.3 ETAN - POE - KONDENATO KOPET KOMBNAJONE 7.3 ETAN - POE - KONDENATO KOPET T VEKETØM KOMBNAJONE EEKOPNG AV ETAN - POE - KONDENATO Tre komponenter er koplet i serie: ren resistans, spole med resistans-
Detaljera) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.
Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har
DetaljerModul nr Produksjon av elektrisk energi kl
Modul nr. 1068 Produksjon av elektrisk energi 8.-10.kl Tilknyttet rom: Energi og miljørom, Harstad 1068 Newton håndbok - Produksjon av elektrisk energi 8.-10.kl Side 2 Kort om denne modulen 8.-10. klassetrinn
DetaljerForelesning nr.5 IN 1080 Mekatronikk. RC-kretser
Forelesning nr.5 IN 080 Mekatronikk R-kretser Dagens temaer Ulike typer impedans og konduktans Kondensatorer i serie og parallell Ulike typer respons R-kretser Impedans og fasevinkler Serielle R-kretser
Detaljer7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET ENKELTVIS 7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET VEKSELSTRØM ENKELTVIS
7. ESSTANS - SPOLE - KONDENSATO TLKOPLET ENKELTVS 7. ESSTANS - SPOLE - KONDENSATO TLKOPLET VEKSELSTØM ENKELTVS DEELL ESSTANS TLKOPLET VEKSELSTØM Når en motstandstråd blir brettet i to og de to delene av
DetaljerPunktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].
Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen
DetaljerAntall oppgavesider:t4 Antall vedleggsider: 1 KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET
Høgskoleni Østfold 1 EKSAMENSOPPGAVE. Kontinuasjonseksamen Fag: IRE10513Elektriskekretser Lærere: Arne Johan Østenby, Even Arntsen Grupper: El E og ElEy Dato: 2015-12-17 Tid: 9-13 Antall oppgavesider:t4
DetaljerLABORATORIERAPPORT. Halvlederdioden AC-beregninger. Christian Egebakken
LABORATORIERAPPORT Halvlederdioden AC-beregninger AV Christian Egebakken Sammendrag I dette prosjektet har vi forklart den grunnleggende teorien bak dioden. Vi har undersøkt noen av bruksområdene til vanlige
DetaljerFasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1
Fasit og sensorveiledning eksamen INF1411 våren 2012 Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) Oppgave 1a) (vekt 5 %) Hva er strømmen i og spenningen V out i krets A) i Figur 1? Svar
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i INF 1411 Introduksjon til elektroniske systemer Eksamensdag: 30. mai 2010 Tid for eksamen: 3 timer Oppgavesettet er på
DetaljerForelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser
Forelesning nr.5 INF 4 Elektroniske systemer R-kretser Dagens temaer Ulike typer respons Ulike typer impedans og konduktans Kondensatorer i serie og parallell Bruk av kondensator R-kretser Impedans og
DetaljerParallellkopling
RST 1 12 Elektrisitet 64 12.201 Parallellkopling vurdere strømmene i en trippel parallellkopling Eksperimenter Kople opp kretsen slik figuren viser. Sett på så mye spenning at lampene lyser litt mindre
DetaljerFYS 2150. ØVELSE 3 KONDENSATOREN OG RC-FILTRE
FYS 2150. ØELSE 3 KONDENSATOREN OG RC-FILTRE Fysisk institutt, UiO Mål. Etter å ha gått gjennom denne øvelsen, skal du kjenne til hvordan kondensatorer oppfører seg ved oppladning og utladning, og hvordan
DetaljerLF - anbefalte oppgaver fra kapittel 2
1 LF - anbefalte oppgaver fra kapittel 2 N2.1 Denne oppkoblingen er lovlig: Alle spenningkildene kan få en strøm på 5 A fra strømkilden. Spenningsfallet over strømkilden er også lovlig. Ved å summere alle
DetaljerLøsningsforslag for øvningsoppgaver: Kapittel 12
Løsningsforslag for øvningsoppgaver: Kapittel 2 Jon Walter Lundberg 20.04.205 Viktige formler: Kirchhoffs. lov: Ved et forgreiningspunkt i en strømkrets er summen av alle strømene inn mot forgreiningspunktet
DetaljerDen indre spenning som genereres i en spenningskilde kalles elektromotorisk spenning.
3.5 KOPLNGR MD SYMTRSK NRGKLDR 3.5 KOPLNGR MD SYMMTRSK NRGKLDR SPNNNGSKLD Den indre spenning som genereres i en spenningskilde kalles elektromotorisk spenning. lektromotorisk spenning kan ha flere navn
DetaljerEksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
Institutt for elektronikk og telekommunikasjon LØSNINGSFORSLAG KRETSDEL Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Faglig kontakt under eksamen: Ragnar Hergum - tlf. 73 59 20 23 / 920 87
DetaljerForelesning nr.5 INF 1411 Elektroniske systemer
Forelesning nr.5 INF 4 Elektroniske systemer R-kretser Dagens temaer Ulike Kondensatorer typer impedans og konduktans i serie og parallell Bruk R-kretser av kondensator Temaene Impedans og fasevinkler
DetaljerINF1411 Oblig nr. 1 - Veiledning
INF1411 Oblig nr. 1 - Veiledning Regler for elektronikklabene For at arbeidet på laben skal være effektivt og sikkert er det viktig med gode rutiner: Mat og drikke er forbudt på alle labene. Generelt må
DetaljerModul nr Elektrisk produksjon, transport og forbruk kl
Modul nr. 1217 Elektrisk produksjon, transport og forbruk 8.-10. kl Tilknyttet rom: Energi og miljørom, Harstad 1217 Newton håndbok - Elektrisk produksjon, transport og forbruk 8.-10. kl Side 2 Kort om
DetaljerModul nr Elektrisk produksjon, transport og forbruk kl
Modul nr. 1217 Elektrisk produksjon, transport og forbruk 8.-10. kl Tilknyttet rom: Energi og miljørom, Harstad 1217 Newton håndbok - Elektrisk produksjon, transport og forbruk 8.-10. kl Side 2 Kort om
DetaljerLøsningsforslag til prøve i fysikk
Løsningsforslag til prøve i fysikk Dato: 17/4-2015 Tema: Kap 11 Kosmologi og kap 12 Elektrisitet Kap 11 Kosmologi: 1. Hva menes med rødforskyvning av lys fra stjerner? Fungerer på samme måte som Doppler-effekt
DetaljerElektrisitetslære TELE1002-A 13H HiST-AFT-EDT
Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Øving 2; løysing Oppgave 1 Oppgaver fra læreboka: a) Kapittel 5 Oppg. 3 (fargekoder for motstander finner du på side 78), oppg. 12 og *41 (mye feil i fasit
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.
TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =
DetaljerRapport TFE4100. Lab 5 Likeretter. Eirik Strand Herman Sundklak. Gruppe 107
Rapport TFE4100 Lab 5 Likeretter Eirik Strand Herman Sundklak Gruppe 107 Lab utført: 08.november 2012 Rapport generert: 30. november 2012 Likeretter Sammendrag Denne rapporten er et sammendrag av laboratorieøvingen
DetaljerLØSNINGSFORSLAG KRETSDEL
NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317
DetaljerOppgave 3: Motstand, Kondensator og Spole
Lab i TFY412 Oppgave 3: Motstand, Kondensator og Spole Institutt for fysikk, NTNU 1.1. INNLEDNING 1 1.1 Innledning Ohms lov, = I, gir sammenhengen mellom spenningsfallet over og strømmen gjennom en motstand.
DetaljerForelesning nr.14 INF 1410
Forelesning nr.14 INF 1410 Frekvensrespons 1 Oversikt dagens temaer Generell frekvensrespons Resonans Kvalitetsfaktor Dempning Frekvensrespons Oppførselen For I Like til elektriske kretser i frekvensdomenet
DetaljerLab 2 Praktiske målinger med oscilloskop og signalgenerator
Universitetet i Oslo FYS1210 Elektronikk med prosjektoppgave Lab 2 Praktiske målinger med oscilloskop og signalgenerator 17. februar 2016 Labdag: Tirsdag Labgruppe: 3 Oppgave 1: Knekkfrekvens Et enkelt
DetaljerModul nr Elektrisk produksjon og transport - 9. trinn
Modul nr. 1257 Elektrisk produksjon og transport - 9. trinn Tilknyttet rom: Newton Alta 1257 Newton håndbok - Elektrisk produksjon og transport - 9. trinn Side 2 Kort om denne modulen Modulen tar for seg
DetaljerEksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Fredag 21. mai 2004 Tid. Kl
Side av NORGES TEKNSK- NATURVTENSKAPLGE UNVERSTET nstitutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Øystein Ellingsson tlf. 95373 Eksamen i emne TFE4 DGTALTEKNKK MED KRETSTEKNKK
DetaljerEKSAMENSOPPGAVE. Eksamen i: FYS- 1002 Elektromagnetisme Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154
side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS- 1002 Elektromagnetisme Dato: Tid: Sted: Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154 Tillatte hjelpemidler:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Kontinuasjonseksamen i: FYS 1000 Eksamensdag: 16. august 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert
DetaljerLøsningsforslag for obligatorisk øving 1
TFY4185 Måleteknikk Institutt for fysikk Løsningsforslag for obligatorisk øving 1 Oppgave 1 a Vi starter med å angi strømmen i alle grener For Wheatstone-brua trenger vi 6 ukjente strømmer I 1 I 6, som
DetaljerFYS1120 Elektromagnetisme ukesoppgavesett 7
FYS1120 Elektromagnetisme ukesoppgavesett 7 25. november 2016 Figur 1: En Wheatstone-bro I FYS1120-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør.
DetaljerOppsummering om kretser med R, L og C FYS1120
Oppsummering om kretser med R, L og C FYS1120 Likestrømskretser med motstander Strøm og spenning er alltid i fase. Ohms lov: V = RI Effekt er gitt ved: P = VI = RI 2 = V 2 /R Kirchoffs lover: Summen av
DetaljerVarmekapasitet, og einsteintemperatur til aluminium
Varmekapasitet, og einsteintemperatur til aluminium Tiril Hillestad, Magnus Holter-Sørensen Dahle Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 23. mars 2012 Sammendrag I dette forsøket er det estimert
DetaljerLaboratorieøving 1 i TFE Kapasitans
Laboratorieøving i TFE420 - Kapasitans 20. februar 207 Sammendrag Vi skal benytte en parallelplatekondensator med justerbart gap til å studere kapasitans. Oppgavene i forarbeidet beskrevet nedenfor må
DetaljerEKSAMENSOPPGAVE. Fys-1002 Elektromagnetisme. Adm.bygget B154 Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Elektromagnetisme Dato: Onsdag 26. september 2018 Klokkeslett: Kl. 9:00-13:00 Sted: Tillatte hjelpemidler: Adm.bygget B154 Kalkulator
DetaljerKap. 4 Trigger 9 SPENNING I LUFTA
Kap. 4 Trigger 9 SPENNING I LUFTA KJERNEBEGREPER Ladning Statisk elektrisitet Strøm Spenning Motstand Volt Ampere Ohm Åpen og lukket krets Seriekobling Parallellkobling Isolator Elektromagnet Induksjon
DetaljerOppgave 1 (30%) SVAR: R_ekv = 14*R/15 0,93 R L_ekv = 28*L/15 1,87 L
Oppgave 1 (3%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene: Reduser motstandsnettverket til én enkelt resistans og angi størrelsen på denne. Reduser
DetaljerOppgave 4 : FYS linjespesifikk del
Oppgave 4 : FYS 10 - linjespesifikk del Fysiske konstanter og definisjoner: Vakuumpermittiviteten: = 8,854 10 1 C /Nm a) Hva er det elektriske potensialet i sentrum av kvadratet (punktet P)? Anta at q
Detaljer