Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].
|
|
- Brynjar Sunde
- 7 år siden
- Visninger:
Transkript
1 Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm]. a) I) Lag en skisse som viser feltstyrken E på et punkt på y-aksen. II) Forklar hvorfor E har samme retning for alle punkter på y-aksen. Bruk Q = [C] for resten av oppgaven. b) Finn E i origo. c) I) Finn potensialet V P i punktet P(0, 4)[mm]. II) Forklar hvorfor vi har den samme potensialverdien for alle punkter på y-aksen. d) Finn potensialene V R i punktet R(2, 0)[mm] og V S i punktet S( 2, 0)[mm]. e) Finn spenningen mellom punktene R og S. Oppgave 3 a) En rett strømleder ligger langs z-aksen og fører strømmen I = 10 [A] i positiv z-retning. En ladning q = [C] beveger seg i positiv z-retning med farten v = [m/s] i en avstand r = [m] fra lederen. Finn kraften F som virker på ladningen. Tegn en figur som viser strømlederen, punktladningen, magnetfeltet og kraften. b) En ideell spole med N vindinger, radius R og med strømmen I gir et magnetfelt B = µ 0 2 N I R 2 (x 2 + R 2 ) 3/2 langs spoleaksen når spolens lengde er lik tykkelsen til 1 vinding. x er avstanden fra spolen langs spoleaksen. Vi har to like spoler som fører samme strøm og som har felles spoleakse men som ligger i en avstand 2R fra hverandre. 1
2 I) Vi ønsker å få et punkt på spoleaksen der spolenes magnetfelt samlet er B = 0. Tegn en figur som viser hvordan dette kan gjøres. II) Spolene har N = 200 vindinger og radius R = 1 cm. Vi ønsker å bruke midtpunktet mellom spolene til å få et punkt der jordas og spolenes magnetfelt opphever hverandre. Hvor stor strøm må vi bruke gjennom hver spole? Hvordan blir strømretningen gjennom de 2 spolene? Sett jordas magnetfelt til B = [T]. c) En sirkulær kobbersløyfe ligger i xy-planet. Vi har et varierende magnetfelt B = B k langs z-aksen og gjennom sløyfa. Tegn en figur som viser den induserte strømretningen i sløyfa når I) B øker med tiden. II) B avtar med tiden. III) B er konstant. d) Kobbersløyfa fra del c) erstattes av en ideell spole med 1000 vindinger med radius r = 10 [cm]. Finn den induserte spenningen i spolen når magnetfeltet er B = 0.1 sin (50 t) Oppgave 4 En seriekobling består av et batteri ε 0, en motstand R, en spole L og en bryter. Ved t = 0 vil bryteren koble til batteriet slik at vi får en lukket krets. a) For denne koblingen skal du I) sette opp en differensialligning for strømmen I(t). II) beregne spolens induktans L når strømmen skal bli lik halve maksimalverdien etter 10 6 sekund. Startverdien er I(0) = 0. Bruk ε 0 = 14 [V ] og R = 700 [Ω]. b) Bestem hvor stor ladning q det har gått gjennom et ledningstversnitt det første sekundet etter at batteriet er koblet inn (Svar med en generell ligning eller med tallverdier for R og L). Seriekoblingen ovenfor endres til en RCL-krets slik at vi tar med en kondensator C i serie med en motstand R = 700 [Ω] og en spole L = 1.0 [mh]. Ved t = 0 vil bryteren koble batteriet ε 0 = 14 [V ] til de 3 komponentene. Kondensatoren er utladet idet batteriet kobles inn. c) For denne koblingen skal du I) sette opp den generelle differensialligningen for strømmen i(t) gjennom kretsen når bryteren er sluttet. 2
3 II) finne hvilken verdi C må ha for at strømmen i kretsen skal bli kritisk dempet. III) bestemme ligningen for strømmen I(t) for C = 16.0 [nf] og med startverdiene I(0) = 0, I(0) = [A/s] d) I) Bestem ligningen for spenningen V L (t) over spolen. II) Finn den største tallverdien for denne spenningen. De 15 delspørsmålene a), b),.. i de 4 oppgavene har samme vekt ved beregning av sluttkarakteren. Slutt på oppgaven. 3
4 Løsningsforslag Oppgave 1 a) Dette er en separabel ligning, starter med den generelle løsningen: Bruker startbetingelsen: y e y = x e y dy dx dx = x dx = e y = x2 2 + C ( ) x 2 y = ln 2 + C 0 = ln (0 + C) = C = 1 ( ) x 2 y = ln e y dy = x2 2 + C b) Denne ligningen kan løses som en separabel ligning, se a). Her vises metoden med integrerende faktor ρ. Finner faktoren Q(x) = a til leddet med y: ρ = e a dt = e at ρ multipliseres inn i ligningen som deretter integreres: e a t (y + a y) = e a t b e a t (y + a y) dt = e a t b dt = b ea t + C a e a t y = b a ea t + C y = b a + C e a t Til slutt må DU sette inn svarene i ligningene for å kontrollere at svarene er riktige. Oppgave 2 a) I) Figur 1 viser at E står loddrett y-aksen i negativ x-retning. II) Alle punkter på y-aksen samme avstand r til de 2 ladningene som har motsatt fortegn men samme tallverdi. Det betyr at feltstyrkene fra de to ladningene har samme skalarverdi E. Symmetrien/geometrien i problemet gir: Når en dekomponerer de 2 feltstyrkene fører dette til x-komponenter med samme retning og samme størrelse og y-komponent med samme størrelse men motsatt retning. Resultatet blir at E alltid står loddrett y-aksen i negativ x-retning. De 2 ladningene danner en dipol. 4
5 E Q Figur 1: Feltstyrken langs y-aksen b) Adderer feltstyrken i origo fra de 2 ladningene: E Q = [ , 0, 0] ( ( ) ) 3/2 = [ , 0, 0 ] [N/C] E Q = ( ) [ , 0, 0] ( (0 ( )) ) 3/2 = [ , 0, 0 ] [N/C] E (0,0,0) = E Q + E Q = [ , 0, 0 ] [N/C] Dette bekrefter resultatet fra del a). c) I) Adderer potensialverdiene fra de 2 punktladningene. Potensialene er like store i tallverdi pga. lik avstand og lik tallverdi på ladningene. Potensialene har forskjellig fortegn pga. forskjellig ladningsfortegn: V (0,0.004) = V Q + V Q V Q = = ( ) 2 + ( ) V Q = 1800 V (0,0.004) = = 0 [V ] = 1800 Dette er egentlig potensialforskjellen mellom dette punktet og et punkt uendelig langt unna som har potensialet V = 0. 5
6 II) Forklares kanskje best med potensiell energi og arbeid. Uendelig langt unna punktladningene setter vi at potensialet er V = kq/r = 0 og den potensielle energien U = ±Q V = 0. Når vi beveger ladningen innover langs y-aksen vil kraften F = ±Q E hele tiden stå loddrett på veien s, og arbeidet er lik 0. Dermed er også den potensielle energien uendret og lik 0, det samme gjelder da for potensialet, som er uendret og lik 0 på hele y-aksen. d) Adderer igjen potensialverdier, kan nøye oss med å sette r = x : V Q = ( ) = 9.0 = ( ) V Q = ( ( )) = 9.0 = V R = = 7200 [V ] For V S skifter potensialet fortegn: V S = = 7200 [V ] e) Spenningen blir V = V R V S = 14.4 [kv ] Oppgave 3 a) Setter ladningen på x-aksen i punktet (0.01, 0, 0), se figur 2. Bruker vektorligningene for magnetfelt, først feltet rundt en rett strømleder: µ 0 I l r B = 2π r 2 B(0.01,0,0) = [0, 0, 1] [0.01, 0, 0] ( (0.01 0) 2 ) = B(0.01,0,0) = [0, 0.01, 0] = [ 0, , 0 ] [T] Med mitt koordinatsystem er B rettet i y-retning. Kraften på ladningen er: F = q v B F = [0, 0, ] [ 0, , 0 ] î ĵ k î ĵ k F = = F = [ 40, 0, 0] [ F = , 0, 0 ] [N] Kraften virker i negativ x-retning, loddrett inn mot strømledningen (sml. med kraften mellom 2 strømledere med strøm i samme retning). b) 6
7 z F q x x B y Figur 2: Kraften på en punktladning nær en strømleder I) Vi lar strømmen gå i forskjellig retning gjennom de 2 spolene, da vil magnetfeltet gå i motsatt retning for de 2 spolene. Midt mellom spolene blir summen av spolenes feltstyrke lik 0, se figur 3. B 2 I B 1 Spole 1 Spole 2 Figur 3: Feltstyrken B mellom 2 spoler Midt mellom spolene der x = R har vi B = 0: B = B 1 + B 2 = µ 0 2 N I R 2 (R 2 + R 2 ) µ 0 3/2 2 N I R 2 (R 2 + R 2 ) 3/2 = 0 II) Med den samme strømretningen gjennom spolene har spolenes magnetfelt samme retning på spoleaksen. Vi adderer feltstyrkene midtveis mellom spolene og setter summen lik jordas magnetfelt: B 1 + B 2 = µ 0 2 N I R 2 (R 2 + R 2 ) + µ 0 3/2 2 4 π I ( ) = π I = /2 I = 5.6 [ma] N I R 2 = 5.0 (R 2 + R /2 ) Vi kan til slutt orientere spolene i forhold til jordas magnetfelt slik at spolenes magnetfelt er motsatt rettet jordfeltet. 7
8 c) Kan bruke høyrehåndsregelen. Figur 4 viser resultatet for spørsmål I) og II): I når B avtar B I når B øker Figur 4: Indusert strøm i ei kobbersløyfe Når B er konstant induseres ingen strøm i kretsen. d) Siden magnetfeltet er parallelt spoleaksen blir fluksen gjennom spolen: Φ = B N A cos 0 = 0.1 sin (50 t) 1000 π = π sin (50 t) Den induserte spenningen i spolen er ε = dφ dt = 50 π cos (50 t) [V ] 157 cos (50 t) [V ] Oppgave 4 a) I) Går rundt kretsen fra batteriets +-pol og får: V = 0 = ε0 + V L + V R Innfører strømmen i stedet for spenningene og ordner litt: ε 0 L di dt R I = 0 di dt + R L I = ε 0 L I + R L I = ε 0 L (1) 8
9 II) Diff.ligningen er den samme som i oppgave 1b)(!), med y erstattet med I og konstantene a = R/L og b = ε 0 /L: I + R L I = U 0 L Den generelle løsningen blir dermed I(t) = ε 0 R + D e R/L t Bruker startbetingelsen I(0) = 0 til å bestemme D: Når t får vi den største strømverdien I(0) = 0 = U 0 R + D e R/L 0 = ε 0 R + D D = ε 0 R I(t) = ε 0 R (1 e R/L t) (2) I maks = ε 0 R (1 0) = ε 0 R Etter t = 10 6 skal vi ha I(1) = I maks /2 = ε 0 / (2R). Bruker R = 700: ε 0 2 R = ε 0 (1 R e R/L 10 6) 1 2 = 1 R/L e 10 6 = e 10 6R/L = 1 2 e 10 6R/L = 2 Tar logaritmen på begge sider: 10 6R L = ln(2) L = 10 6 R ln(2) 1.0 [mh] b) Bruker løsningen for strømmen, ligning nr. 2 : I = dq dt = dq = I dt q = 1 0 ( ε0 R (1 e R/L t)) dt = ε 0 R q = ε 0 R [t]1 0 + ε 0 R L R [ e R/L t ] 1 0 = ε 0 R 1 0 dt ε 0 R ( 1 + L R 1 0 e R/L t dt ( e R/L 1 )) 9
10 Med tallverdier: q = 14 ( ( e 106 ln(2) 1) ) 0.02 [C] 700 ln(2) c) I) Vi kan igjen starte med spenningene: V = 0 = ε0 + V R + V L + V C 0 = ε 0 R I L I q C U 0 = R I + L I + q C Deriverer ligningen for å fjerne ladningen q: L I + R I + 1 C I = 0 Evt. med tallverdier: 10 3 I I + 1 C I = 0 II) Setter opp den karakteristiske ligningen og innfører 2δ = R/L og ω 2 0 = 1/(L C): L r 2 + R r + 1 C = 0 r 2 + R L r + 1 L C = 0 r δ r + ω 2 0 = 0 Denne ligningen har røttene: r 1,2 = δ ± δ 2 ω 2 0 Kritisk demping betyr at rottegnet skal være 0 (sammenfallende røtter): δ = ω 0 R ( ) 2 1 R 2L = L C = = 1 2L L C C = 4L R = = 8.2 [nf]
11 III) For å finne hvilken type løsning vi har bruker vi ligningen med røttene r 1,2 : δ = R 2 L = 700 = ω 0 = L C = 1 = r 1,2 = ± ( ) 2 ( ) 2 { r 1, ± r1 = = 5 r 2 = Røttene er reelle siden δ > ω 0, vi får et dempet strømforløp uten svingninger I(t) = C 1 e t + C 2 e t = C 1 e r 1 t + C 2 e r 2 t Bruker startbetingelsene for å finne integrasjonskonstantene. Må derivere løsningen for å bruke den ene startverdien: I = C 1 r 1 e r 1 t + C 2 r 2 e r 2 t I(0) = 0 = C 1 + C 2 C 2 = C 1 Setter inn C 2 = C 1 : I(0) = = C 1 r 1 + C 2 r 2 Figur 5 viser strømmen gjennom kretsen. d) Fra ligningen med spenningene: Vi bruker ligningen for i fra forrige punkt: Med tallverdier: = C 1 (r 1 r 2 ) = C 1 = r 1 r C = C ( ) I(t) = 28.6 e t e t V L = L I [ma] V L = L ( C 1 r 1 e r 1 t + C 2 r 2 e r 2 t ) V L = 3.0 e t 17 e t II) Figur 6 viser tidsvariasjonen til spenningen over spolen, ved t = 0 har vi den største tallverdien: V maks = 14 = 14 [V ] [V ] 11
12 Figur 5: Strømmen i en overkritisk dempet RLC-krets Figur 6: Spenningen over spolen 12
a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.
Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har
Detaljerb) Vi legger en uendelig lang, rett stav langs y-aksen. Staven har linjeladningen λ = [C/m].
Oppgave 1 a) Punktladningen q 1 = 1.0 10 9 [C] ligger fast i punktet (2.0, 0, 0) [m]. Punktladningen q 2 = 4.0 10 9 [C] ligger i punktet ( 1.0, 0, 0) [m]. I) Finnes det punkt(er) i rommet med elektrisk
DetaljerFjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator.
Oppgave 1 a) Ei ideell fjær har fjærkonstant k = 2.60 10 3 [N/m]. Finn hvilken kraft en må bruke for å trykke sammen denne fjæra 0.15 [m]. Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPEIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 ØSNINGSFORSAG TI EKSAMEN I TFY4155 EEKTROMAGNETISME
DetaljerKONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME
DetaljerEKSAMENSOPPGAVE. Fys-1002 Elektromagnetisme. Adm.bygget B154 Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Elektromagnetisme Dato: Onsdag 26. september 2018 Klokkeslett: Kl. 9:00-13:00 Sted: Tillatte hjelpemidler: Adm.bygget B154 Kalkulator
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET
DetaljerEKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
DetaljerEKSAMEN I FAG SIF 4012 ELEKTROMAGNETISME (SIF 4012 FYSIKK 2) Onsdag 11. desember kl Bokmål
Side av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 4 43 39 3 EKSAMEN I FAG SIF 42 ELEKTROMAGNETISME
DetaljerLØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155
DetaljerFysikkolympiaden Norsk finale 2017
Norsk fysikklærerforening Fysikkolympiaden Norsk finale 7 Fredag. mars kl. 8. til. Hjelpemidler: abell/formelsamling, lommeregner og utdelt formelark Oppgavesettet består av 6 oppgaver på sider Lykke til!
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl
NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 ØSNINGSFOSAG TI EKSAMEN I FY1003 EEKTISITET OG MAGNETISME
DetaljerOPPGAVESETT 1. PS: Spørsmål 1a) og 1b) har ingenting med hverandre å gjøre. 1b) refererer til to nøytrale kuler, ikke kulene i 1a)
Fasit for FYS1120-oppgaver H2010. OPPGAVESETT 1 1a) 9.88 10-7 C 1b) 891 PS: Spørsmål 1a) og 1b) har ingenting med hverandre å gjøre. 1b) refererer til to nøytrale kuler, ikke kulene i 1a) 2a) 7.25 10 24
DetaljerKONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 KONTNUASJONSEKSAMEN TFY4155 ELEKTOMAGNETSME Fredag 11.
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl K. Rottmann: Matematisk formelsamling (eller tilsvarende).
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 17. desember
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 4. desember
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I TFY4155 ELEKTOMAGNETISME
DetaljerKondensator. Symbol. Lindem 22. jan. 2012
UKE 5 Kondensatorer, kap. 12, s. 364-382 RC kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 Spoler, kap. 10, s. 289-304 1 Kondensator Lindem 22. jan. 2012 Kondensator
DetaljerLøsningsforslag TFE4120 Elektromagnetisme 13. mai 2004
Løsningsforslag TFE4120 Elektromagnetisme 13. mai 2004 Oppgae 1 a) Speilladningsmetoden gir at potensialet for z > 0 er summen a potensialet pga ladningen Q i posisjon z = h og potensialet pga en speillanding
DetaljerEKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne
DetaljerLøsningsforslag til ukeoppgave 10
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 10 Oppgave 17.15 Tegn figur og bruk Kirchhoffs 1. lov for å finne strømmene. Vi begynner med I 3 : Mot forgreningspunktet kommer det to strømmer,
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG
DetaljerUtsatt eksamen i Matematikk 1000 MAFE ELFE KJFE 1000 Dato: 2. mars 2017 Løsningsforslag.
Utsatt eksamen i Matematikk 1 MAFE ELFE KJFE 1 Dato: 2. mars 217 Løsningsforslag. Oppgave 1 Gitt matrisene 1 2 1 3 A = 2 1, B = 7, C = 2 4 1 2 3 [ ] 1 2 1, v = 1 1 4 [ ] 5 1 og w =. 1 6 a) Regn ut følgende
DetaljerFrivillig test 5. april Flervalgsoppgaver.
Inst for fysikk 2013 TFY4155/FY1003 Elektr & magnetisme Frivillig test 5 april 2013 Flervalgsoppgaver Kun ett av svarene rett Du skal altså svare A, B, C, D eller E (stor bokstav) eller du kan svare blankt
Detaljer1. En tynn stav med lengde L har uniform ladning λ per lengdeenhet. Hvor mye ladning dq er det på en liten lengde dx av staven?
Ladet stav 1 En tynn stav med lengde L har uniform ladning per lengdeenhet Hvor mye ladning d er det på en liten lengde d av staven? A /d B d C 2 d D d/ E L d Løsning: Med linjeladning (dvs ladning per
DetaljerKontinuasjonseksamensoppgave i TFY4120 Fysikk
Side 1 av 10 Bokmål Institutt for fysikk Kontinuasjonseksamensoppgave i TFY4120 Fysikk Faglig kontakt under eksamen: Ragnvald Mathiesen Tlf.: 97692132 Eksamensdato: 13.08.2014 Eksamenstid (fra-til): 09:00-13:00
DetaljerFYS1120 Elektromagnetisme H10 Midtveiseksamen
FYS1120 Elektromagnetisme H10 Midtveiseksamen Oppgave 1 a) Vi ser i denne oppgave på elektroner som akselereres gjennom et elektrisk potensial slik at de oppnår en hastighet 1.410. Som vist på figuren
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTISITET OG MAGNETISME I TFY4155
DetaljerMandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7.
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke19 Mandag 7. mai Elektromagnetisk induksjon (fortsatt) [FGT 30.1-30.6; YF 29.1-29.5; TM 28.2-28.3; AF 27.1-27.3; LHL 24.1;
DetaljerUNIVERSITETET I OSLO
UNIVESITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: 29. November 2016 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 3 sider. Vedlegg: Tillatte
DetaljerA. positiv x-retning B. negativ z-retning C. positiv y-retning D. negativ y-retning E. krafta er null
Flervalgsoppgaver En lang, rett ledning langs x-aksen fører en strøm i positiv x-retning. En positiv punktladning beveger seg langs z-aksen i positiv z- 1. retning (opp av papirplanet). Den magnetiske
DetaljerSammendrag, uke 13 (30. mars)
nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2005 Sammendrag, uke 13 (30. mars) Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Spenningskilde
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: 10. oktober 2016 Tid for eksamen: 10.00 13.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte
DetaljerFysikkolympiaden Norsk finale 2019 Løsningsforslag
Fysikkolympiaden Norsk finale 09 Løsningsforslag Oppgave Vi kaller strømmene gjennom de to batteriene I og I og strømmen gjennom den ytre motstanden I = I + I. Da må vi ha at U = R I + RI U = R I + RI.
DetaljerUKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s.
UKE 5 Kondensatorer, kap. 12, s. 364-382 R kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 1 Kondensator Lindem 22. jan. 2012 Kondensator (apacitor) er en komponent
DetaljerKontinuasjonseksamensoppgave i TFY4120 Fysikk
Institutt for fysikk Kontinuasjonseksamensoppgave i TFY4120 Fysikk Faglig kontakt under eksamen: Ragnvald Mathiesen Tlf.:97692132 Eksamensdato: 07.08.2013 Eksamenstid (fra-til): 09:00-13:00 Hjelpemiddelkode/Tillatte
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
DetaljerMidtsemesterprøve fredag 10. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2006 Midtsemesterprøve fredag 10. mars kl 0830 1130. Løsningsforslag 1) A. (Andel som svarte riktig: 83%) Det
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET
DetaljerLØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I FAG SIF 4012 ELEKTROMAGNETISME (SIF 4012 FYSIKK 2) Mandag 29. juli kl
Side av 9 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I FAG SIF 4 ELEKTROMAGNETISME
DetaljerEKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
Detaljerog P (P) 60 = V 2 R 60
Flervalgsoppgaver 1 Forholdet mellom elektrisk effekt i to lyspærer på henholdsvis 25 W og 60 W er, selvsagt, P 25 /P 60 = 25/60 ved normal bruk, dvs kobla i parallell Hva blir det tilsvarende forholdet
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl
NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 EEKTISITET OG MAGNETISME TFY4155
DetaljerElektrisk potensial/potensiell energi
Elektrisk potensial/potensiell energi. Figuren viser et uniformt elektrisk felt E heltrukne linjer. Langs hvilken stiplet linje endrer potensialet seg ikke? A. B. C. 3 D. 4 E. Det endrer seg langs alle
DetaljerØving 15. H j B j M j
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007 Veiledning: Uke 17 Innleveringsfrist: Mandag 30. april Øving 15 Oppgave 1 H j j M j H 0 0 M 0 I En sylinderformet jernstav
DetaljerEKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling.
EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: Mandag 4. juni, 2018 Klokkeslett: 9:00 13:00 Sted: ADM B154 Tillatte hjelpemidler: Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling. Eksamenoppgaven
DetaljerLøsningsskisse EKSAMEN i FYSIKK, 30. mai 2006
Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006 Oppgave 1. Flervalgsspørsmål Fasit 1. C 2. D 3. D 4. B 5. C 6. E 7. E 8. B 9. E 10. D 11. B 12. D Løsningsforslag Oppgave 2 a) Reversibel prosess: En prosess
DetaljerLøsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011
Løsningsforslag EKSAMEN TFY4102 FYSIKK Fredag 10. juni 2011 Oppgave 1. a) Vi velger her, og i resten av oppgaven, positiv retning oppover. Dermed gir energibevaring m 1 gh = 1 2 m 1v 2 0 v 0 = 2gh. Rett
DetaljerForelesning nr.7 INF 1410. Kondensatorer og spoler
Forelesning nr.7 IF 4 Kondensatorer og spoler Oversikt dagens temaer Funksjonell virkemåte til kondensatorer og spoler Konstruksjon Modeller og fysisk virkemåte for kondensatorer og spoler Analyse av kretser
DetaljerFYS1120 Elektromagnetisme, vekesoppgåvesett 9 Løsningsforslag
FYS1120 Elektromagnetisme, vekesoppgåvesett 9 Løsningsforslag 16. november 2016 I FYS1120-undervisninga legg vi meir vekt på matematikk og numeriske metoder enn det oppgåvene i læreboka gjer. Det gjeld
DetaljerNORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PRØVE 2 I FYS135 - ELEKTRO- MAGNETISME, 2004.
NOGES LANDBUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PØVE 2 I FYS3 - ELEKTO- MAGNETISME, 2004. Dato: 20. oktober 2004. Prøvens varighet: 08:4-09:4 ( time) Informasjon: Alle
DetaljerFasit eksamen Fys1000 vår 2009
Fasit eksamen Fys1000 vår 2009 Oppgave 1 a) Klossen A er påvirka av tre krefter: 1) Tyngda m A g som peker loddrett nedover. Denne er det lurt å dekomponere i en komponent m A g sinθ langs skråplanet nedover
DetaljerØving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)
Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen
DetaljerMandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12
nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 Mandag 19.03.07 Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Likespenningskilde
Detaljer41307 Kraftelektroniske motordrifter Løsningsforslag Kapittel 4 Roterende elektriske maskiner
47 Kraftelektroniske motordrifter Løsningsforslag Kapittel 4 Roterende elektriske maskiner OPPGAVE. Den magnetiske ekvivalenten for den roterande maskina i figur. på oppgåve arket, er vist på figuren under.
DetaljerLøsningsforslag TFE4120 Elektromagnetisme 29. mai 2017
Norges teknisk naturvitenskapelige universitet Institutt for elektroniske systemer Side 1 av 6 Løsningsforslag TFE4120 Elektromagnetisme 29. mai 2017 Oppgave 1 a) Start med å tegne figur! Tegn inn en Gauss-flate
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS 1000 Eksamensdag: 11. juni 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert forsiden Vedlegg:
DetaljerEKSAMEN i TFY4155/FY1003 ELEKTRISITET OG MAGNETISME
Side 1 av 7 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL EKSAMEN i TFY4155/FY1003 ELEKTRISITET OG MAGNETISME Eksamensdato: Tirsdag 24 mai 2011 Eksamenstid: 09:00-13:00 Faglig
DetaljerFlervalgsoppgaver. Gruppeøving 8 Elektrisitet og magnetisme. 1. SI-enheten til magnetisk flukstetthet er tesla, som er ekvivalent med A. E.
Flervalgsoppgaver 1. SI-enheten til magnetisk flukstetthet er tesla, som er ekvivalent med A. N s C m B. N C s m C. N m s 2 D. C A s E. Wb m 2 Løsning: F = q v B gir [B] = N Cm/s = N s C m. 2. Et elektron
DetaljerØving 13. Induksjon. Forskyvningsstrøm. Vekselstrømskretser.
Inst for fysikk 2017 FY1003 Elektr & magnetisme Øving 13 Induksjon Forskyvningsstrøm Vekselstrømskretser Denne siste øvingen innholder ganske mye, for å få dekket opp siste del av pensum Den godkjennes
DetaljerUKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s
UKE 5 Kondensatorer, kap. 2, s. 364-382 R kretser, kap. 3, s. 389-43 Frekvensfilter, kap. 5, s. 462-500 kap. 6, s. 50-528 Kondensator Lindem 22. jan. 202 Kondensator (apacitor) er en komponent som kan
DetaljerUNIVERSITETET I TROMSØ. EKSAMENSOPPGAVE i FYS-1002
UNIVERSITETET I T R O M S Ø UNIVERSITETET I TROMSØ Intitutt for fysikk og teknologi EKSAMENSOPPGAVE i FYS-1002 Eksamen i: Fys-1002 Elektromagnetisme Eksamensdato: 10. juni, 2013 Tid: 09:00 13:00 Sted:
DetaljerEKSAMEN I EMNE TFY4120 FYSIKK. Fredag 3. desember 2004 Tid: kl
Studentnummer: Studieretning: Bokmål Side 1 av 1 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Jon Otto Fossum,
DetaljerFYS1120 Elektromagnetisme
Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo FYS112 Elektromagnetisme Løsningsforslag til ukesoppgave 2 Oppgave 1 a) Gauss lov sier at den elektriske fluksen Φ er lik den totale ladningen
DetaljerElektrisitetslære TELE1002-A 13H HiST-AFT-EDT
Elektrisitetslære TELE-A 3H HiST-AFT-EDT Øving 7; løysing Oppgave Kretsen viser en reléspole med induktans L = mh. Total resistans i kretsen er R = Ω. For å unngå at det dannes gnister når bryteren åpnes,
DetaljerOnsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektromagnetisme Vår 2009, uke17 Onsdag 22.04.09 og fredag 24.04.09 Energi i magnetfelt [FGT 32.2, 32.3; YF 30.3; TM 28.7; AF 26.8, 27.11; LHL 25.3; DJG 7.2.4]
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNVERTETET OLO Det matematisk-naturitenskapelige fakultet Eksamen i: Fys1120 Eksamensdag: Onsdag 12. desember 2018 Tid for eksamen: 0900 1300 Oppgaesettet er på: 5 sider Vedlegg: Formelark Tilatte hjelpemidler
DetaljerOppsummering om kretser med R, L og C FYS1120
Oppsummering om kretser med R, L og C FYS1120 Likestrømskretser med motstander Strøm og spenning er alltid i fase. Ohms lov: V = RI Effekt er gitt ved: P = VI = RI 2 = V 2 /R Kirchoffs lover: Summen av
DetaljerFYS1120 Elektromagnetisme, Ukesoppgavesett 1
FYS1120 Elektromagnetisme, Ukesoppgavesett 1 22. august 2016 I FYS1120-undervisningen legg vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene som
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Kontinuasjonseksamen i: FYS 1000 Eksamensdag: 16. august 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert
DetaljerMA0002 Brukerkurs i matematikk B Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til
DetaljerLØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x
LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)
DetaljerTFY4115: Løsningsforslag til oppgaver gitt
Institutt for fysikk, NTNU. Høsten. TFY45: Løsningsforslag til oppgaver gitt 6.8.9. OPPGAVER 6.8. Vi skal estemme Taylorrekkene til noen kjente funksjoner: a c d sin x sin + x cos x sin 3 x3 cos +... x
DetaljerLøsningsforslag til øving 3
Institutt for fysikk, NTNU TFY455/FY003 Elektromagnetisme Vår 2009 Løsningsforslag til øving 3 Oppgave a) C V = E dl = 0 dersom dl E b) B På samme måte som et legeme med null starthastighet faller i gravitasjonsfeltet
DetaljerNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I EMNE TFY4120 FYSIKK. Fredag 3. desember 2004 Tid: kl
Studentnummer: Studieretning: Bokmål Side 1 av 1 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Jon Otto Fossum,
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon ide 1 av 7 Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen: Guro vendsen (73592773) Hjelpemidler: C - pesifiserte
DetaljerKap. 4 Trigger 9 SPENNING I LUFTA
Kap. 4 Trigger 9 SPENNING I LUFTA KJERNEBEGREPER Ladning Statisk elektrisitet Strøm Spenning Motstand Volt Ampere Ohm Åpen og lukket krets Seriekobling Parallellkobling Isolator Elektromagnet Induksjon
DetaljerKondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C. 1volt
Kondensator - apacitor Lindem. mai 00 Kondensator - en komponent som kan lagre elektrisk ladning. Symbol Kapasiteten ( - capacity ) til en kondensator måles i Farad. Som en teknisk definisjon kan vi si
DetaljerFYS1120 Elektromagnetisme ukesoppgavesett 7
FYS1120 Elektromagnetisme ukesoppgavesett 7 25. november 2016 Figur 1: En Wheatstone-bro I FYS1120-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør.
DetaljerLøsningsforslag til eksamen i FYS1000, 13/6 2016
Løsningsforslag til eksamen i FYS1000, 13/6 2016 Oppgave 1 a) Sola skinner både på snøen og på treet. Men snøen er hvit og reflekterer det meste av sollyset. Derfor varmes den ikke så mye opp. Treet er
Detaljer3. Hvilken av Maxwells ligninger beskriver hvordan en leder som fører en jevn strøm genererer et magnetisk felt?
Flervalgsoppgaver 1. En stavmagnet slippes gjennom ei strømsløyfe som vist i venstre del av figuren under. Pilene i sløyfa viser valgt positiv strømretning. Husk at magnetiske feltlinjer går ut fra nordpol
DetaljerEKSAMEN I TFY4155 ELEKTROMAGNETISME OG FY1003 ELEKTRISITET OG MAGNETISME
TFY4155/FY1003 31. mai 2010 Side 1 av 8 NOGS TKNSK-NATUVTNSKAPLG UNVSTT NSTTUTT FO FYSKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 KSAMN TFY4155 LKTOMAGNTSM OG FY1003
DetaljerLøsningsforslag til eksamen i FYS1000, 14/8 2015
Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en
DetaljerOppgave 4 : FYS linjespesifikk del
Oppgave 4 : FYS 10 - linjespesifikk del Fysiske konstanter og definisjoner: Vakuumpermittiviteten: = 8,854 10 1 C /Nm a) Hva er det elektriske potensialet i sentrum av kvadratet (punktet P)? Anta at q
DetaljerLøsningsforslag til øving 5
Institutt for fysikk, NTNU FY1013 Elektrisitet og magnetisme II Høst 2005 Løsningsforslag til øving 5 Veiledning mandag 26. og onsdag 28. september a) Med motstand og kapasitans C i serie: cos ωt = I +
DetaljerFlervalgsoppgaver. Gruppeøving 1 Elektrisitet og magnetisme
Gruppeøving Elektrisitet og magnetisme Flervalgsoppgaver Ei svært tynn sirkulær skive av kobber har radius R = 000 m og tykkelse d = 00 mm Hva er total masse? A 0560 kg B 0580 kg C 0630 kg D 0650 kg E
DetaljerEKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 9. desember 2005 kl
NORGES TEKNSK- NATURTENSKAPELGE UNERSTET NSTTUTT FOR FYSKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 EKSAMEN FY1013 ELEKTRSTET OG MAGNETSME Fredag 9. desember 2005 kl.
DetaljerEKSAMENSOPPGAVE. 7 (6 sider med oppgaver + 1 side med formler)
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 (elektromagnetisme) Dato: 9. juni 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt
DetaljerQ = π 4 D2 V = π 4 (0.1)2 0.5 m 3 /s = m 3 /s = 3.93 l/s Pa
35 Løsning C.1 Q π 4 D2 V π 4 (0.1)2 0.5 m 3 /s 0.00393 m 3 /s 3.93 l/s G gsρ vann Q 9.81 1.26 998 0.00393 N/s 0.0484 kn/s ṁ G/g 48.4/9.81 kg/s 4.94 kg/s Løsning C.2 Omregning til absolutt trykk: p abs
DetaljerLøsningsforslag til øving 4
Institutt for fysikk, NTNU FY3 Elektrisitet og magnetisme II Høst 25 Løsningsforslag til øving 4 Veiledning mandag 9. og onsdag 2. september Likeretter a) Strømmen som leveres av spenningskilden må gå
DetaljerLaboratorieoppgave 8: Induksjon
NTNU i Gjøvik Elektro Laboratorieoppgave 8: Induksjon Hensikt med oppgaven: Å forstå magnetisk induksjon og prinsipp for transformator Å forstå prinsippene for produksjon av elektrisk effekt fra en elektrisk
DetaljerPrøveeksamen i MAT 1100, H-03 Løsningsforslag
Prøveeksamen i MAT, H- Løsningsforslag. Integralet cos x dx er lik: +sin x Riktig svar: c) arctan(sin x) + C. Begrunnelse: Sett u = sin x, da er du = cos x dx og vi får: cos x + sin x dx = du du = arctan
DetaljerMidtsemesterprøve fredag 11. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2005 Midtsemesterprøve fredag 11. mars kl 1030 1330. Løsningsforslag 1) B. Newtons 3. lov: Kraft = motkraft. (Andel
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 12. juni 2017 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).
DetaljerLøsningsforslag til Øving 6 Høst 2016
TEP4105: Fluidmekanikk Løsningsforslag til Øving 6 Høst 016 Oppgave 3.13 Skal finne utløpshastigheten fra røret i eksempel 3. når vi tar hensyn til friksjon Hvis vi antar at røret er m langt er friksjonen
DetaljerForelesning nr.7 IN 1080 Elektroniske systemer. Spoler og induksjon Praktiske anvendelser Nøyaktigere modeller for R, C og L
Forelesning nr.7 IN 1080 Elektroniske systemer Spoler og induksjon Praktiske anvendelser Nøyaktigere modeller for R, C og L Dagens temaer Induksjon og spoler RL-kretser og anvendelser Fysiske versus ideelle
Detaljer