Laboratorieoppgave 1: Partielle molare volum

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Laboratorieoppgave 1: Partielle molare volum"

Transkript

1 Laboratorieoppgave 1: Partielle molare volum Åge Johansen Ole Håvik Bjørkedal 30. januar 2015 Sammendrag Rapporten omhandler hvordan partielle molare volum varierer med molfraksjonen Innhold 1 Innledning 2 2 Eksperimentelt Partielle molare volum som funksjon av molfraksjonen av aceton 2 3 Resultater Tettheten til aceton Molare volum av ren komponent Antall mol av hver komponent i pyknometeret Molfraksjon av hver komponent Partielle molare volum til blandingen Plott av endingen i molart volum ved blanding Partielle molare volum som funksjon av molfraksjonen av aceton Beregning av partielle molare volum av ren komponent Konklusjon 7 A Symbolliste 7 B Måleresultater 8

2 KJ1042- Åge Johansen og Ole H. Bjørkedal - Side 2 1 Innledning Ved blanding av to eller ere ulike væsker vil det totale volumet avvike fra en tilsvarende blanding av to like komponenter (Ideell blanding). Dette kommer av tiltrekkende og frastøtende krefter mellom stoene, og avhenger av komponenter og blandingsforhold. Målet for dette forsøket er å bestemme det partielle molare volumet for aceton og vann som funksjon av sammensetning. 2 Eksperimentelt Et pyknometer er en liten glasskolbe med en kork som har et lite hull i seg. Når pyknometeret fylles, vil væskeoverskudd gå ut gjennom hullet i korken, og det totale volumet i pyknometeret holder seg konstant for hver fylling. To pyknometre ble kalibrert med vann. De tomme pyknometrene ble først veid, så fylt med vann og veid igjen. Tettheten til vann ble funnet i litteratur.?? Ti ulike blandinger av vann og aceton ble preparert, og vekt av disse ble bestemt når prøvene var fullstendig blandet og romtempererte. 2.1 Partielle molare volum som funksjon av molfraksjonen av aceton V 1 og V 2 ble funnet ved å kombinere 1 og 2. mix V m = (V 1 V 1 ) + x 2 [(V 2 V 2 ) (V 1 V 1 ) (1) d mix V m dx 2 Fra dette ble følgende uttrykk for V 1 (x 2 ) og V 2 (x 2 ): = (V 2 V 2 ) (V 1 V 1 ) (2) V 1 = V 2 V 2 + V 1 d mixv m dx 2 (3) V 2 = mix V m + x 2 d mixv m dx 2 d mixv m dx 2 + V 2 (4)

3 KJ1042- Åge Johansen og Ole H. Bjørkedal - Side 3 3 Resultater 3.1 Tettheten til aceton Ved å bestemme de eksakte volumene og vektene til pyknometerne og deretter veie pyknometerne med ren aceton kan man nne tettheten til aceton etter formelen. ρ aceton = w aceton V pyknometer ρ aceton = 3.2 Molare volum av ren komponent 8, 21 10, 57 = 0, 776g/cm3 (5) Molare volum av ren komponent ble bergnet ut i fra tettheten til ren komponent. V m = 1 ρ m (6) Dette ga verdier for vann og aceton: V vann = 18, 03 V aceton = 74, Antall mol av hver komponent i pyknometeret Antall mol av gitt komponent ved blandinger følger formel; og; n vann = n aceton = kw Vvann(kρ vann + ρ aceton ) W Vaceton(kρ vann + ρ aceton ) og ρ er tett- der W er blandingens totale masse, k er volumforholdet Vvann heten til henholdvis vann og aceton. 3.4 Molfraksjon av hver komponent Molfraksjonen av hver komponent er gitt som; V aceton (7) (8) og x vann = x aceton = n vann n vann + n aceton (9) n aceton n aceton + n vann (10)

4 KJ1042- Åge Johansen og Ole H. Bjørkedal - Side Partielle molare volum til blandingen Partielle molare volum V m ble regnet ut ved å bruke formelen; V m = V 1 +V 2 2 n vann + n aceton (11) Der V 1 og V 2 står for volumet til hvert av pyknometerene. Gjennomsnitt ble brukt for å minimalisere variasjoner i veiinger. Dersom blandingen hadde vært en ideell blanding ville den fulgt formelen: V unmix = x vann V vann + x aceton V aceton (12) 3.6 Plott av endingen i molart volum ved blanding Ved å blotte dieransen mellom reell og ideell blanding mot molfraksjonen til den ene komponenten får man en kurve som ved ideell blanding ville vært en rett linje. Figur 1: Grafen viser forskjellen mellom de partielle molare volumene til ideell og reell blanding

5 KJ1042- Åge Johansen og Ole H. Bjørkedal - Side Partielle molare volum som funksjon av molfraksjonen av aceton Figur 2: Grafen viser det partielle molare volumet av vann plottet mot molfraksjonen av aceton Figur 3: Grafen viser det partielle molare volumet av aceton plottet mot molfraksjonen av aceton

6 KJ1042- Åge Johansen og Ole H. Bjørkedal - Side 6 Derson man ser på gur 2 og gur 3 ser man at grafene er speilvendte av hverandre. 3.8 Beregning av partielle molare volum av ren komponent Ved å bruke regresjonsverktøy på grafene i gur 2 og gur 3 blir uttrykkene for V vann og V aceton. V vann (x aceton ) = 0, 37x 3 5, 65x 2 0, 18x + 18, 064 (13) V vann = V vann (x aceton = 0) = 18, 06cm 3 /mol V aceton (x aceton ) = 0, 37x 3 5, 65x , 20x + 68, 183 (14) V aceton = V aceton (x aceton = 0) = 68, 18cm 3 /mol

7 KJ1042- Åge Johansen og Ole H. Bjørkedal - Side 7 4 Konklusjon Fra resultatene nnes det at sammenhengen mellom reell og ideell blanding er: mix V m (x 2 ) = 6, 1892 x 2 2 6, 3871 x 2 + 0, 0258 (15) Partielle molare volum som funksjon av sammensetning ble bestemt til: V 1 (x 2 ) = 0, 3749x 3 2 5, 6561x 2 2 0, 1771x , 064 (16) V 2 (x 2 ) = 0, 3749x 3 2 5, 6561x , 201x , 183 (17) Fra grafene kan det sees at disse kurvene er speilbilder av hverandre. A Symbolliste Tabell 1: Symboler brukt i rapporten Symbol Enhet Beskrivelse ρ i g/cm 3 Tettheten til en gitt komponent w i g Vekten til en gitt komponent W g Vekten til den totale blandingen V i cm 3 Volumet til en gitt komponent k 1 Volumforhold mellom komponentene n i mol Antall mol av en gitt komponent Vm cm 3 /mol Molart volum til en gitt komponent x i 1 Molfraksjon til av en gitt komponent V unmix cm 3 /mol Molfraksjon dersom ideell blanding

8 KJ1042- Åge Johansen og Ole H. Bjørkedal - Side 8 B Måleresultater Tabell 2: Tabellen viser at vekten av pyknometerne endres ved forskjellig konsentrasjon av vann og aceton Måling # volum vann volum aceton Nettovekt pyknometer 1 Nettovekt pyknometer , , , , , , , , ,005 9, ,8623 9, ,7202 9, ,4965 9, ,067 9, ,8213 8, ,394 8, ,2081 8,1569

9 KJ1042- Åge Johansen og Ole H. Bjørkedal - Side 9 Tabell 3: Tabellen viser hvordan antall mol og molfraksjonen av hver komponent varierer med målingene Måling # mol vann (n 1 ) mol aceton (n 2 ) x 1 x 2 0 0,5771 0,0000 1,0000 0, ,5596 0,0047 0,9917 0, ,4901 0,0237 0,9539 0, ,4544 0,0335 0,9314 0, ,3987 0,0482 0,8921 0, ,3595 0,0580 0,8611 0, ,3024 0,0732 0,8052 0, ,2421 0,0879 0,7338 0, ,1408 0,1119 0,5572 0, ,0999 0,1208 0,4526 0, ,0197 0,1382 0,1248 0, ,0000 0,1408 0,0000 1,0000 Tabell 4: Tabellen viser hvordan det de reelle molare volumene avviker fra de ideelle. Tabellen viser også hvordan de partielle molare volumene til hver komponent endres ved konsentrajonen Måling # V m V unmix mix V m V m,aceton V m,vann 0 18,030 18,030 0,000 68,148 18, ,592 18,497 0,094 68,397 18, ,416 20,638-0,221 68,767 18, ,504 21,905-0,401 68,976 18, ,472 24,127-0,655 69,375 17, ,126 25,877-0,751 69,765 17, ,932 29,036-1,104 70,230 17, ,791 33,074-1,283 70,984 17, ,513 43,053-1,540 72,491 16, ,539 48,962-1,422 73,289 16, ,422 67,486-1,064 74,027 13, ,489 74,536-0,047 74,489 11,992

10 KJ1042- Åge Johansen og Ole H. Bjørkedal - Side 10 Referanser [1] Kjelstrup, Signe Prosjekter i fysikalsk kjemi grunnkurs, 7. utgave; Tapir akademiske forlag, 2011 [2] Aylward, G. m.. SI Chemical Data, 6th ed. ; Wiley, Australia, 2008 [3] Lide, D. R., Ed. CRC Handbook of Chemistry and Physics, 89th ed.; CRC Press, Boca Raton, FL, USA, 2009 Ole Håvik Bjørkedal Trondheim, 30. januar 2015 Åge Johansen Trondheim, 30. januar 2015

KJ1042 Termodynamikk laboratoriekurs Oppgave 1. Partielle molare volum

KJ1042 Termodynamikk laboratoriekurs Oppgave 1. Partielle molare volum KJ1042 Termodynamikk laboratoriekurs Oppgave 1. Partielle molare volum Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 21 Utført 14. februar 2012 Innhold 1 Innledning

Detaljer

Oppgave 1. Bestemmelse av partielle molare volum

Oppgave 1. Bestemmelse av partielle molare volum Oppgave 1 Rom C2-107 Gruppe 45 Anders Leirpoll & Kasper Linnestad andersty@stud.ntnu.no kasperjo@stud.ntnu.no 22.02.2012 i Sammendrag Hensikten med dette forsøket var å bestemme de partielle molare volum

Detaljer

Laboratorieoppgave 3: Fordampingsentalpi til sykloheksan

Laboratorieoppgave 3: Fordampingsentalpi til sykloheksan Laboratorieoppgave 3: Fordampingsentalpi til sykloheksan Åge Johansen agej@stud.ntnu.no Ole Håvik Bjørkedal olehb@stud.ntnu.no Gruppe 60 17. mars 2013 Sammendrag Rapporten omhandler hvordan fordampningsentalpien

Detaljer

Eksperiment 10; Etersyntese: Alkylering av paracetamol til Phenacetin

Eksperiment 10; Etersyntese: Alkylering av paracetamol til Phenacetin Eksperiment 10; Etersyntese: Alkylering av paracetamol til Phenacetin Åge Johansen 6. november 2012 Sammendrag Rapporten omhandler hvordan en eter blir dannet fra en alkohol, ved hjelp av alkylering gjennom

Detaljer

Eksperiment 12; Oksidasjon av isoborneol til Kamfer

Eksperiment 12; Oksidasjon av isoborneol til Kamfer Eksperiment 12; Oksidasjon av isoborneol til Kamfer Åge Johansen 3. november 2012 Sammendrag Rapporten omhandler hvordan ketonet Kamfer blir dannet fra alkoholet isoborneol TMT4122- Åge Johansen - Side

Detaljer

KJ1042 Termodynamikk laboratoriekurs Oppgave 2. Partiell molar entalpi

KJ1042 Termodynamikk laboratoriekurs Oppgave 2. Partiell molar entalpi KJ104 Termodynamikk laboratoriekurs Oppgave. Partiell molar entalpi Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 1 Lab C-107 Utført 8. februar 01 Innhold 1 Innledning

Detaljer

Laboratorieoppgave 4: Tokomponent faselikevekt

Laboratorieoppgave 4: Tokomponent faselikevekt Laboratorieoppgave 4: Tokomponent faselikevekt Åge Johansen agej@stud.ntnu.no Ole Håvik Bjørkedal olehb@stud.ntnu.no Gruppe 60 29. september 2013 Sammendrag Dette forsøket ble utført for å bestemme aktivitetskoesienten

Detaljer

KJ1042 Termodynamikk laboratoriekurs Oppgave 3. Fordampningsentalpi av ren væske Aceton

KJ1042 Termodynamikk laboratoriekurs Oppgave 3. Fordampningsentalpi av ren væske Aceton KJ1042 Termodynamikk laboratoriekurs Oppgave 3. Fordampningsentalpi av ren væske Aceton Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 21 Lab C2-107 Utført 21. februar

Detaljer

Eksperiment 14; Grignard reaksjon: Syntese av trifenylmetanol

Eksperiment 14; Grignard reaksjon: Syntese av trifenylmetanol Eksperiment 14; Grignard reaksjon: Syntese av trifenylmetanol Åge Johansen 29. oktober 2012 Sammendrag Rapporten omhandler hvordan trifenylmetanol blir syntetisert via Grignardreagenset som skal reageres

Detaljer

Oppgave 3. Fordampningsentalpi av ren væske

Oppgave 3. Fordampningsentalpi av ren væske Oppgave 3 Fordampningsentalpi av ren væske KJ1042 Rom C2-107 Gruppe 45 Anders Leirpoll & Kasper Linnestad andersty@stud.ntnu.no kasperjo@stud.ntnu.no 29.02.2012 i Sammendrag I forsøket ble damptrykket

Detaljer

Oppgave 4. Tokomponent faselikevekt

Oppgave 4. Tokomponent faselikevekt Oppgave 4 Tokomponent faselikevekt KJ1042 Rom C2-107 Gruppe 45 Anders Leirpoll & Kasper Linnestad andersty@stud.ntnu.no kasperjo@stud.ntnu.no 15.02.2012 i Sammendrag Forsøkets hensikt var å beregne aktivitetskoeffisienten,,

Detaljer

Laboratorieoppgave 5: Standard Reduksjonspotensial. Åge Johansen Ole Håvik Bjørkedal Gruppe 60 1.

Laboratorieoppgave 5: Standard Reduksjonspotensial. Åge Johansen Ole Håvik Bjørkedal Gruppe 60 1. Laboratorieoppgave 5: Standard Reduksjonspotensial Åge Johansen agej@stud.ntnu.no Ole Håvik Bjørkedal olehb@stud.ntnu.no Gruppe 60 1. mai 2013 Sammendrag Hensikten med dette forsøket var å bestemme standard

Detaljer

Oppgave 3 -Motstand, kondensator og spole

Oppgave 3 -Motstand, kondensator og spole Oppgave 3 -Motstand, kondensator og spole Ole Håvik Bjørkedal, Åge Johansen olehb@stud.ntnu.no, agej@stud.ntnu.no 18. november 2012 Sammendrag Rapporten omhandler hvordan grunnleggende kretselementer opptrer

Detaljer

4 KONSENTRASJON 4.1 INNLEDNING

4 KONSENTRASJON 4.1 INNLEDNING 4 KONSENTRASJON 4.1 INNLEDNING 1 Terminologi En løsning er tidligere definert som en homogen blanding av rene stoffer (kap. 1). Vi tenker vanligvis på en løsning som flytende, dvs. at et eller annet stoff

Detaljer

KJ1042 Termodynamikk laboratoriekurs Oppgave 4. Tokomponent - faselikevekt

KJ1042 Termodynamikk laboratoriekurs Oppgave 4. Tokomponent - faselikevekt KJ1042 Termodynamikk laboratoriekurs Oppgave 4. Tokomponent - faselikevekt Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 21 Lab C2-107 Utført 16. mars 2012 Innhold 1

Detaljer

Oppgave 5. Standard elektrodepotensial

Oppgave 5. Standard elektrodepotensial Oppgave 5 Standard elektrodepotensial KJ1042 Rom C2-107 Gruppe 45 Anders Leirpoll & Kasper Linnestad andersty@stud.ntnu.no kasperjo@stud.ntnu.no 28.03.2012 i Sammendrag Hensikten med dette forsøket er

Detaljer

Preparativ oppgave i uorganisk kjemi

Preparativ oppgave i uorganisk kjemi Preparativ oppgave i uorganisk kjemi Kaliumaluminiumsulfat dodekahydrat (Al-1) Anders Leirpoll 13.09.2011 Innhold Sammendrag:... 1 Innledning:... 1 Prinsipp... 1 Eksperimentelt... 2 Resultater... 2 Diskusjon...

Detaljer

Øving Nettoinnhold i en melkekartong

Øving Nettoinnhold i en melkekartong Øving Nettoinnhold i en melkekartong Vi tenker oss at vi overvåker fylling av melkekartonger. Vi skal foreta et utplukk av 3 kartonger med nominelt innhold på 1 liter. Vi skal bestemme volum-innholdet

Detaljer

TBT4135 Biopolymerkjemi Laboratorieoppgave 3: Syrehydrolyse av mannuronan Gruppe 5

TBT4135 Biopolymerkjemi Laboratorieoppgave 3: Syrehydrolyse av mannuronan Gruppe 5 TBT4135 Biopolymerkjemi Laboratorieoppgave 3: Syrehydrolyse av mannuronan Gruppe 5 Hilde M. Vaage hildemva@stud.ntnu.no Malin Å. Driveklepp malinad@stud.ntnu.no Oda H. Ramberg odahera@stud.ntnu.no Audun

Detaljer

Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839. EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Onsdag 22. mai 2013 Tid: 09.00 13.

Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839. EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Onsdag 22. mai 2013 Tid: 09.00 13. Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Onsdag

Detaljer

KJ1042 Øving 3: Varme, arbeid og termodynamikkens første lov

KJ1042 Øving 3: Varme, arbeid og termodynamikkens første lov KJ1042 Øving 3: arme, arbeid og termodynamikkens første lov Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hvordan ser Ideell gasslov ut? Ideell gasslov kan skrives P nrt der P er trykket, volumet,

Detaljer

TEMA: Destillasjon. Løsningsforslag: Komponentbalanse (molar basis) for acetaldehyd: F X F = B X B + D Y D

TEMA: Destillasjon. Løsningsforslag: Komponentbalanse (molar basis) for acetaldehyd: F X F = B X B + D Y D Norges Teknisk-Naturvitenskapelige Universitet Fag: Energi og Prosess Institutt for Termisk Energi og Vannkraft Nr.: TEP 4230 Trondheim, 06.10.04, T. Gundersen Del: Separasjonsprosesser Øving: 11 År: 2004

Detaljer

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET FULLSTENDIG

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET FULLSTENDIG Høgskolen i Østfold Avdeling for ingeniørfag EKSAMENSOPPGAVE Fag: IRK21015 Fysikalsk kjemi 10 studiepoeng Fagansvarlige: Ole Kr. Forrisdahl, Loan Che, Grupper: K2 Dato: 10.12.2015 Tid: 0900-1300 Antall

Detaljer

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Håvard Rue 73 59 35 20 Håkon Tjelmeland 73 59 35 20 Bjørn Kåre Hegstad 73 59 35 20

Detaljer

Kan vi forutse en pendels bevegelse, før vi har satt den i sving?

Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Gjør dette hjemme 6 #8 Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Skrevet av: Kristian Sørnes Dette eksperimentet ser på hvordan man finner en matematisk formel fra et eksperiment,

Detaljer

NA Dok 26C Krav til kalibrering og kontroll av volumetrisk utstyr for akkrediterte prøvingslaboratorier

NA Dok 26C Krav til kalibrering og kontroll av volumetrisk utstyr for akkrediterte prøvingslaboratorier Norsk akkreditering NA Dok 26C: Krav til kalibrering og kontroll av volumetrisk Mandatory/Krav Utarbeidet av: Saeed Behdad Godkjent av: Morten Bjørgen Versjon: 1.01 Gjelder fra: 01.03.2012 Sidenr: 1 av

Detaljer

Rapporter. De ulike delene i en rapport og hvordan de bør utformes Sammendrag Teori Eksperimentelt Resultat Diskusjon/konklusjon Litteraturliste

Rapporter. De ulike delene i en rapport og hvordan de bør utformes Sammendrag Teori Eksperimentelt Resultat Diskusjon/konklusjon Litteraturliste Rapporter Rapporter o Generelt om rapporter o Generelt oppsett for rapporter (og variasjoner) o Språk o Tabeller og figurer Tabeller: - Tabell tekster: - Plassering av enheter - Bruk av fotnoter - Organisering

Detaljer

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger Side 1 av 6 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger Oppgave 1 a) Termodynamikkens tredje lov kan formuleres slik: «Entropien for et rent stoff i perfekt krystallinsk

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org Løsningsforslag AA656 Matematikk 3MX Privatister 3. mai 006 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikkeksamen i 3MX er gratis, og det er lastet ned

Detaljer

I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x Y = ax + b:

I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x Y = ax + b: OPPGAVE I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x 7 74 546 y 48 6 45 a) Plott Y ln y mot X ln x i et rettvinklet koordinatsystem. ) Finn en lineær sammenheng mellom

Detaljer

- Kinetisk og potensiell energi Kinetisk energi: Bevegelses energi. Kinetiske energi er avhengig av masse og fart. E kin = ½ mv 2

- Kinetisk og potensiell energi Kinetisk energi: Bevegelses energi. Kinetiske energi er avhengig av masse og fart. E kin = ½ mv 2 Kapittel 6 Termokjemi (repetisjon 1 23.10.03) 1. Energi - Definisjon Energi: Evnen til å utføre arbeid eller produsere varme Energi kan ikke bli dannet eller ødelagt, bare overført mellom ulike former

Detaljer

Vi ønsker å bestemme konsentrasjonen av to forskjellige spesier som begge absorberer. Ni 510

Vi ønsker å bestemme konsentrasjonen av to forskjellige spesier som begge absorberer. Ni 510 nvendelser av spektroskopi. nale av en blanding kjemiske forbindelser ε 1 bc 1 + ε 2 bc 2 + ε 3 bc 3 + ε 4 bc 4 + ε 5 bc 5 +. Vi ønsker å bestemme konsentrasjonen av to forskjellige spesier som begge absorberer.

Detaljer

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger Side 1 av 11 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger Oppgave 1 a) Gibbs energi for et system er definert som og entalpien er definert som Det gir En liten endring

Detaljer

Mal for rapportskriving i FYS2150

Mal for rapportskriving i FYS2150 Mal for rapportskriving i FYS2150 Ditt navn January 21, 2011 Abstract Dette dokumentet viser hovedtrekkene i hvordan vi ønsker at en rapport skal se ut. De aller viktigste punktene kommer i en sjekkliste

Detaljer

Støkiometri (mengdeforhold)

Støkiometri (mengdeforhold) Støkiometri (mengdeforhold) Det er særs viktig i kjemien å vite om mengdeforhold om stoffer. -En hodepine tablett er bra mot hodesmerter, ti passer dårlig. -En sukkerbit i kaffen fungerer, 100 er slitsomt.

Detaljer

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG Høgskolen i Østfold Avdeling for ingeniørfag EKSAMENSOPPGAVE Fag: IRK21014 Fysikalsk kjemi 10 studiepoeng Emneansvarlig: Ole Kr. Førrisdahl, mobil 974 873 78 Grupper: K2 Dato: 11.12.2014 Tid: 0900-1300

Detaljer

De viktigste formlene i KJ1042

De viktigste formlene i KJ1042 De viktigste formlene i KJ1042 Kollisjonstall Midlere fri veilengde Z AB = πr2 AB u A 2 u 2 B 1/2 N A N B 2πd 2 V 2 Z A = A u A N A V λ A = u A z A = V 2πd 2 A N A Ideell gasslov. Antar at gassmolekylene

Detaljer

FYS2160 Laboratorieøvelse 1

FYS2160 Laboratorieøvelse 1 FYS2160 Laboratorieøvelse 1 Faseoverganger (H2013) Denne øvelsen går ut på å bestemme smeltevarmen for is og fordampningsvarmen for vann ved 100 C (se teori i del 5.3 i læreboka 1 ). Trykket skal i begge

Detaljer

KJ1042 Øving 12: Elektrolyttløsninger

KJ1042 Øving 12: Elektrolyttløsninger KJ1042 Øving 12: Elektrolyttløsninger Ove Øyås Sist endret: 14. mai 2011 Repetisjonsspørsmål 1. Hva sier Gibbs faseregel? Gibbs faseregel kan skrives som f = c p + 2 der f er antall frihetsgrader, c antall

Detaljer

Eksamen i FYS Oppgavesettet, inklusiv ark med formler, er på 7 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

Eksamen i FYS Oppgavesettet, inklusiv ark med formler, er på 7 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 16. desember, 2011 Tid for eksamen : kl. 9.00-13.00 Sted : Åsgårdveien 9 Hjelpemidler : K. Rottmann: Matematisk Formelsamling, O. Øgrim:

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

TKP 4165 Prosessutforming Øving 12

TKP 4165 Prosessutforming Øving 12 TKP 4165 Prosessutforming Øving 12 Åge Johansen agej@stud.ntnu.no Stud.nr:724109 10. april 2015 1 Innhold 1 Oppgave 1 3 1.1 a) Simulering og oppfylling av massebalanse.......... 3 1.2 b) Varmeveskler,

Detaljer

KJ1042 Termodynamikk laboratoriekurs Oppgave 5. Standard reduksjonspotensial

KJ1042 Termodynamikk laboratoriekurs Oppgave 5. Standard reduksjonspotensial KJ1042 Termodynamikk laboratoriekurs Oppgave 5. Standard reduksjonspotensial Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 21 Lab C2-107 Utført 27. mar012 Innhold 1

Detaljer

0.1 Kort introduksjon til komplekse tall

0.1 Kort introduksjon til komplekse tall Enkel introduksjon til matnyttig matematikk Vi vil i denne innledningen introdusere litt matematikk som kan være til nytte i kurset. I noen tilfeller vil vi bare skrive opp uttrykk uten å komme inn på

Detaljer

Ekstraksjon: Separasjon av sure, basiske og nøytrale forbindelser

Ekstraksjon: Separasjon av sure, basiske og nøytrale forbindelser Ekstraksjon: Separasjon av sure, basiske og nøytrale forbindelser Anders Leirpoll I forsøket ble det gjennomført en ekstraksjon av nafatalen og benzosyre løst i eter, med ukjent sammensetning. Sammensetningen

Detaljer

KJ2053 Kromatografi Oppgave 5: Bestemmelse av molekylmasser ved hjelp av eksklusjonskromatografi/gelfiltrering (SEC) Rapport

KJ2053 Kromatografi Oppgave 5: Bestemmelse av molekylmasser ved hjelp av eksklusjonskromatografi/gelfiltrering (SEC) Rapport KJ2053 Kromatografi Oppgave 5: Bestemmelse av molekylmasser ved hjelp av eksklusjonskromatografi/gelfiltrering (SEC) Rapport Pia Haarseth piakrih@stud.ntnu.no Audun Formo Buene audunfor@stud.ntnu.no Laboratorie:

Detaljer

3. Massevirkningsloven eller likevektsuttrykk for en likevekt

3. Massevirkningsloven eller likevektsuttrykk for en likevekt apittel 8 jemisk likevekt 1. Reversible reaksjoner. Hva er likevekt? 3. Massevirkningsloven eller likevektsuttrykk for en likevekt 4. Likevektskonstanten (i) Hva sier verdien oss? (ii) Sammenhengen mellom

Detaljer

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor

Detaljer

Fasit eksamen Fys1000 vår 2009

Fasit eksamen Fys1000 vår 2009 Fasit eksamen Fys1000 vår 2009 Oppgave 1 a) Klossen A er påvirka av tre krefter: 1) Tyngda m A g som peker loddrett nedover. Denne er det lurt å dekomponere i en komponent m A g sinθ langs skråplanet nedover

Detaljer

AVDELING FOR INGENIØRUTDANNING

AVDELING FOR INGENIØRUTDANNING AVDELIG FR IGEIØRUTDAIG Emne: Analytisk kjemi Fagnr: L435K Faglig veileder: Hanne Thomassen Gruppe(r):2KA Dato: 15. desember 2005 Eksamenstid: 9.00-14.00 Eksamensoppgaven består av: Antall sider (inkl.

Detaljer

Løsningsforslag til øving 1

Løsningsforslag til øving 1 Oppgave 1 FY1005/TFY4165 Termisk fysikk. Institutt for fysikk, NTNU. åren 2013. a) i deriverer på begge sider og finner ( ) α p ( ) κt T T p Løsningsforslag til øving 1 = p = T ( 1 ( 1 ) = 1 T ) = 1 p

Detaljer

ELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø 18.01.02.

ELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø 18.01.02. ELEKTRISITET - Sammenhengen mellom spenning, strøm og resistans Lene Dypvik NN Øyvind Nilsen Naturfag 1 Høgskolen i Bodø 18.01.02.2008 Revidert av Lene, Øyvind og NN Innledning Dette forsøket handler om

Detaljer

a) Stempelet står i en posisjon som gjør at V 1 = 0.0200 m 3. Finn det totale spesikte volumet v 1 til inneholdet i tanken. Hva er temperaturen T 1?

a) Stempelet står i en posisjon som gjør at V 1 = 0.0200 m 3. Finn det totale spesikte volumet v 1 til inneholdet i tanken. Hva er temperaturen T 1? 00000 11111 00000 11111 00000 11111 DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I BIT 130 Termodynamikk VARIGHET: 900 1300 (4 timer). DATO: 22/5 2007 TILLATTE HJELPEMIDLER: Godkjent lommekalkulator

Detaljer

Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008. eksamensoppgaver.org

Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008. eksamensoppgaver.org Løsningsforslag for eksamen i MAT1003 Matematikk 2P Privatister - 27.05.2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2P er gratis, og

Detaljer

Nivåtettheten for ulike spinn i 44 Ti

Nivåtettheten for ulike spinn i 44 Ti 7. september 2009 1 Hva er et nukleonpar? Et par brytes 2 3 Nivåtettheten for ulike lave spinn Hva er et nukleonpar? Et par brytes I en like-like kjerne er det hensiktsmessig for nukleonene å danne par.

Detaljer

NGU Rapport 2009.048. Kalibrering for densitet innvirkning for mekaniske testmetoder.

NGU Rapport 2009.048. Kalibrering for densitet innvirkning for mekaniske testmetoder. NGU Rapport 2009.048 Kalibrering for densitet innvirkning for mekaniske testmetoder. Norges geologiske undersøkelse 7491 TRONDHEIM Tlf. 73 90 40 00 Telefaks 73 92 16 20 RAPPORT Rapport nr.: 2009.048 ISSN

Detaljer

2. Termodynamikkens lover Termodynamikkens 1. lov Energiutveksling i form av varme og arbeid Trykk-volum arbeid

2. Termodynamikkens lover Termodynamikkens 1. lov Energiutveksling i form av varme og arbeid Trykk-volum arbeid Fysikk / Termodynamikk åren 2001 2. Termodynamikkens lover 2.1. Termodynamikkens 1. lov Termodynamikkens første lov kan formuleres å mange måter. En vanlig formulering er: Energien til et isolert system

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

Varmepumpe. Innledning. Teori. Tobias Grøsfjeld Espen Auseth Nilsen Peter Kristoersen. 1. desember Generell teori

Varmepumpe. Innledning. Teori. Tobias Grøsfjeld Espen Auseth Nilsen Peter Kristoersen. 1. desember Generell teori Varmepumpe Tobias Grøsfjeld Espen Auseth Nilsen Peter Kristoersen 1. desember 2012 Sammendrag Eektiviteten til en R-134a-varmpepumpe mellom to varmereservoar ble målt til å være mellom 3 og 4. Innledning

Detaljer

EKSAMENSOPPGAVE MAT-0001 (BOKMÅL)

EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : Tirsdag 6. desember 2011. Tid : 09.00-13.00. Sted: : Adm. bygget, Aud. max. eller B154. Tillatte hjelpemidler : Alle

Detaljer

TKP 4165 Prosessutforming Øving 12

TKP 4165 Prosessutforming Øving 12 TKP 4165 Prosessutforming Øving 12 Åge Johansen agej@stud.ntnu.no Stud.nr:724109 3. april 2014 1 Innhold 1 Oppgave 1 3 1.1 a) Simulering og oppfylling av massebalanse.......... 3 1.2 b) Varmeveskler, Separator

Detaljer

AKTIVITET. Baneberegninger modellraketter. Elevaktivitet. Utviklet av trinn

AKTIVITET. Baneberegninger modellraketter. Elevaktivitet. Utviklet av trinn AKTIVITET 8-10. trinn Baneberegninger modellraketter Utviklet av Tid Læreplanmål Nødvendige materialer 1-2 timer Bruke egne målinger og tabellverdier til å gjøre baneberegninger på modellraketten. Modellrakett

Detaljer

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org Løsningsforslag AA654 Matematikk 3MX 3. juni 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Detaljert modellering av 'gas blowby'

Detaljert modellering av 'gas blowby' Bilag Innhold BILAG 1 FLYTSKJEMA... 57 B1.1 MODELL 1... 57 B1.2 MODELL2... 58 B1.3 MODELL 3... 59 B1.4 MODELL 4... 60 BILAG 2 DIMENSJONER PÅ UTSTYR... 61 B2.1 DIMENSJONER FOR MODELL 1-3... 61 B2.2 MODELL

Detaljer

Løsningsforslag Matematikk 2MX - AA6516-9. mai 2007

Løsningsforslag Matematikk 2MX - AA6516-9. mai 2007 Løsningsforslag Matematikk 2MX - AA6516-9. mai 2007 eksamensoppgaver.org September 17, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

EKSAMENSOPPGAVE. Eksamen i: Kje-1005 Termodynamikk og Kinetikk Dato: Torsdag 6.juni 2013 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 3

EKSAMENSOPPGAVE. Eksamen i: Kje-1005 Termodynamikk og Kinetikk Dato: Torsdag 6.juni 2013 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 3 EKSAMENSOPPGAVE Eksamen i: Kje-1005 Termodynamikk og Kinetikk Dato: Torsdag 6.juni 2013 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 3 Tillatte hjelpemidler: Enkel lommeregner Millimeterpapir

Detaljer

Preparativ oppgave Ammoniumjern(III)sulfatdodekahydrat NH 4 Fe(SO 4 ) 2 12 H 2 O. Audun Formo Buene Lab 1 Plass 17

Preparativ oppgave Ammoniumjern(III)sulfatdodekahydrat NH 4 Fe(SO 4 ) 2 12 H 2 O. Audun Formo Buene Lab 1 Plass 17 Preparativ oppgave Ammoniumjern(III)sulfatdodekahydrat NH 4 Fe(SO 4 12 H 2 O Audun Formo Buene Lab 1 Plass 17 27. september 2011 Innhold 1 Sammendrag 1 2 Innledning 2 3 Fremstillingsmetode 2 3.1 Fremgangsmåte

Detaljer

Fysikk for ingeniører. 11. Termiske egenskaper. Løsninger på blandede oppgaver. Side 11-1

Fysikk for ingeniører. 11. Termiske egenskaper. Løsninger på blandede oppgaver. Side 11-1 Fysikk for ingeniører ermiske egenskaer Løsninger å landede ogaver Side - Ogave : a) Forutsetter at stemelet står i ro etrakter kreftene å undersiden av stemelet: = + mg mg kg 98m/s = + = Pa + = 6 Pa m

Detaljer

Oppgavesettet er på 3 sider eks. forside, og inneholder 12 deloppgaver: 1abc, 2, 3, 4abc, 5ab, 6ab.

Oppgavesettet er på 3 sider eks. forside, og inneholder 12 deloppgaver: 1abc, 2, 3, 4abc, 5ab, 6ab. EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : tirsdag 4. desember 2012. Tid : 09.00-13.00. Sted: : Åsgårdvegen 9. Tillatte hjelpemidler : Alle trykte og skrevne.

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

TBT4135 Biopolymerkjemi Laboratorieoppgave 2: Nedbryting av biopolymerer undersøkt med viskometri Gruppe 5

TBT4135 Biopolymerkjemi Laboratorieoppgave 2: Nedbryting av biopolymerer undersøkt med viskometri Gruppe 5 TBT4135 Biopolymerkjemi Laboratorieoppgave 2: Nedbryting av biopolymerer undersøkt med viskometri Gruppe 5 Hilde M. Vaage hildemva@stud.ntnu.no Malin Å. Driveklepp malinad@stud.ntnu.no Oda H. Ramberg odahera@stud.ntnu.no

Detaljer

EKSAMENSOPPGA VE. Fagnr: FO 44JA Dato: Antall oppgaver:

EKSAMENSOPPGA VE. Fagnr: FO 44JA Dato: Antall oppgaver: Høgsko/l'n imm m Avdeling for ingeniørutdanning EKSAMENSOPPGA VE Fag: FYSIKK / TERMODYNAMIKK Gruppe(r) KA,3K Eksamensoppgaven består av Tillatte hjelpemidler: Antall sider inkl forside: 7 Fagnr: FO 44JA

Detaljer

Bestemmelse av Newtons gravitasjonskonstant med torsjonsvekt

Bestemmelse av Newtons gravitasjonskonstant med torsjonsvekt Bestemmelse av Newtons gravitasjonskonstant med torsjonsvekt K. Reed a, E. S. Syrdalen a a Institutt for fysikk, Norges Teknisk-Naturvitenskapelige Universitet, N-7491 Trondheim, Norway. Abstract Cavendisheksperimentet

Detaljer

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og

Detaljer

Velkommen til en dag med realfag i praksis!

Velkommen til en dag med realfag i praksis! Velkommen til en dag med realfag i praksis! Tom Lohiniva Noen regler Vi går/er alltid samlet. Toalett besøk Min mobil 907 69 653 Ingen mobil eller noen form for tennkilder (fyrstikker, lighter etc.) inne

Detaljer

Rapportskjemaer. TMT4122 Generell og organisk kjemi Laboratoriekurs Del 1. Innhold:

Rapportskjemaer. TMT4122 Generell og organisk kjemi Laboratoriekurs Del 1. Innhold: TMT422 Generell og organis jemi Laboratorieurs Del Rapportsjemaer Innhold: Oppg. Eletrometris bestemmelse av obber side Oppg 3. Kvalitativ analyse side -4 Separasjon i grupper. Kationer i gruppe I side

Detaljer

Teknologi og forskningslære

Teknologi og forskningslære Teknologi og forskningslære Problemstilling: Hva skal til for at Store Lungegårdsvanet blir dekket av et 30cm tykt islag? Ingress: Jeg valgte å forske på de første 30cm i Store Lungegårdsvannet. akgrunnen

Detaljer

FYS2160 Laboratorieøvelse 1

FYS2160 Laboratorieøvelse 1 FYS2160 Laboratorieøvelse 1 Faseoverganger (H2016) Denne øvelsen går ut på å bestemme smeltevarmen for is og fordampningsvarmen for vann ved 100 C (se teori i del 5.3 i læreboka 1 ). Trykket skal i begge

Detaljer

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger Side 1 av 10 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger Oppgave 1 a) Et forsøk kan gjennomføres som vist i figur 1. Røret er isolert, dvs. at det ikke tilføres varme

Detaljer

Prosjekt i prosessteknikk Metanolproduksjon pa Tjeldbergodden

Prosjekt i prosessteknikk Metanolproduksjon pa Tjeldbergodden 8. april 2011 1 Prosjekt i prosessteknikk Metanolproduksjon pa Tjeldbergodden Brage Braathen Kjeldby Øystein Stenerud Skeie Anders Tyseng Leirpoll Kasper Johnsen Linnestad 8. april 2011 2 Innhold Introduksjon...

Detaljer

Alkylhalider Sn1- og Sn2- reaktivitet

Alkylhalider Sn1- og Sn2- reaktivitet Alkylhalider Sn1- og Sn2- reaktivitet Anders Leirpoll Sammendrag 1 Innhold 1 Formål... 2 2 Teori... 2 3 Fysikalske data... 3 4 Eksperimentelt... 5 5 Resultater... 6 5.1 Teoretisk utbytte... Feil! Bokmerke

Detaljer

Naturfagsrapport 2. Destillasjon

Naturfagsrapport 2. Destillasjon Naturfagsrapport 2. Destillasjon Innledning: Dette forsøket gjorde vi i en undervisnings økt med kjemi lab øvelser, onsdag uke 36, med Espen Henriksen. Målet med forsøket er at vi skal skille stoffene

Detaljer

MAT Grublegruppen Notat 8

MAT Grublegruppen Notat 8 MAT1100 - Grublegruppen Notat 8 Jørgen O. Lye Partielle dierensialligninger Denisjonen av en partiell dierensialligning er like enkel som den er vid. En partiell dierensialligning, ofte kalt PDE (partial

Detaljer

Seksjon 1.3 Tetthetskurver og normalfordelingen

Seksjon 1.3 Tetthetskurver og normalfordelingen Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver

Detaljer

Oksidasjon av Isoborneol til Kamfer

Oksidasjon av Isoborneol til Kamfer Oksidasjon av Isoborneol til Kamfer Eksperiment 12 Anders Leirpoll TMT4122 Lab 3. Plass 18B Utført 02.11.2011 I forsøket ble det foretatt en oksidasjon av isoborneol med hypokloritt til kamfer. Råproduktet

Detaljer

Løsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009

Løsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009 Løsningsforslag til eksamen i EA04 - Fysikk, 5..009 Oppgae a) Klossen er i kontakt med sylinderen så lenge det irker en normalkraft N fra sylinderen på klossen og il forlate sylinderen i det N = 0. Summen

Detaljer

Eksamen AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister. Nynorsk/Bokmål

Eksamen AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister. Nynorsk/Bokmål Eksamen 05.12.2007 AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister Nynorsk/Bokmål Oppgave 1 a) Deriver funksjonen: f x 2 ( ) = cos( x + 1) b) Løs likningen og oppgi svaret

Detaljer

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Andreas Leopold Knutsen 14. februar 2012 Funksjonsrekker En rekke på formen fn(x) der fn er en funksjon, kalles en n=1 funksjonsrekke. For alle

Detaljer

Statisk magnetfelt. Kristian Reed a, Erlend S. Syrdalen a

Statisk magnetfelt. Kristian Reed a, Erlend S. Syrdalen a Statisk magnetfelt Kristian Reed a, Erlend S. Syrdalen a a Institutt for fysikk, Norges Teknisk-Naturvitenskapelige Universitet, N-791 Trondheim, Norway. Sammendrag I det følgende eksperimentet ble en

Detaljer

Matematikk 1000. Eksamensaktuelle numerikk-oppgåver

Matematikk 1000. Eksamensaktuelle numerikk-oppgåver Matematikk 1000 Eksamensaktuelle numerikk-oppgåver Som kj er numeriske metodar ein sentral del av dette kurset. Dette vil også sette preg på eksamen. Men vi kjem ikkje til å bruke datamaskin på sjølve

Detaljer

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa.

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa. Oppgave 1 Vi har et legeme som kun beveger seg langs x-aksen. Finn den gjennomsnittlige akselerasjonen når farten endres fra v 1 =4,0 m/s til v = 0,10 m/s i løpet av et tidsintervall Δ t = 1,7s. a) = -0,90

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I TE 335 Termodynamikk VARIGHET: 9.00 14.00 (5 timer). DATO: 24/2 2001 TILLATTE HJELPEMIDLER: Lommekalkulator OPPGAVESETTET BESTÅR AV 2 oppgaver på 5 sider (inklusive tabeller) HØGSKOLEN I STAVANGER

Detaljer

Statens vegvesen. 14.637 Kapillær sugehastighet og porøsitet, PF. Omfang. Referanser. Utstyr. Fremgangsmåte. Full prosedyre

Statens vegvesen. 14.637 Kapillær sugehastighet og porøsitet, PF. Omfang. Referanser. Utstyr. Fremgangsmåte. Full prosedyre Staten vegveen 14.6 Betong og materialer til betong 14.63 Underøkele av herdet betong 14.637 - ide 1 av 5 14.637 Kapillær ugehatighet og porøitet, PF Gjeldende proe (nov. 1996): NY Omfang Metodebekrivelen

Detaljer

Breivika Tromsø maritime skole

Breivika Tromsø maritime skole Breivika Tromsø maritime skole F-S-Fremdriftsplan 00TM01F - Fysikk på operativt nivå Utgave: 1.01 Skrevet av: Knut Magnus Sandaker Gjelder fra: 18.09.2015 Godkjent av: Jarle Johansen Dok.id.: 2.21.2.4.3.2.6

Detaljer

Sikkerhetsrisiko:lav. fare for øyeskade. HMS ruoner

Sikkerhetsrisiko:lav. fare for øyeskade. HMS ruoner Reaksjonskinetikk. jodklokka Risiko fare Oltak Sikkerhetsrisiko:lav fare for øyeskade HMS ruoner Figur 1 :risikovurdering Innledning Hastigheten til en kjemisk reaksjon avhenger av flere faktorer: Reaksjonsmekanisme,

Detaljer

Alkener fra alkoholer: Syntese av sykloheksan

Alkener fra alkoholer: Syntese av sykloheksan Alkener fra alkoholer: Syntese av sykloheksan Anders Leirpoll I forsøket ble det utført syrekatalysert dehydrering av sykloheksanol. Produktet var sykloheksen og ble testet for renhet med bromvann og Jones

Detaljer

1. Atmosfæren. 2. Internasjonal Standard Atmosfære. 3. Tetthet. 4. Trykk (dynamisk/statisk) 5. Trykkfordeling. 6. Isobarer. 7.

1. Atmosfæren. 2. Internasjonal Standard Atmosfære. 3. Tetthet. 4. Trykk (dynamisk/statisk) 5. Trykkfordeling. 6. Isobarer. 7. METEOROLOGI 1 1. Atmosfæren 2. Internasjonal Standard Atmosfære 3. Tetthet 4. Trykk (dynamisk/statisk) 5. Trykkfordeling 6. Isobarer 7. Fronter 8. Høydemåler innstilling 2 Luftens sammensetning: Atmosfæren

Detaljer

Løsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org Løsningsforslag AA654 Matematikk MX Elever 7. juni 004 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Den 35. internasjonale Kjemiolympiade i Aten, juli uttaksprøve. Fasit.

Den 35. internasjonale Kjemiolympiade i Aten, juli uttaksprøve. Fasit. Oppgave 1 A) d B) c C) b D) d E) a F) a G) c H) d I) c J) b Den 35. internasjonale Kjemiolympiade i Aten, juli 2003. 1. uttaksprøve. Fasit. Oppgave 2 A) a B) b C) a D) b Oppgave 3 Masseprosenten av hydrogen

Detaljer

Kapittel 12. Brannkjemi. 12.1 Brannfirkanten

Kapittel 12. Brannkjemi. 12.1 Brannfirkanten Kapittel 12 Brannkjemi I forbrenningssonen til en brann må det være tilstede en riktig blanding av brensel, oksygen og energi. Videre har forskning vist at dersom det skal kunne skje en forbrenning, må

Detaljer