Statisk magnetfelt. Kristian Reed a, Erlend S. Syrdalen a

Størrelse: px
Begynne med side:

Download "Statisk magnetfelt. Kristian Reed a, Erlend S. Syrdalen a"

Transkript

1 Statisk magnetfelt Kristian Reed a, Erlend S. Syrdalen a a Institutt for fysikk, Norges Teknisk-Naturvitenskapelige Universitet, N-791 Trondheim, Norway. Sammendrag I det følgende eksperimentet ble en aksial Hallprobe benyttet til å måle de statiske magnetfeltene på aksen til ulike oppsett av strømførende spoler. Teoretiske beregninger og eksperimentelle data ble deretter sammenlignet. En kort spole, en Helmholtspole med ulike aksialavstander og en solenoide ble undersøkt. Resultatet ble gjennomsnittlige avvik fra teori på henholdsvis,%, 1,91%,1% og,17%. 1. Innledning Den danske vitenskapsmannen Hans Christian Ørsted ( ) la i 1819 grunnlaget for læren om elektromagnetisme idet han oppdaget at en magnetnål ble påvirket av en strømførende leder. En elektrisk strøm var altså opphavet til et tilhørende magnetfelt, en sammenheng som blant annet de franske fysikerne Jean-Baptiste Biot og Félix Savart umiddelbart fattet interesse for. llerede året etter Ørsteds gjennombrudd klarte de ved hjelp av en rekke eksperimenter å nne en fundamental kvantitativ sammenheng mellom magnetfeltet i et punkt og bidraget til dette fra innitesimale biter av en strømførende leder. Sammenhengen kalles i dag Biot-Savarts lov etter opphavsmennene.[] ed å summere alle innitesimale magnetfeltbidrag kan loven brukes til å beregne det totale magnetfeltet i et punkt forårsaket av en leder med vilkårlig form. I det påfølgende eksperimentet vil dette benyttes til å nne tilnærmede teoretiske verdier til de magnetiske feltene på aksene til tre ulike typer sirkulære spoler. Deretter vil måleresultater utført med en Hallprobe langs samme akse benyttes til å undersøke samsvaret mellom teori og eksperiment. Rapporten tar først for seg en kort gjennomgang av relevant teoretisk bakgrunn, før en beskrivelse av apparatur og fremgangsmåte vil bli beskrevet. Deretter følger resultatet av målingene og en diskusjon rundt disse, før det hele avrundes med en oppsummering av eksperimentet.. Teoretisk bagrunn.1. Generell teori Enhver ladning i bevegelse er opphav til et magnetisk felt. Biot-Savarts lov forteller at bidraget til magnetfeltet db i et punt P i rommet forårsaket av en strøm I i et innitesimalt ledningselement d l er gitt ved: db = µ Id l r π r, (1) hvor r er posisjonsvektoren til punktet P fra ledningselementet d l, r = r er avstanden mellom dem og µ 1 er tomromspermeabiliteten. ed å avende superposisjonsprinsippet, og ved å integrere ligning (1) over alle bidrag db fra hele lederens lengde L, kan det totale magnetfeltet B i punktet P nnes ved hjelp av utrykket B( r) = µ Id l r π L r. () Det er i dette eksperimentet imidlertidig kun interessant å se på magnetfeltet langs aksen til sirkulære strømspoler. Denne aksen deneres i det påfølgende til å være x-aksen, og nullpunktet på denne til å være spolens sentrum. Den enkleste sirkulære spolen er den som kun består av en enkelt vikling, og integrasjon over en slik spole vil av symmetriårsaker kansellere alle bidrag til magnetfeltet som står normalt på x-aksen ettersom størrelsen på dette bidraget er likt i alle retninger. ed å relatere et gitt punkt P i avstand x fra spolens sentrum til spolens radius ξ og tilhørende r, blir resultatet den enkle relasjonen r = x +ξ. idere er sin α = ξ/r, hvor α er vinkelen mellom r og x- aksen som igjen medfører at sin α = ξ/ x + ξ. ed å bruke denisjonen av kryssprodukt, og ved å benytte at d l = ξdθ kan dermed de innitesimale magnetfeltbidragene som er av interesse ved substitusjon i (1) uttrykkes som: db x = µ π Iξ dθ, () (x + ξ ) / hvor θ blir integrasjonsvinkelen rundt strømsløyfen. ed å integrere dette bidraget over en sirkel blir det totale magnetfeltet i et punkt på x-aksen for èn enkelt vikling gitt ved: B x = µ ) / I (1 + x ξ ξ. () 1 Per denisjon er µ = π 7 H m 1 Preprint submitted to Peder N. Galteland 1. april 1

2 .. Kort spole For en kort spole er det en god tilnærming å multiplisere () med antall viklinger N i spolen, hvor x nå er avstand fra midlere sentrum av spolen og ξ er gjennomsnittlig radius til viklingene. Denne tilnærmingen tar ikke hensyn til spolens utstrekning. Dette gir følgende utrykk for magnetfeltet på aksen til en kort spole:.. Helmholtspoler B x N µi ξ ( 1 + x ξ ) /. () En Helmholtspole er et oppsett bestående av to identiske korte spoler med innbyrdes avstand a i koaksial oppstilling. Superposisjonsprinsippet gir at det totale magnetfeltet på aksen til disse spolene i avstand x fra midtpunktet mellom dem kan nnes ved å ta utgangspunkt i () for å ende opp med den gode tilnærmingen: B x µin ξ.. Solenoide [ ( 1 + (x a/) ξ ) / + ( 1 + (x+a/) ξ ) / ]. () En solenoide kan i prinsippet betraktes som en lang spole med lengde l. ed å ta utgangspunk i () kan magnetfeltet i et vilkårlig punkt på x-aksen regnes ut ved B = µi tn l (cos θ 1 cos θ ), (7) hvor θ 1 og θ er som gitt i gur 1, og hvor I t er total strøm gjennom solenoiden. Inne i solenoiden er θ 1, π/ og θ 1 π/, π, og det kan også sees fra guren at og cos θ 1 = cos θ = + R, (8) (l ) + R, (9) hvor er avstand fra venstre enda av solenoiden til punktet P, og R angir solenoidens indre radius.[1] dx θ θ 1 θ x P l Figur 1: Tverrsnitt av solenoide. θ angir vinkelen mellom den venstre enden av solenoiden og et element dx, hvor P er et gitt punkt på x-aksen. enstre ende er denert som nullpunktet på x-aksen, R er solenoidens indre radius og er avstanden mellom nullpunktet og punktet P.. Metode og apparatur Eksperimentet baserer seg på målinger av det statiske magnetfeltet fra tre ulike spolekongurasjoner, henholdsvis en kort spole, en Helmholtspole og en solenoide. Utformingen av de ulike kongurasjonene er vist i gur. For kort spole er det utført en måleserie med 17 målepunkter i et intervall på ± cm. Den korte spolen består av viklinger med gjennomsnittlig radius lik 7, cm. Når det gjelder Helmholtspolen er det utført tre måleserier à 17 målepunkter med innbyrdes avstand a mellom spolene på henholdsvis R, R og R/, hvor R er spolenes radius. Det to spolene som er brukt her er identiske med de som er brukt for kort spole. For solenoiden er det utført målinger gjennom hele solenoiden, som er,91 m lang og består av 8 viklinger. I alle måleserier er magnetfeltet målt med et Halleekt-gaussmeter på den horisontale aksen gjennom spolene og solenoiden. Gaussmeteret fungerer slik at Halleektproben står aksialt på det magnetfeltet som skal måles. Gaussmeteret består i prinsippet av en strømkilde som gir en konstant strøm gjennom proben, og et voltmeter som måler Hallspenningen over proben. Denne Hallspenningen er proporsjonal med ukstettheten gjennom proben, så gjennom en kalibreringsprosess kan derfor ukstettheten bestemmes ved hjelp av gaussmeteret. For å få minst mulig tidsvariasjon i magnetiske strøfelt, blir Halleektproben i alle deleksperiment holdt i ro, mens det er de ulike spoleoppsettene som blir variert ved hjelp av et rullende skinnesystem. Strømmen i alle måleserier er konstant på 1,. Dette kan kontrolleres nøyaktig ved at det er koblet et amperementer i serie med strømforsyningen. De teoretisk forventede verdiene er i alle tilfeller først beregnet for det målte R

3 Probe Teoretisk verdi a) B (G) Probe Figur : Plot av både måleverdier og teoretisk beregnet kurve av magnetisk ukstetthet B langs aksen til en enkelt kort spole. Nullpunktet på x-aksen svarer til sentrum av spolen. b) Probe Kort spole c) Figur : Plot av dieransen mellom målte og teoretiske verdier til kort spole. Nullpunktet på x-aksen svarer til sentrum av spolen. Figur : Figur av de ulike eksperimentoppsettene. a) kort spole, b) Helmholtspole, c) solenoide. indikerer et amperemeter og en spenningskilde. au=ur intervall, før de eksperimentelle data deretter er sammenlignet med dette. For å kunne få noenlunde overenstemmelse mellom beregnede og eksperimentelle verdier, er eksperimentet avhengig av å nne en nøyaktig verdi for nullpunktet for kort spole og Helmholtspole slik at punktet der feltet er sterkest kan nnes nøyaktig. Dette ble løst ved å først nne et tilnærmet midtpunkt ved største verdi for magnetisk ukstetthet B, for deretter å nne middelverdien mellom henholdsvis % mer, og % mindre ukstetthet. For solenoiden derimot, var det vankeligere å måle et klart topp eller bunnpunkt for magnetisk ukstetthet. enstre endeplan ble derfor denert som solenoidens nullpunkt, og dette ble funnet ved å ta utgangspunkt i den teoretisk forventede verdien.. Resultater Figur viser teoretisk og målte verdier for kort spole med tilhørende relativt avvik mellom teori og målepunkter i gur. Tilsvarende viser gur data og teori til de tre ulike oppsettene av Helmholtsspolen med tilhørende relativt avvik i gur. Solenoidedataene er vist i gur 7, og avvik i gur 8. u au=ur u au=ur/ u Figur : Plot av både måleverdier og teoretisk beregnede kurver av magnetisk ukstetthet B langs aksen til tre ulike Helmholtspoler med senter til senter avstand a på henholdsvis R, R og R/, hvor R er spolenes radius. Nullpunktet på x-aksen svarer til midtpunktet mellom de to individuelle spolene som utgjør Helmholtspolen.

4 8 a=r a=r a=r/ 1 Figur : Plot av dieransen mellom målte og teoretiske verdier til en Helmholtspole som svarer til måleseriene med senter til senter avstand a på henholdsvis R, R og R/, hvor R er spolenes radius. Nullpunktet på x-aksen svarer til midtpunktet mellom de to individuelle spolene som utgjør Helmholtspolen. Bn(G) 8 Teoretisknverdi xn(m) omformingen av Biot-Savarts lov (1) benyttet her er korrekt gjennomført, men langt viktigere er at dette er en bekreftelse på lovens gyldighet. Helmholtspolen har også en interessant egenskap ved at det skapes et veldig homogent magnetfelt inne i spolen ved oppsettet med a = R. Dette kan forklares ved at gjentatt derviasjon av ligning () i x = er gitt som: db dx = d B dx = d B =. () dx t det først er den. deriverte som er forskjellig fra gir faktisk kun 7% dieranse i feltstyrke mellom senter og endene. Et slikt homogent magnetfelt har mange anvendelser der man ønsker å kunne kontrollere feltstyrken, som for eksempel å nulle ut jodens magnetfelt. Det kan tenkes at mulige strøfelt som jordmagnetfeltet og elektriske kretser i laboratoriet vil få innvirkning for måleverdiene. Det viser seg derimot at denne eekten er minimal, ettersom Hallproben ble nullstilt for hvert forsøk med de ulike strøfeltene tilstede. Siden Hallproben også ble holdt i ro mens spolene ble beveget lags x-aksen vil det heller ikke være noe tidsvariasjon i de ulike strøfeltene. En feilkilde som derimot er av betydning, er forutsetningen om at de korte spolene har null utstrekning. Dette resulterer derfor i en usikkerhet i x som forplanter seg i B. For å kompensere for denne forenklingen ville det blitt korrekt å bruke superposisjonsprinsippet for hver enkelt av de viklingene slik som for de to spolene i Helmholtspolen. Eventuelt kan også de korte spolene betraktes som korte solenoider, og det er mulig å bestemme B-feltet ved hjelp av ligning (7). En beregning av usikkerheten i B for kort spole ved å se på utstrekningen i spolen som usikkerhet i x, gir ved Gauss feilforplantningslov Figur 7: Plott av magnetisk ukstetthet B til måleverdier og teoretisk beregnede verdier på aksen til en solenoide. Nullpunktet på x-aksen svarer til den venstre enden av solenoiden. vvik solenoide Figur 8: Plot av dieransen mellom målte og teoretiske verdier til solenoiden. Nullpunktet på x-aksen svarer til den venstre enden av solenoiden.. Diskusjon Som alle plottene over teoretiske og beregne verdier viser, er det for både kort spole, Helmholtspole og solenoide stor overenstemmelse mellom teoretiske og beregnede verdier. Dette veriserer i første omgang at den matematiske B B = x ξ x, (11) + x som er økende, og gir ved x =, m gir et relativt avvik på,8%. Dette harmonerer også med avviksplottet for kort spole i gur der avviket er økende men stabiliserende, som ligning (11) også antyder. En annen feilkilde er bestemmelse av nullpunktet på x- aksen. Om det her skulle være en ørliten feilplassering er det da naturlig at feilen i det magnetiske feltet vil eskalere ved måleverdier plassert lenger unna. Dette kommer også tydelig frem i avviksplottet for solenoiden i gur 8. For begge de nevnte feilkildene vil feilen være minst for x =, som avviksplottene også bekrefter. Dette viser at feilen i målingene i stor grad er en systematisk feil, og dette kommer spesielt tydelig frem for solenoiden i gur 7, der det kommer frem at etter hvert som x øker ligger det målte magnetiske feltet systematisk for høyt. Tabell 1 viser en oversikt over gjennomsnittlig usikkerhet for de fem måleseriene. Da omstendighetene under hver For x = vil formel (11) gi B/B =

5 Tabell 1: Gjennomsnittlig relativ feil til de fem ulike måleseriene. Måleserie vvik Kort spole, % Helmholtspole med a = R 1,91 % Helmholtspole med a = R, % Helmholtspole med a = R/,1 % Solenoide,17 % målesere er like, vil et slikt gjennomsnitt gi et representativt uttrykk for avviket. Som antatt er det solenoiden som har størst gjennomsnittlig avvik, da det var her det var mest utfordrende å nne en brukbar posisjon for startpunktet x =. Om det tas hensyn til de to foregående diskuterte systematiske feilkildene, er avviket som skyldes tilfeldige faktorer svært liten, som indikerer at måleseriene har blitt utført godt.. Konklusjon Resultatene stemmer godt overens med hva Biot-Savarts lov (1) forteller om hvordan magnetfeltet rundt en strømførende leder utarter seg. De gjennomsnittlige avvikene er på,% for kort spole, 1,91%,1% for Helmholtspolene og,17% for solenoiden. Dette er ikke overraskende med tanke på de relativt store systematiske avvikene forenklingene i de matematiske modellene medfører. Som avviksplottene viser er feilen også systematisk økende ettersom x øker, noe usikkerhetsberegningen i ligning (11) bekrefter. De tilfeldige variasjonene forsøket har blitt gjenstand for er derfor minimale. Referanser [1] K. Rai Naqvi, Gjerde Gjendem og Jon Ramlo, 1 Laboratorium i emne TFY1/FY Elektrisitet og magnetisme, NTNU. [] E. Lillestøl,. Hunderi og J.R. Lien, 1 Generell fysikk for universiteter og høyskoler. Bind : varmelære og elektrisitetslære, Universitetsforlaget.

Statiske magnetfelt. Thomas Grønli og Lars A. Kristiansen Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 19. mars 2012

Statiske magnetfelt. Thomas Grønli og Lars A. Kristiansen Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 19. mars 2012 Statiske magnetfelt Thomas Grønli og Lars A. Kristiansen Institutt for fysikk, NTNU, N-79 Trondheim, Norge 9. mars Sammendrag I dette eksperimentet målte vi med en aksial halleffektprobe de statiske magnetfeltene

Detaljer

Rapport Kraft på strømførende leder i statisk magnetfelt

Rapport Kraft på strømførende leder i statisk magnetfelt Rapport Kraft på strømførende leder i statisk magnetfelt Kristian S Sagmo 1 ved Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 4. april 2011 Sammendrag Vi undersøkte magnetiske krefter i et homogent

Detaljer

Oppgave 3 -Motstand, kondensator og spole

Oppgave 3 -Motstand, kondensator og spole Oppgave 3 -Motstand, kondensator og spole Ole Håvik Bjørkedal, Åge Johansen olehb@stud.ntnu.no, agej@stud.ntnu.no 18. november 2012 Sammendrag Rapporten omhandler hvordan grunnleggende kretselementer opptrer

Detaljer

Bestemmelse av Newtons gravitasjonskonstant med torsjonsvekt

Bestemmelse av Newtons gravitasjonskonstant med torsjonsvekt Bestemmelse av Newtons gravitasjonskonstant med torsjonsvekt K. Reed a, E. S. Syrdalen a a Institutt for fysikk, Norges Teknisk-Naturvitenskapelige Universitet, N-7491 Trondheim, Norway. Abstract Cavendisheksperimentet

Detaljer

Sammendrag, uke 13 (30. mars)

Sammendrag, uke 13 (30. mars) nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2005 Sammendrag, uke 13 (30. mars) Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Spenningskilde

Detaljer

LABORATORIERAPPORT. RL- og RC-kretser. Kristian Garberg Skjerve

LABORATORIERAPPORT. RL- og RC-kretser. Kristian Garberg Skjerve LABORATORIERAPPORT RL- og RC-kretser AV Kristian Garberg Skjerve Sammendrag Oppgavens hensikt er å studere pulsrespons for RL- og RC-kretser, samt studere tidskonstanten, τ, i RC- og RL-kretser. Det er

Detaljer

Vannbølger. 1 Innledning. 2 Teori og metode. Sindre Alnæs, Øistein Søvik Institutt for fysikk, NTNU, N-7491 Trondheim, Norge. 12.

Vannbølger. 1 Innledning. 2 Teori og metode. Sindre Alnæs, Øistein Søvik Institutt for fysikk, NTNU, N-7491 Trondheim, Norge. 12. Vannbølger Sindre Alnæs, Øistein Søvik Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 12. april 2013 Sammendrag I dette eksperimentet ble overatespenningen til vann fastslått til (34,3 ± 7,1) mn/m,

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PRØVE 2 I FYS135 - ELEKTRO- MAGNETISME, 2004.

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PRØVE 2 I FYS135 - ELEKTRO- MAGNETISME, 2004. NOGES LANDBUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PØVE 2 I FYS3 - ELEKTO- MAGNETISME, 2004. Dato: 20. oktober 2004. Prøvens varighet: 08:4-09:4 ( time) Informasjon: Alle

Detaljer

0.1 Kort introduksjon til komplekse tall

0.1 Kort introduksjon til komplekse tall Enkel introduksjon til matnyttig matematikk Vi vil i denne innledningen introdusere litt matematikk som kan være til nytte i kurset. I noen tilfeller vil vi bare skrive opp uttrykk uten å komme inn på

Detaljer

EN LITEN INNFØRING I USIKKERHETSANALYSE

EN LITEN INNFØRING I USIKKERHETSANALYSE EN LITEN INNFØRING I USIKKERHETSANALYSE 1. Forskjellige typer feil: a) Definisjonsusikkerhet Eksempel: Tenk deg at du skal måle lengden av et noe ullent legeme, f.eks. en sau. Botemiddel: Legg vekt på

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november. TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME Eksamensdag: 10. desember 2004 Tid for eksamen: Kl. 09:00-12:30 (3,5 timer) Tillatte hjelpemidler:

Detaljer

EKSAMENSOPPGAVE. Eksamen i: FYS- 1002 Elektromagnetisme Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154

EKSAMENSOPPGAVE. Eksamen i: FYS- 1002 Elektromagnetisme Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS- 1002 Elektromagnetisme Dato: Tid: Sted: Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154 Tillatte hjelpemidler:

Detaljer

Bølgeegenskaper til lys

Bølgeegenskaper til lys Bølgeegenskaper til lys Alexander Asplin og Einar Baumann 30. oktober 2012 1 Forord Denne rapporten er skrevet som et ledd i lab-delen av TFY4120. Forsøket ble utført under oppsyn av vitenskapelig assistent

Detaljer

TFE4100 Kretsteknikk Kompendium. Eirik Refsdal

TFE4100 Kretsteknikk Kompendium. Eirik Refsdal <eirikref@pvv.ntnu.no> TFE4100 Kretsteknikk Kompendium Eirik Refsdal 16. august 2005 2 INNHOLD Innhold 1 Introduksjon til elektriske kretser 4 1.1 Strøm................................ 4 1.2 Spenning..............................

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL

BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL Labratorieøvelse i FYSIKK Høst 1994 Institutt for fysisk, NTH BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL av Ola Olsen En lett revidert og anonymisert versjon til eksempel for skriving av lab.-rapport

Detaljer

Kontinuasjonseksamensoppgave i TFY4120 Fysikk

Kontinuasjonseksamensoppgave i TFY4120 Fysikk Side 1 av 10 Bokmål Institutt for fysikk Kontinuasjonseksamensoppgave i TFY4120 Fysikk Faglig kontakt under eksamen: Ragnvald Mathiesen Tlf.: 97692132 Eksamensdato: 13.08.2014 Eksamenstid (fra-til): 09:00-13:00

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Løsningsforslag til eksamen i FYS35, ELEKTROMAGNETISME, høst 004. (med forbehold om feil) Oppgave a) Dersom vi hadde hatt magnetiske

Detaljer

ELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø 18.01.02.

ELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø 18.01.02. ELEKTRISITET - Sammenhengen mellom spenning, strøm og resistans Lene Dypvik NN Øyvind Nilsen Naturfag 1 Høgskolen i Bodø 18.01.02.2008 Revidert av Lene, Øyvind og NN Innledning Dette forsøket handler om

Detaljer

Løsningsforslag til øving 14

Løsningsforslag til øving 14 Institutt for fysikk, NTNU TFY4155/FY13 Elektromagnetisme Vår 29 Løsningsforslag til øving 14 Oppgave 1 Den påtrykte strømmen I genererer et H-felt H ni på langs overalt inne i spolen (pga Amperes lov

Detaljer

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bokmål Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Mandag 17. desember 2007, kl. 09-14. Oppgave 1 Gitt f(x) = x + x 2 1, 1 x 1. a) Finn og

Detaljer

Bølgeledere. Figur 1: Eksempler på bølgeledere. (a) parallell to-leder (b) koaksial (c) hul rektangulær (d) hul sirkulær (e) hul, generell form

Bølgeledere. Figur 1: Eksempler på bølgeledere. (a) parallell to-leder (b) koaksial (c) hul rektangulær (d) hul sirkulær (e) hul, generell form Bølgeledere Vi skal se hvordan elektromagnetiske bølger forplanter seg gjennom såkalte bølgeledere. Eksempel på bølgeledere vi kjenner fra tidligere som transportrerer elektromagnetiske bølger er fiberoptiske

Detaljer

Enkle kretser med kapasitans og spole- bruk av datalogging.

Enkle kretser med kapasitans og spole- bruk av datalogging. Laboratorieøvelse i FY3-Elektrisitet og magnetisme Vår Fysisk Institutt, NTNU Enkle kretser med kapasitans og spole- bruk av datalogging. Oppgave -Spenning i krets a: Mål inngangsspenningen og spenningsfallet

Detaljer

Krefter, Newtons lover, dreiemoment

Krefter, Newtons lover, dreiemoment Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Elektrisk og Magnetisk felt

Elektrisk og Magnetisk felt Elektrisk og Magnetisk felt Kjetil Liestøl Nielsen 1 Emner for i dag Coulombs lov Elektrisk felt Ladet partikkel i elektrisk felt Magnetisk felt Magnetisk kraft på elektrisk eladninger Elektromagnetiske

Detaljer

TFEM, METODE OG INSTRUMENTBESKRIVELSE

TFEM, METODE OG INSTRUMENTBESKRIVELSE TFEM, METODE OG INSTRUMENTBESKRIVELSE 1 Metodebeskrivelse TFEM, (Time and Frequency Electro Magnetic) er en elektromagnetisk metode hvor målingene foregår både i tidsdomenet og i frekvensdomenet. Med NGUs

Detaljer

Av David Karlsen, NTNU, Erling Tønne og Jan A. Foosnæs, NTE Nett AS/NTNU

Av David Karlsen, NTNU, Erling Tønne og Jan A. Foosnæs, NTE Nett AS/NTNU Av David Karlsen, NTNU, Erling Tønne og Jan A. Foosnæs, NTE Nett AS/NTNU Sammendrag I dag er det lite kunnskap om hva som skjer i distribusjonsnettet, men AMS kan gi et bedre beregningsgrunnlag. I dag

Detaljer

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Løsningsforslag, midtsemesterprøve MA03,.mars 00 Oppgave Tegn figur og finn en parametrisering for skjæringskurven

Detaljer

LABORATORIERAPPORT. Halvlederdioden AC-beregninger. Christian Egebakken

LABORATORIERAPPORT. Halvlederdioden AC-beregninger. Christian Egebakken LABORATORIERAPPORT Halvlederdioden AC-beregninger AV Christian Egebakken Sammendrag I dette prosjektet har vi forklart den grunnleggende teorien bak dioden. Vi har undersøkt noen av bruksområdene til vanlige

Detaljer

KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for fysikalsk elektronikk Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen:

Detaljer

Solcellen. Nicolai Kristen Solheim

Solcellen. Nicolai Kristen Solheim Solcellen Nicolai Kristen Solheim Abstract Med denne oppgaven ønsker vi å oppnå kunnskap om hvordan man rent praktisk kan benytte en solcelle som generator for elektrisk strøm. Vi ønsker også å finne ut

Detaljer

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007 Løsningsforslag Eksamen eksempeloppgave R1 - REA022 - Desember 200 eksamensoppgaver.org October 2, 2008 eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksempeloppgave i R1

Detaljer

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA656 16.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for eksamen i matematikke 3MX er gratis, og

Detaljer

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36

Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36 Institutt for fsikk, NTNU TFY4160/FY1002: Bølgefsikk Høsten 2006, uke 36 Mandag 04.09.06 Del II: BØLGER Innledning Bølger er forplantning av svingninger. Når en bølge forplanter seg i et materielt medium,

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org Løsningsforslag AA656 Matematikk 3MX Privatister 3. mai 006 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikkeksamen i 3MX er gratis, og det er lastet ned

Detaljer

UTSETT EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2

UTSETT EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2 SJØKRIGSSKOLEN Lørdag 16.09.06 UTSETT EKSAMEN VÅREN 2006 Klasse OM2 og KJK2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Teknisk formelsamling Tabeller i fysikk for den videregående

Detaljer

Emne 10 Litt mer om matriser, noen anvendelser

Emne 10 Litt mer om matriser, noen anvendelser Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes

Detaljer

Manual til laboratorieøvelse. Solceller. Foto: Túrelio, Wikimedia Commons. Versjon 10.02.14

Manual til laboratorieøvelse. Solceller. Foto: Túrelio, Wikimedia Commons. Versjon 10.02.14 Manual til laboratorieøvelse Solceller Foto: Túrelio, Wikimedia Commons Versjon 10.02.14 Teori Energi og arbeid Arbeid er et mål på bruk av krefter og har symbolet W. Energi er et mål på lagret arbeid

Detaljer

Sammenhengen mellom strøm og spenning

Sammenhengen mellom strøm og spenning Sammenhengen mellom strøm og spenning Naturfag 1 30. oktober 2009 Camilla Holsmo Karianne Kvernvik Allmennlærerutdanningen Innhold 1.0 Innledning... 2 2.0 Teori... 3 2.1 Faglige begreper... 3 2.2 Teoriforståelse...

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Kontinuasjonseksamen i: FYS 1000 Eksamensdag: 16. august 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert

Detaljer

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:

Detaljer

Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator.

Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator. Oppgave 1 a) Ei ideell fjær har fjærkonstant k = 2.60 10 3 [N/m]. Finn hvilken kraft en må bruke for å trykke sammen denne fjæra 0.15 [m]. Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd

Detaljer

Bakgrunn og metode. 1. Før- og etteranalyse på strekninger med ATK basert på automatiske målinger 2. Måling av fart ved ATK punkt med lasterpistol

Bakgrunn og metode. 1. Før- og etteranalyse på strekninger med ATK basert på automatiske målinger 2. Måling av fart ved ATK punkt med lasterpistol TØI rapport Forfatter: Arild Ragnøy Oslo 2002, 58 sider Sammendrag: Automatisk trafikkontroll () Bakgrunn og metode Mangelfull kunnskap om effekten av på fart Automatisk trafikkontroll () er benyttet til

Detaljer

Løsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009

Løsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009 Løsningsforslag til eksamen i EA04 - Fysikk, 5..009 Oppgae a) Klossen er i kontakt med sylinderen så lenge det irker en normalkraft N fra sylinderen på klossen og il forlate sylinderen i det N = 0. Summen

Detaljer

Løsningsforslag Eksamen R1 - REA3022-28.05.2008

Løsningsforslag Eksamen R1 - REA3022-28.05.2008 Løsningsforslag Eksamen R1 - REA3022-28.05.2008 eksamensoppgaver.org September 14, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i R1 er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

LABORATORIUM I EMNENE TFY4155/FY1003 ELEKTRISITET OG MAGNETISME NTNU

LABORATORIUM I EMNENE TFY4155/FY1003 ELEKTRISITET OG MAGNETISME NTNU UTGAVE 13 jan 2014 LABORATORIUM I EMNENE TFY4155/FY1003 ELEKTRISITET OG MAGNETISME NTNU Våren 2014 Forord Dette heftet inneholder tekster til laboratoriekurset til emnene TFY4155/FY1003 Elektrisitet og

Detaljer

LAVFREKVENS FELT. Magnetiske og elektrisk felt Virkning på kroppen Eksempler på felt og kilder inne, ute og i bilen Måling og fremgangsmåte

LAVFREKVENS FELT. Magnetiske og elektrisk felt Virkning på kroppen Eksempler på felt og kilder inne, ute og i bilen Måling og fremgangsmåte Magnetiske og elektrisk felt Virkning på kroppen Eksempler på felt og kilder inne, ute og i bilen Måling og fremgangsmåte LAVFREKVENS FELT Jostein Ravndal Ravnco Resources AS www.ravnco.com Magnetfelt

Detaljer

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 23. februar, 2012 Tid for eksamen : kl. 9.00-13.00 Sted : Administrasjonsbygget, Rom B154 Hjelpemidler : K. Rottmann: Matematisk Formelsamling,

Detaljer

Magnetisk felt og fluks. Institutt for fysikk, NTNU

Magnetisk felt og fluks. Institutt for fysikk, NTNU Oppgave 4 Lab i TFY4125 Magnetisk felt og fluks Institutt for fysikk, NTNU 2 1.1 Innledning Kontroll av statiske og tidsavhengige magnetfelt er viktig i vitenskap og teknologi. I de fleste tilfellene er

Detaljer

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 Elever og privatister 26. mai 2000 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

. Følgelig er csc 1 ( 2) = π 4. sinθ = 3

. Følgelig er csc 1 ( 2) = π 4. sinθ = 3 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 011 Løsningsforslag - Øving Avsnitt.7 99 Vi deriverer to ganger: = A 1 cos(ln) B1 sin(ln) = A 1 cos(ln) A 1 sin(ln)+b 1 sin(ln) B 1 cos(ln)

Detaljer

Forelesning nr.7 INF 1410. Kondensatorer og spoler

Forelesning nr.7 INF 1410. Kondensatorer og spoler Forelesning nr.7 IF 4 Kondensatorer og spoler Oversikt dagens temaer Funksjonell virkemåte til kondensatorer og spoler Konstruksjon Modeller og fysisk virkemåte for kondensatorer og spoler Analyse av kretser

Detaljer

7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET ENKELTVIS 7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET VEKSELSTRØM ENKELTVIS

7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET ENKELTVIS 7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET VEKSELSTRØM ENKELTVIS 7. ESSTANS - SPOLE - KONDENSATO TLKOPLET ENKELTVS 7. ESSTANS - SPOLE - KONDENSATO TLKOPLET VEKSELSTØM ENKELTVS DEELL ESSTANS TLKOPLET VEKSELSTØM Når en motstandstråd blir brettet i to og de to delene av

Detaljer

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org Løsningsforslag AA654 Matematikk 3MX 3. juni 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Sluttrapport i emne TFY4155/FY1003 ved Institutt for fysikk. Vår 2015

Sluttrapport i emne TFY4155/FY1003 ved Institutt for fysikk. Vår 2015 Sluttrapport i emne TFY4155/FY1003 ved Institutt for fysikk. Vår 2015 peder.brenne@ntnu.no senest to uker etter at sensuren i emnet har falt. Emnekode og -navn: TFY4155/FY1003 Elektrisitet og magnetisme

Detaljer

MAGNETFELT OG MAGNETISME SOM RELATIVISTISK FENOMEN

MAGNETFELT OG MAGNETISME SOM RELATIVISTISK FENOMEN Institutt for fysikk, NTNU 5. april 2005 FY003/TFY455 Elektromagnetisme MAGNETFELT OG MAGNETISME SOM RELATIVISTISK FENOMEN (orienteringsstoff; ikke pensum til eksamen) Utgangspunkt: Anta at i kjenner til

Detaljer

EKSAMEN I EMNE SIE4015 BØLGEFORPLANTNING EKSAMEN I FAG 44061 BØLGEFORPLANTNING LØRDAG/LAURDAG 19. MAI 2001 TID: KL 0900-1400

EKSAMEN I EMNE SIE4015 BØLGEFORPLANTNING EKSAMEN I FAG 44061 BØLGEFORPLANTNING LØRDAG/LAURDAG 19. MAI 2001 TID: KL 0900-1400 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK Faglig/fagleg kontakt under eksamen: Navn: Helge E. Engan Tlf.: 9440 EKSAMEN I EMNE SIE4015 BØLGEFORPLANTNING

Detaljer

Prøve i R2 Integrasjonsmetoder

Prøve i R2 Integrasjonsmetoder Del 1 Hjelpemidler: ingen 1 Oppgave 1 Prøve i R Integrasjonsmetoder Caspar W. Hatlevik 19. oktober 1 Finn de ubestemte integralene og regn ut det bestemte integralet a. x + x + 1dx b. e 4x + x dx c. 1

Detaljer

Ohms lov: Resistansen i en leder er 1 ohm når strømmen er 1 amper og spenningen er 1 V.

Ohms lov: Resistansen i en leder er 1 ohm når strømmen er 1 amper og spenningen er 1 V. .3 RESISTANS OG RESISTIVITET - OHMS LOV RESISTANS Forholdet mellom strøm og spenning er konstant. Det konstante forhold kalles resistansen i en leder. Det var Georg Simon Ohm (787-854) som oppdaget at

Detaljer

Strøm av olje og vann i berggrunnen matematisk model, simulering og visualisering

Strøm av olje og vann i berggrunnen matematisk model, simulering og visualisering Strøm av olje og vann i berggrunnen matematisk model, simulering og visualisering Hans Fredrik Nordhaug Matematisk institutt Faglig-pedagogisk dag, 01.02.2000. Oversikt 1 Oversikt Introduksjon. Hva er

Detaljer

Massegeometri. Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken.

Massegeometri. Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken. Massegeometri Vi skal her se på noen begreper og utregninger som vi får stor bruk for videre i mekanikken. Tyngdepunktets plassering i ulike legemer og flater. Viktig for å kunne regne ut andre størrelser.

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

Enkel introduksjon til kvantemekanikken

Enkel introduksjon til kvantemekanikken Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks

Detaljer

MAT1100 - Grublegruppen Uke 36

MAT1100 - Grublegruppen Uke 36 MAT - Grublegruppen Uke 36 Jørgen O. Lye Partiell derivasjon Hvis f : R 2 R er en kontinuerlig funksjon, så kaller man følgende dens partiellderiverte (gitt at de finnes!) f f(x + h, y) f(x, y) (x, y)

Detaljer

I Katalog velger du: Ny eksamensordning i matematikk våren 2015

I Katalog velger du: Ny eksamensordning i matematikk våren 2015 CAS teknikker H-P Ulven 10.12.2014 Innledning Våren 2015 gjelder nye regler for bruk av digitale hjelpemidler: Når det står "Bruk CAS", så må kandidaten bruke CAS, og når det står "Bruk graftegner", så

Detaljer

FORSØK I OPTIKK. Forsøk 1: Bestemmelse av brytningsindeks

FORSØK I OPTIKK. Forsøk 1: Bestemmelse av brytningsindeks FORSØK I OPTIKK Forsøk 1: Bestemmelse av brytningsindeks Hensikt I dette forsøket skal brytningsindeksen bestemmes for en sylindrisk linse ut fra måling av brytningsvinkler og bruk av Snells lov. Teori

Detaljer

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Eksamensoppgavehefte 1 MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor

Detaljer

Det trengs to personer for operere begge utrustningene.

Det trengs to personer for operere begge utrustningene. METODEBESKRIVELSE SLINGRAM Slingram er en elektromagnetisk målemetode med mobil sender og mottaker. Metoden brukes til å kartlegge elektriske ledere i undergrunnen, og egner seg godt for oppfølging av

Detaljer

KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt

Detaljer

TDT4105 IT Grunnkurs Høst 2014

TDT4105 IT Grunnkurs Høst 2014 TDT4105 IT Grunnkurs Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 6 1 Teori a) Hva er 2-komplement? b) Hva er en sample innen digital

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall.

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall. MAT 100a - LAB 3 I denne øvelsen skal vi bruke Maple til å illustrere noen anvendelser av derivasjon, først og fremst Newtons metode til å løse likninger og lokalisering av min. og max. punkter. Vi skal

Detaljer

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der:

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der: Oppgave a) Si kort hva deriverte til en funksjon forteller oss. Hva handler deriverbarhet om? b) Er f (x) = deriverbar for alle reelle x-verdier? x Bestem deriverte til f i sin definisjonsmengde. c) Tegn

Detaljer

SINUS R1, kapittel 5-8

SINUS R1, kapittel 5-8 Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173

Detaljer

Den franske fysikeren Charles de Columb er opphavet til Colombs lov.

Den franske fysikeren Charles de Columb er opphavet til Colombs lov. 4.5 KREFTER I ET ELEKTRISK FELT ELEKTRISK FELT - COLOMBS LOV Den franske fysikeren Charles de Columb er opphavet til Colombs lov. Kraften mellom to punktladninger er proporsjonal med produktet av kulenes

Detaljer

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Anne-Mari Jensen Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Innledning I ungdomsskolen kommer funksjoner inn som et av hovedområdene i læreplanen i matematikk. Arbeidet

Detaljer

Varmepumpe. Institutt for fysikk, NTNU, N-7491 Trondheim, Norge

Varmepumpe. Institutt for fysikk, NTNU, N-7491 Trondheim, Norge Varmepumpe Anette Fossum Morken a, Sindre Gjerde Alnæs a, Øistein Søvik a a FY1002 Termisk Fysikk, laboratoriekurs, Vår 2013, Gruppe 4. Institutt for fysikk, NTNU, N-7491 Trondheim, Norge Sammendrag I

Detaljer

122-13 Vedlegg 1 Metode for å kontrollere og bestemme tilstand på stasjonsjord

122-13 Vedlegg 1 Metode for å kontrollere og bestemme tilstand på stasjonsjord Spesifikasjon 122-13 Vedlegg 1 Metode for å kontrollere og bestemme tilstand på stasjonsjord Dok. ansvarlig: Jan-Erik Delbeck Dok. godkjenner: Asgeir Mjelve Gyldig fra: 2013-01-22 Distribusjon: Åpen Side

Detaljer

Mandag 21.08.06. Mange senere emner i studiet bygger på kunnskap i bølgefysikk. Eksempler: Optikk, Kvantefysikk, Faststoff-fysikk etc. etc.

Mandag 21.08.06. Mange senere emner i studiet bygger på kunnskap i bølgefysikk. Eksempler: Optikk, Kvantefysikk, Faststoff-fysikk etc. etc. Institutt for fysikk, NTNU TFY46/FY2: Bølgefysikk Høsten 26, uke 34 Mandag 2.8.6 Hvorfor bølgefysikk? Man støter på bølgefenoener overalt. Eksepler: overflatebølger på vann akustiske bølger (f.eks. lyd)

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon Litt oppsummering undervegs Løsningsforslag Oppgave 1 Et skjæringspunkt f(x) = x e x g(x) = 1 arctan x. a) Vi kan lage plottet slik i kommando-vinduet:

Detaljer

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han

Detaljer

Forelesningsnotat, lørdagsverksted i fysikk

Forelesningsnotat, lørdagsverksted i fysikk Forelesningsnotat, lørdagsverksted i fysikk Kristian Etienne Einarsrud 1 Vektorer, grunnleggende matematikk og bevegelse 1.1 Introduksjon Fysikk er en vitenskap som har som mål å beskrive verden rundt

Detaljer

Begrep. Protoner - eller Hvordan få et MR-signal? Kommunikasjon. Hoveddeler. Eksempel: Hydrogen. Hvordan få et signal?

Begrep. Protoner - eller Hvordan få et MR-signal? Kommunikasjon. Hoveddeler. Eksempel: Hydrogen. Hvordan få et signal? Begrep Protoner - eller Hvordan få et MR-signal? Rune Sylvarnes NORUT Informasjonsteknologi Høgskolen i Tromsø MR - fenomenet magnetisk resonans NMR - kjerne MR, vanligvis brukt om MR på lab (karakterisering

Detaljer

Løsningsforslag eksamen STE 6038 Geometrisk modellering 9/8 1995

Løsningsforslag eksamen STE 6038 Geometrisk modellering 9/8 1995 Løsningsforslag eksamen STE 638 Geometrisk modellering 9/8 995. a) Vi skal bestemme hvilke av avbildningene/transformasjonene som er homeomorfier. f 4 6 Determinanten til matrisen er lik, dvs at den har

Detaljer

0, 12. 1) Sett opp ei uendelig rekke som viser hvor stor del av bløtkaka som er spist av gjestene. Hva slags rekke er dette?

0, 12. 1) Sett opp ei uendelig rekke som viser hvor stor del av bløtkaka som er spist av gjestene. Hva slags rekke er dette? OPPGAVE 1 a) Deriver funksjonen f( x) = 5x tanx b) Deriver funksjonen ( ) 3 g( x) = x + cosx c) Bestem integralet (sin x cos x) dx d) Løs ligningen ved regning π,4,6cos x = 1,8, 1 4 x e) I et selskap blir

Detaljer

NORGES TEKNISKNATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I EMNE TFY4120 FYSIKK. Fredag 9. desember 2005 Tid: kl 09.00-13.

NORGES TEKNISKNATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I EMNE TFY4120 FYSIKK. Fredag 9. desember 2005 Tid: kl 09.00-13. Bokmål Side 1 av 1 Studentnummer: Studieretning: NORGES TEKNISKNATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I EMNE TFY4120 FYSIKK Fredag 9. desember 2005 Tid: kl 09.00-13.00 Faglig kontakt

Detaljer

Dataøvelse 3 Histogram og normalplott

Dataøvelse 3 Histogram og normalplott Matematisk institutt STAT200 Anvendt statistikk Universitetet i Bergen 18. februar 2004 Dataøvelse 3 Histogram og normalplott A. Formål med øvelsen Denne øvelsen skal vise hvordan man med SAS-systemet

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer

BYGG ET FYRTÅRN FOR OG ETTERAREID

BYGG ET FYRTÅRN FOR OG ETTERAREID BYGG ET FYRTÅRN MÅL FRA KUNNSKAPSLØFTET Kompetansemål etter 7. årstrinn FOR OG ETTERAREID Fenomener og stoffer Mål for opplæringen er at eleven skal kunne gjøre forsøk magnetisme og elektrisitet og forklare

Detaljer

Lengde, hastighet og aksellerasjon

Lengde, hastighet og aksellerasjon Lengde, hastighet og aksellerasjon Nicolai Kristen Solheim Abstract I denne oppgaven har vi målt lengde, hastighet og akselerasjon for å få et bedre forhold til sammenhengen mellom disse. Et annet fokus

Detaljer

Onsdag 04.03.09 og fredag 06.03.09

Onsdag 04.03.09 og fredag 06.03.09 Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 10 Onsdag 04.03.09 og fredag 06.03.09 Ohms lov [FGT 26.3; YF 25.2,25.3; TM 25.2; AF 24.3, LHL 21.2, DJG 7.1.1] Må ha

Detaljer

Naturfag 2 Fysikk og teknologi, 4NA220R510 2R 5-10

Naturfag 2 Fysikk og teknologi, 4NA220R510 2R 5-10 Individuell skriftlig eksamen i Naturfag 2 Fysikk og teknologi, 4NA220R510 2R 5-10 ORDINÆR EKSAMEN 13.12.2010. Sensur faller innen 06.01.2011. BOKMÅL Resultatet blir tilgjengelig på studentweb første virkedag

Detaljer

Oppsummering om kretser med R, L og C FYS1120

Oppsummering om kretser med R, L og C FYS1120 Oppsummering om kretser med R, L og C FYS1120 Likestrømskretser med motstander Strøm og spenning er alltid i fase. Ohms lov: V = RI Effekt er gitt ved: P = VI = RI 2 = V 2 /R Kirchoffs lover: Summen av

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (1 poeng) Oppgave 3 (2 poeng) Oppgave 4 (2 poeng) Løs likningene.

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (1 poeng) Oppgave 3 (2 poeng) Oppgave 4 (2 poeng) Løs likningene. DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Løs likningene a) 2x 10 x( x 5) x b) lg 3 5 2 Oppgave 2 (1 poeng) Bruk en kvadratsetning til å bestemme verdien av produktet 995 995 Oppgave 3 (2 poeng) Løs

Detaljer