Statiske magnetfelt. Thomas Grønli og Lars A. Kristiansen Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 19. mars 2012

Størrelse: px
Begynne med side:

Download "Statiske magnetfelt. Thomas Grønli og Lars A. Kristiansen Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 19. mars 2012"

Transkript

1 Statiske magnetfelt Thomas Grønli og Lars A. Kristiansen Institutt for fysikk, NTNU, N-79 Trondheim, Norge 9. mars Sammendrag I dette eksperimentet målte vi med en aksial halleffektprobe de statiske magnetfeltene som genereres rundt strømførende enkeltspoler, Helmholtzspoler og solenoider. Vi sammenlignet eksperimentelle data med teoretisk beregnede verdier, og vår utførelse av eksperimentet resulterte i et gjennomsnittlig eksperimentelt avvik på.%. Innledning Jean-Baptiste Biot og Félix Savart utførte i 8 eksperimenter for å måle magnetiske felt rundt strømførende ledere. I lys av resultatene av disse eksperimentene satte de opp en lov som beskriver bidragene til et magnetfelt fra infinitesimale strømelementer i en ledning. I dette eksperimentet skal vi forsøke å måle disse feltene og se om Biot- Savarts lov tilnærmet beskriver våre observasjoner. Rapporten gir en gjennomgang av teorien bak beregningene, samt en beskrivelse av utstyret og metodene som ble brukt i målingene. Videre følger resultater og en diskusjon med tilhørende feilanalyse. Rapporten rundes av med en konkluderende del hvor resultatene av forsøket og mulige anvendelser av disse drøftes. Teoretisk bakgrunn. Magnetfelt fra strømsløyfe Biot-Savarts lov sier at for en strøm I i en ledning s er feltbidraget i et punkt P fra et strømelement Ids lik µ Ids ˆr π r, () hvor r = r ˆr er posisjonsvektoren fra punktet P til ledninglementet ds og µ er den magnetiske permabiliteten i tomt rom. Superposisjonsprinsippet gjelder for disse bidragene, derfor vil feltet B som genereres i et punkt P være gitt ved kurveintegralet µ Ids ˆr π s r. () TFY55 Elektrisitet og magnetisme, laboratoriekurs Våren, Gruppe, Team..6 6 H/m

2 Av symmetri har vi kansellereing av komponentene i bidragene som står normalt på aksen som sammenfaller med probebevegelsen, heretter kalt x-aksen. Dette fører til at resultantbidragene vil være redusert til db = µ I ds π x sin α, () + ξ hvor α er vinkelen mellom x-aksen og ˆr-vektor, altså trigonometrisk identisk med ξ, der ξ er radiusen for strømsløyfa. ds er ledningelementet, og uttrykt x +ξ ved ξ vi har at ds = ξ dθ. Uttrykket for differensialet av B-feltet forenkles til µ Iξ dθ () π (x + ξ ) / Integrasjon over sløyfa s ; θ π gir oss det genererte feltet s.f.a posisjon langs x-aksen B = µ ) / I ( + x ξ ξ (5). Kort spole For en kort spole med N viklinger kan vi beregne en tilnærming for magnetfeltet ved å summere N antall sløyfer med ξ lik ξ, altså gjennomsnittlig radius. Vi har da for en kort spole. Helmholtzspoler B N µi ξ ( + x ξ ) /. (6) Helmholtzspoler er et oppsett som består av to identiske spoler plassert i en avstand a fra hverandre på en slik måte at spolenes magnetfelt sammenfaller langs en felles akse. Fra superposisjonsprinsippet har vi at det totale feltet B er summen av disse to magnetfeltene. Feltene kan tilnærmes på samme måte som for en enkelt spole, altså har vi at B N µi ξ. Solenoide ( + (x a/) ξ ) / + ( + ) / (x + a/) ξ. (7) En solenoide består av N sløyfer tett plassert over en lengde l. Magnetfeltet i et punkt P langs x-aksen kan vi regne ut ved å ta utgangspunkt i likning (5). Hvis vi lar I t være den totale strømmen gjennom spolen, kan vi sette opp N I(x) = I t l x di(x) = I N t dx. (8) l Vi kan benytte uttrykket vi fant for B i (5) og sette opp et uttrykk for differensialet til magnetfeltet langs x-aksen. db = µ ) / I t N ( + x ξl ξ dx = µ I t N ξ dx (9) l (ξ + x ) /

3 Hvis vi lar θ være vinkelen mellom x-aksen og randen på solenoiden, har vi at tan θ = ξ/x x = ξ/ tan θ Derivasjon gir dx = R sin θdθ. Da vil sin θ = Innsatt i uttrykket for db gir oss at B = µ I t N l ξ (ξ + x ) dx = ξ (ξ + x ) / / ξ sin θdθ () θ θ sin θdθ = µ IN (cos θ cos θ ), () l med cos θ = x/ x + ξ og cos θ = (l x)/ (l x) + ξ Eksperimentelt For å gjøre dette eksperimentet ble det brukt følgende utstyr: Et Gaussmeter for å måle styrken og retningen til magnetfeltet med en aksial hallprobe. Et nullfeltkammer ble brukt for å nullstille Gaussmeteret uten påvirkning av magnetiske strøfelt som jordfeltet og induserte felt fra V nettledninge. To korte spoler med viklinger fordelt som viklinger/lag x 5 lag. Indre diameter er 6 mm, og ytre diameter er 5 mm. Gjennomsnittlig radius R er lik 7 cm. En solenoide med 97 viklinger med lengde 98 mm og diameter mm. (R = 5 mm) Et multimeter for å måle strømstyrken I gjennom spolene/solenoiden. En kraftforsyning for å forsyne oppsettet med en konstant strømstyrke mens målinger av det magnetiske feltet foretas. Eksperimentet har tre deler hvor feltet fra én spole måles, så måles feltet mellom to spoler og til sist måles feltet i en solenoide. To spoler i et oppsett med felles spoleakse, kalles en Helmholtzspole. Størrelsen a betegner avstanden mellom spolene. Alle målingene ble foretatt på aksen gjennom spolene/solenoide med den aksiale hallproben rettet langs med aksen. Kraftforsyningen ble koblet opp som en strømkilde med multimeteret i serie for nøyaktig strømmåling. I alle deleksperimentene ble strømstyrken I holdt konstant på A. Midtpunktet på spolen/solenoiden ble funnet ved å utnytte symmetrien til feltet. Ved å måle en fast feltstyrke f. eks. Gauss på hver side av spolen/solenoiden også dele avstanden mellom punktene med to, ble midtpunktet funnet nøyaktig. Det ble tatt en måleserie av de forskjellige oppsettene, og en tilsvarende teoretiske verdier ble beregnet.

4 x x z V V V A (a) Kort spole A (b) Helmholtzspole A (c) Solenoide Figur : Skissser av det forskjellige oppsettene. A representerer multimeteret, og V er kraftforsyningen. Resultat Måleresultatene fra eksperimentet ble behandlet med et skript i MATLAB som tok hensyn til spolenes utstrekning i utrekningen av det magnetiske feltet. Måleseriene og de teoretiske verdiene er plottet sammen for hvert av de forskjellige oppsettene med et tilhørende plott som viser den relative differansen mellom den målte og den teoretiske verdien. Den relative differansen ble beregnet etter differanse = B målt B teoretisk B teoretisk %. () Figur viser resultatene for spolen i figur (a). Figur, og 5 viser resultatene for Helmholtzspolen i figur (b) med avstanden a mellom spolene hhv. lik R/, R og R. Figur 6 viser resultatene for solenoiden i figur (c).

5 5 B (G) Figur : Plott av det magnetiske feltet langs med og på spoleaksen til en enkelt spole, og differansen fra de teoretisk beregnede verdiene. Nullpunktet på x-aksen tilsvarer sentrum i spolen. 5

6 6 5 a = R/ Sentrum av spole B (G) Figur : Plott av det magnetiske feltet langs med og på spoleaksen til en Helmholtzspole, og differansen fra den teoretisk beregnede verdien. Nullpunktet på x- aksen tilsvarer punktet på spoleaksen som ligger like langt fra begge spolens sentrum. Avstanden mellom spolene er a = R/. B (G) 5 a = R Sentrum av spole Figur : Plott av det magnetiske feltet langs med og på spoleaksen til en Helmholtzspole, og differansen fra de teoretisk beregnede verdiene. Nullpunktet på x- aksen tilsvarer punktet på spoleaksen som ligger like langt fra begge spolens sentrum. Avstanden mellom spolene er a = R. 6

7 B (G) 5 a = R Sentrum av spole Figur 5: Plott av det magnetiske feltet langs med og på spoleaksen til en Helmholtzspole, og differansen fra de teoretisk beregnede verdiene. Nullpunktet på x- aksen tilsvarer punktet på spoleaksen som ligger like langt fra begge spolens sentrum. Avstanden mellom spolene er a = R. 8 B (G) z (m) z (m) Figur 6: Plott av det magnetiske feltet langs med og på solenoideaksen, og differansen fra de teoretisk beregnede verdiene. Nullpunktet på z-aksen tilsvarer enden av solnoiden. 7

8 5 Diskusjon Som kan sees i resultatet, så er den gjennomsnittlige relative feilen liten. Det er godt samsvar mellom verdier beregnet fra Biot-Savarts lov () og verdier målt med Halleffektproben. Ved å derivere likningen (7) for det magnetiske feltstyrken på aksen gjennom en Helmholtzspole oppdaget vi at db dx = d B dx = d B dx =, når a = R. Dette antydet at denne geometrien ville gi et meget godt homogent magnetfelt midt i mellom spolene. Dette gjenspeiles tydelig i plottet i figur. Dette gjør at Helmholtzspoler er en meget god måte å fremstille et spesialt godt homogent magnetfelt som ofte er nødvendig i forbindelse med eksperimenter og vitenskaplig utstyr som massespektrometre. Den viktigste systematiske feilen i dette eksperimentet ligger i spolenes fysiske utstrekning. I utledningen av det magnetiske feltet fra en spole, blir det antatt at spolen ikke har noen fysisk utstrekning, men dette er ikk realiteten. Dette løste vi ved å beregne feltet fra individuelle spoler og benytte superposisjonsprinsippet for å bestemme feltstyrken. Dette ble gjort numerisk på datamaskin ved å beregne feltet for hver spole med en unik x-posisjon på spoleaksen og radius, og så summere. Selv om denne metoden er bedre enn å anta at spolene har ingen utstrekning, er den ikke helt korrekt. Dette er fordi det er ikke individuelle spoler, men en sammenhengende kobbertråd som er viklet ganger. Derfor ville et kurveintegral over en parameterisert kurve som representerer kobbertrådens viklinger ville vært bedre løsning, men nøyaktigheten ville ikke nødvendigvis blitt mye bedre. I et slikt integral vil heller ikke y-komponenten kanselere, så B vil ikke kun gå i x-retning. Siden Halleffektproben er aksiell vil kun feltstyrkekomponenten langs x-aksen måles. Mulige magnetiske strøfelt som kan forstyrre målingene er jordfeltet, felt fra nettledinger og metaller i rommet hvor eksperimentet ble gjennomført. Angående jordfelt så var retningen til feltet stilt normal på halleffektproben i oppsettet vårt. Siden det ble benyttet en aksiell probe vil innvirkningen fra jordfeltet være minimal. I tillegg til dette så var det spolen/solenoiden som flyttet seg i eksperimentet, mens proben var fastmontert slik at det ikke ville være variasjoner i jordfeltet. En rask utregning viser at nettledinger i vegger ikke bidrar nevneverdig til feilen i målingen. Selv om Biot-Savarts lov gjelder kun for kostant strømstyrke, holder den ganskje bra for høye nok frekvenser av vekselspenning. I et worst case scenario har vi 6 A strømstyrke i nettledningen, og oppsettet i ca. avstand m fra veggen: B θ (r) = µ I πr B θ ( m) = mg. Den totale gjennomsnittlige relative feilen i alle oppsettene er, %. Hvis man ser på feilplottene ser man ikke noen klar sammenheng mellom hvor stor den relative feilen er og hvor på aksen verdien måles. Dette gjør det mer sannsynlig at feilen er forårsaket av tilfeldige feil enn systematiske målefeil. 8

9 6 Konklusjon Måleresultatene stemmer meget godt overens med det Biot-Savarts lov () forutsier om magnetfeltene rundt spoler og solenoider. Feltet i en Helmholtzspole med avstand lik radiusen til spolene mellom spolene gir opphav til et spesielt godt homogent magnetfelt som har mange anvendelser i vitenskapelig utstyr som f. eks. massespektrometre. Referanser [] Knut Gjerden, Egil Vlandsmyr Herland, Iver Bakken Sperstad, Mari Helene Farstad, Troels Arnfred Bojesen, Amund Gjerde Gjendem, og Thor Bernt Mel. Laboratorium i emne TFY55/FY Elektrisitet og magnetisme for studenter ved studieprogrammene MTFYMA, MLREAL, BFY, BKJ. NTNU, Trondheim,. 9

Statisk magnetfelt. Kristian Reed a, Erlend S. Syrdalen a

Statisk magnetfelt. Kristian Reed a, Erlend S. Syrdalen a Statisk magnetfelt Kristian Reed a, Erlend S. Syrdalen a a Institutt for fysikk, Norges Teknisk-Naturvitenskapelige Universitet, N-791 Trondheim, Norway. Sammendrag I det følgende eksperimentet ble en

Detaljer

Kraft på strømførende leder

Kraft på strømførende leder Kraft på strømførende leder Magnus Holter-Sørensen Dahle Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 29. mars 2011 Sammendrag Det er i dette forsøket gjort undersøkelser på hvorvidt magnetiske

Detaljer

Vannbølger. 1 Innledning. 2 Teori og metode. Sindre Alnæs, Øistein Søvik Institutt for fysikk, NTNU, N-7491 Trondheim, Norge. 12.

Vannbølger. 1 Innledning. 2 Teori og metode. Sindre Alnæs, Øistein Søvik Institutt for fysikk, NTNU, N-7491 Trondheim, Norge. 12. Vannbølger Sindre Alnæs, Øistein Søvik Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 12. april 2013 Sammendrag I dette eksperimentet ble overatespenningen til vann fastslått til (34,3 ± 7,1) mn/m,

Detaljer

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME

Detaljer

Mandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7.

Mandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke19 Mandag 7. mai Elektromagnetisk induksjon (fortsatt) [FGT 30.1-30.6; YF 29.1-29.5; TM 28.2-28.3; AF 27.1-27.3; LHL 24.1;

Detaljer

Rapport Kraft på strømførende leder i statisk magnetfelt

Rapport Kraft på strømførende leder i statisk magnetfelt Rapport Kraft på strømførende leder i statisk magnetfelt Kristian S Sagmo 1 ved Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 4. april 2011 Sammendrag Vi undersøkte magnetiske krefter i et homogent

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVESITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: 29. November 2016 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 3 sider. Vedlegg: Tillatte

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PRØVE 2 I FYS135 - ELEKTRO- MAGNETISME, 2004.

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PRØVE 2 I FYS135 - ELEKTRO- MAGNETISME, 2004. NOGES LANDBUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PØVE 2 I FYS3 - ELEKTO- MAGNETISME, 2004. Dato: 20. oktober 2004. Prøvens varighet: 08:4-09:4 ( time) Informasjon: Alle

Detaljer

EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl

EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003

Detaljer

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155

Detaljer

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver) Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen

Detaljer

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene. Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har

Detaljer

Bestemmelse av skjærmodulen til stål

Bestemmelse av skjærmodulen til stål Bestemmelse av skjærmodulen til stål Rune Strandberg Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 9. oktober 2007 Sammendrag Skjærmodulen til stål har blitt bestemt ved en statisk og en dynamisk

Detaljer

Løsningsforslag til øving 13

Løsningsforslag til øving 13 Institutt for fysikk, NTNU TFY4155/FY1003 Elektromagnetisme Vår 2009 Løsningsforslag til øving 13 Oppgave 1 a) Sløyfas magnetiske dipolmoment: m = IA ˆn = Ia 2 ˆn Sløyfa består av 4 rette ledere med lengde

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME Eksamensdag: 10. desember 2004 Tid for eksamen: Kl. 09:00-12:30 (3,5 timer) Tillatte hjelpemidler:

Detaljer

Oppgave 3 -Motstand, kondensator og spole

Oppgave 3 -Motstand, kondensator og spole Oppgave 3 -Motstand, kondensator og spole Ole Håvik Bjørkedal, Åge Johansen olehb@stud.ntnu.no, agej@stud.ntnu.no 18. november 2012 Sammendrag Rapporten omhandler hvordan grunnleggende kretselementer opptrer

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 ØSNINGSFOSAG TI EKSAMEN I FY1003 EEKTISITET OG MAGNETISME

Detaljer

Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator.

Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator. Oppgave 1 a) Ei ideell fjær har fjærkonstant k = 2.60 10 3 [N/m]. Finn hvilken kraft en må bruke for å trykke sammen denne fjæra 0.15 [m]. Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd

Detaljer

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA656 16.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for eksamen i matematikke 3MX er gratis, og

Detaljer

FY0001 Brukerkurs i fysikk

FY0001 Brukerkurs i fysikk NTNU Institutt for Fysikk Løsningsforslag til øving FY0001 Brukerkurs i fysikk Oppgave 1 a Det er fire krefter som virker på lokomotivet. Først har vi tyngdekraften, som virker nedover, og som er på F

Detaljer

Kap. 27 Kjapp historie. Kap. 27 Magnetisk felt og magnetiske krefter. Kap. 27 Magnetisme. Kraft på ledningsbit. Kap 27

Kap. 27 Kjapp historie. Kap. 27 Magnetisk felt og magnetiske krefter. Kap. 27 Magnetisme. Kraft på ledningsbit. Kap 27 Kap. 27 Magnetisk felt og magnetiske krefter Kortfatta målsetning: Forstå at magnetiske monopoler ikke fins, kun dipoler. (mens elektriske monopoler fins, dvs. +q, -q) Lære at permanente magneter og elektromagneter

Detaljer

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm]. Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen

Detaljer

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Ola Hunderi, tlf (mobil: )

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Ola Hunderi, tlf (mobil: ) NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Ola Hunderi, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektromagnetisk teori Torsdag 1 desember

Detaljer

Enkle kretser med kapasitans og spole- bruk av datalogging.

Enkle kretser med kapasitans og spole- bruk av datalogging. Laboratorieøvelse i FY3-Elektrisitet og magnetisme Vår Fysisk Institutt, NTNU Enkle kretser med kapasitans og spole- bruk av datalogging. Oppgave -Spenning i krets a: Mål inngangsspenningen og spenningsfallet

Detaljer

EKSAMEN i TFY4155/FY1003 ELEKTRISITET OG MAGNETISME

EKSAMEN i TFY4155/FY1003 ELEKTRISITET OG MAGNETISME Side 1 av 7 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL EKSAMEN i TFY4155/FY1003 ELEKTRISITET OG MAGNETISME Eksamensdato: Tirsdag 24 mai 2011 Eksamenstid: 09:00-13:00 Faglig

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 EEKTISITET OG MAGNETISME TFY4155

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Løsningsforslag til eksamen i FYS35, ELEKTROMAGNETISME, høst 004. (med forbehold om feil) Oppgave a) Dersom vi hadde hatt magnetiske

Detaljer

Løsningsforslag TFE4120 Elektromagnetisme 29. mai 2017

Løsningsforslag TFE4120 Elektromagnetisme 29. mai 2017 Norges teknisk naturvitenskapelige universitet Institutt for elektroniske systemer Side 1 av 6 Løsningsforslag TFE4120 Elektromagnetisme 29. mai 2017 Oppgave 1 a) Start med å tegne figur! Tegn inn en Gauss-flate

Detaljer

Modul nr Produksjon av elektrisk energi kl

Modul nr Produksjon av elektrisk energi kl Modul nr. 1729 Produksjon av elektrisk energi 8.-10.kl Tilknyttet rom: Newton Meløy 1729 Newton håndbok - Produksjon av elektrisk energi 8.-10.kl Side 2 Kort om denne modulen Modulen tar for seg grunnleggende

Detaljer

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 Mandag 19.03.07 Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Likespenningskilde

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 12.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 12. TFY0 Fsikk. nstitutt for fsikk, NTNU. Høsten 06. Øving. Oppgave Partikler med masse m, ladning q og hastighet v kommer inn i et område med krsset elektrisk og magnetisk felt, E og, som vist i figuren.

Detaljer

Sammendrag, uke 13 (30. mars)

Sammendrag, uke 13 (30. mars) nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2005 Sammendrag, uke 13 (30. mars) Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Spenningskilde

Detaljer

Nøkler til Naturfag: Velkommen til kursdag 3!

Nøkler til Naturfag: Velkommen til kursdag 3! Nøkler til Naturfag: Velkommen til kursdag 3! Tid Hva Ansvarlig 09.00-10.00 Erfaringsdeling Oppsummering FFLR Eli Munkeby 10.00-10.15 Pause 10.15-11.45 Elektrisitet: grunnbegreper Berit Bungum, Roy Even

Detaljer

Tillegg om flateintegraler

Tillegg om flateintegraler Kapittel 6 Tillegg om flateintegraler 6.1 Litt ekstra om flateintegraler I kompendiet har vi definert flateintegraler som grenseoverganger for diskretiseringer. Har vi en flate kan vi representere den

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: 29. November 2016 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 3 sider. Vedlegg: Tillatte

Detaljer

Elektrisk og Magnetisk felt

Elektrisk og Magnetisk felt Elektrisk og Magnetisk felt Kjetil Liestøl Nielsen 1 Emner for i dag Coulombs lov Elektrisk felt Ladet partikkel i elektrisk felt Magnetisk felt Magnetisk kraft på elektrisk eladninger Elektromagnetiske

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 3 i emnet MAT, høsten 206 Innleveringsfrist: Mandag 2. november 206, kl. 4, i Infosenterskranken i inngangsetasjen

Detaljer

Løsningsforslag til øving 14

Løsningsforslag til øving 14 Institutt for fysikk, NTNU TFY4155/FY13 Elektromagnetisme Vår 29 Løsningsforslag til øving 14 Oppgave 1 Den påtrykte strømmen I genererer et H-felt H ni på langs overalt inne i spolen (pga Amperes lov

Detaljer

b) Vi legger en uendelig lang, rett stav langs y-aksen. Staven har linjeladningen λ = [C/m].

b) Vi legger en uendelig lang, rett stav langs y-aksen. Staven har linjeladningen λ = [C/m]. Oppgave 1 a) Punktladningen q 1 = 1.0 10 9 [C] ligger fast i punktet (2.0, 0, 0) [m]. Punktladningen q 2 = 4.0 10 9 [C] ligger i punktet ( 1.0, 0, 0) [m]. I) Finnes det punkt(er) i rommet med elektrisk

Detaljer

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag Oppgave 1. Eksamen IRF314, høsten 15 i Matematikk 3 øsningsforslag I denne oppgaven er det to løsningsforslag. Ett med asymptotene som gitt i oppgaveteksten. I dette første tilfellet blir tallene litt

Detaljer

Kan vi forutse en pendels bevegelse, før vi har satt den i sving?

Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Gjør dette hjemme 6 #8 Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Skrevet av: Kristian Sørnes Dette eksperimentet ser på hvordan man finner en matematisk formel fra et eksperiment,

Detaljer

EKSAMENSOPPGAVE. Eksamen i: FYS- 1002 Elektromagnetisme Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154

EKSAMENSOPPGAVE. Eksamen i: FYS- 1002 Elektromagnetisme Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS- 1002 Elektromagnetisme Dato: Tid: Sted: Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154 Tillatte hjelpemidler:

Detaljer

Felttur 2016 Elektromagnetisme

Felttur 2016 Elektromagnetisme Felttur 2016 Elektromagnetisme August Geelmuyden Universitetet i Oslo Teori I. Påvirkning uten berøring Når to objekter påvirker hverandre uten å være i berøring er det ofte naturlig å introdusere konseptet

Detaljer

LABORATORIERAPPORT. RL- og RC-kretser. Kristian Garberg Skjerve

LABORATORIERAPPORT. RL- og RC-kretser. Kristian Garberg Skjerve LABORATORIERAPPORT RL- og RC-kretser AV Kristian Garberg Skjerve Sammendrag Oppgavens hensikt er å studere pulsrespons for RL- og RC-kretser, samt studere tidskonstanten, τ, i RC- og RL-kretser. Det er

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG Side 1 av 15 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 317 (Digitaldel) Ingulf Helland

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

FYS1120 Elektromagnetisme ukesoppgavesett 7

FYS1120 Elektromagnetisme ukesoppgavesett 7 FYS1120 Elektromagnetisme ukesoppgavesett 7 25. november 2016 Figur 1: En Wheatstone-bro I FYS1120-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør.

Detaljer

LABORATORIUM I EMNENE TFY4155/FY1003 ELEKTRISITET OG MAGNETISME NTNU

LABORATORIUM I EMNENE TFY4155/FY1003 ELEKTRISITET OG MAGNETISME NTNU UTGAVE 13 jan 2014 LABORATORIUM I EMNENE TFY4155/FY1003 ELEKTRISITET OG MAGNETISME NTNU Våren 2014 Forord Dette heftet inneholder tekster til laboratoriekurset til emnene TFY4155/FY1003 Elektrisitet og

Detaljer

Varmepumpe. Institutt for fysikk, NTNU, N-7491 Trondheim, Norge

Varmepumpe. Institutt for fysikk, NTNU, N-7491 Trondheim, Norge Varmepumpe Anette Fossum Morken a, Sindre Gjerde Alnæs a, Øistein Søvik a a FY1002 Termisk Fysikk, laboratoriekurs, Vår 2013, Gruppe 4. Institutt for fysikk, NTNU, N-7491 Trondheim, Norge Sammendrag I

Detaljer

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4 Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4 Mandag 22.01.07 Elektriske feltlinjer [FGT 22.2; YF 21.6; TM 21.5; F 21.6; LHL 19.6; DJG 2.2.1] gir en visuell framstilling

Detaljer

Angivelse av usikkerhet i måleinstrumenter og beregning av total usikkerhet ved målinger.

Angivelse av usikkerhet i måleinstrumenter og beregning av total usikkerhet ved målinger. Vedlegg A Usikkerhet ved målinger. Stikkord: Målefeil, absolutt usikkerhet, relativ usikkerhet, følsomhet og total usikkerhet. Angivelse av usikkerhet i måleinstrumenter og beregning av total usikkerhet

Detaljer

EKSAMENSOPPGAVE I FYS-1002

EKSAMENSOPPGAVE I FYS-1002 Side 1 av 5 sider EKSAMENSOPPGAVE I FYS-1002 Eksamen i : Fys-1002 Elektromagnetisme Eksamensdato : 29. september, 2011 Tid : 09:00 13:00 Sted : Administrasjonsbygget B154 Tillatte hjelpemidler : K. Rottmann:

Detaljer

Modul nr Produksjon av elektrisk energi kl

Modul nr Produksjon av elektrisk energi kl Modul nr. 1068 Produksjon av elektrisk energi 8.-10.kl Tilknyttet rom: Energi og miljørom, Harstad 1068 Newton håndbok - Produksjon av elektrisk energi 8.-10.kl Side 2 Kort om denne modulen 8.-10. klassetrinn

Detaljer

TMA4105 Matematikk 2 Vår 2014

TMA4105 Matematikk 2 Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2014 Løsningsforslag Øving 7 10.4.7 Vi skal finne likningen til et plan gitt to punkter P = (1, 1,

Detaljer

Bestemmelse av Newtons gravitasjonskonstant med torsjonsvekt

Bestemmelse av Newtons gravitasjonskonstant med torsjonsvekt Bestemmelse av Newtons gravitasjonskonstant med torsjonsvekt K. Reed a, E. S. Syrdalen a a Institutt for fysikk, Norges Teknisk-Naturvitenskapelige Universitet, N-7491 Trondheim, Norway. Abstract Cavendisheksperimentet

Detaljer

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11)

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Knut Mørken 22. november 2004 Vi har tidligere i kurset sett litt på numerisk derivasjon

Detaljer

Eksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag

Eksamen IRF30014, våren 16 i Matematikk 3 Løsningsforslag Oppgave 1. Eksamen IRF314, våren 16 i Matematikk 3 Løsningsforslag Ellipsen vil skal finne er på standardform x a + y b 1 der a > b for styrelinjene er vertikale linjer. Formelen for styrelinjene er x

Detaljer

BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL

BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL Labratorieøvelse i FYSIKK Høst 1994 Institutt for fysisk, NTH BESTEMMELSE AV TYNGDENS AKSELERASJON VED FYSISK PENDEL av Ola Olsen En lett revidert og anonymisert versjon til eksempel for skriving av lab.-rapport

Detaljer

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon ide 1 av 7 Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen: Guro vendsen (73592773) Hjelpemidler: C - pesifiserte

Detaljer

Tirsdag E = F q. q 4πε 0 r 2 ˆr E = E j = 1 4πε 0. 2 j. r 1. r n

Tirsdag E = F q. q 4πε 0 r 2 ˆr E = E j = 1 4πε 0. 2 j. r 1. r n Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 3 Tirsdag 15.01.07 Elektrisk felt [FGT 22.1; YF 21.4; TM 21.4; AF 21.5; LHL 19.4; DJG 2.1.3] = kraft pr ladningsenhet

Detaljer

Løsningsforslag til øving 12

Løsningsforslag til øving 12 FY12/TFY416 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 28. Løsningsforslag til øving 12 Oppgave 1 a) Hovedmaksima får vi i retninger som tilsvarer at både teller og nevner blir null, dvs φ = nπ, der

Detaljer

Faradays lov: Flere muligheter for induksjon: Magnetisme. Kap29 17.03.2015

Faradays lov: Flere muligheter for induksjon: Magnetisme. Kap29 17.03.2015 Magnetisme Magnetostatikk (ingen tidsvariasjon): Kap 27. Magnetiske krefter Kap 28: Magnetiske kilder B/ t = 0 Hvilke er rett, a,b,c eller d? Elektrodynamikk: Kap 29: Elektromagnetisk induksjon Kap 30:

Detaljer

Sammendrag kapittel 9 - Geometri

Sammendrag kapittel 9 - Geometri Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning

Detaljer

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1

TFY4215 Innføring i kvantefysikk - Løsning øving 1 1 LØSNING ØVING 1 TFY425 Innføring i kvantefysikk - Løsning øving Løsning oppgave a. LØSNING ØVING Vi merker oss at sannsynlighetstettheten, Ψ(x, t) 2 = A 2 e 2λ x, er symmetrisk med hensyn på origo. For normeringsintegralet

Detaljer

Magnetisk felt og fluks. Institutt for fysikk, NTNU

Magnetisk felt og fluks. Institutt for fysikk, NTNU Oppgave 4 Lab i TFY4125 Magnetisk felt og fluks Institutt for fysikk, NTNU 2 1.1 Innledning Kontroll av statiske og tidsavhengige magnetfelt er viktig i vitenskap og teknologi. I de fleste tilfellene er

Detaljer

Modul nr Transport av elektrisk energi - vgs

Modul nr Transport av elektrisk energi - vgs Modul nr. 1081 Transport av elektrisk energi - vgs Tilknyttet rom: Energi og miljørom, Harstad 1081 Newton håndbok - Transport av elektrisk energi - vgs Side 2 Kort om denne modulen Modulen tar for seg

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.

Detaljer

Realstart og Teknostart ROTASJONSFYSIKK. PROSJEKTOPPGAVE for BFY, MLREAL og MTFYMA

Realstart og Teknostart ROTASJONSFYSIKK. PROSJEKTOPPGAVE for BFY, MLREAL og MTFYMA FY1001 og TFY4145 Mekanisk fysikk Institutt for fysikk, august 2015 Realstart og Teknostart ROTASJONSFYSIKK PROSJEKTOPPGAVE for BFY, MLREAL og MTFYMA Mål Dere skal i denne prosjektoppgaven utforske egenskaper

Detaljer

TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22

TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22 TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas

Detaljer

Lengde, hastighet og aksellerasjon

Lengde, hastighet og aksellerasjon Lengde, hastighet og aksellerasjon Nicolai Kristen Solheim Abstract I denne oppgaven har vi målt lengde, hastighet og akselerasjon for å få et bedre forhold til sammenhengen mellom disse. Et annet fokus

Detaljer

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 Elever og privatister 26. mai 2000 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste

Detaljer

EN LITEN INNFØRING I USIKKERHETSANALYSE

EN LITEN INNFØRING I USIKKERHETSANALYSE EN LITEN INNFØRING I USIKKERHETSANALYSE 1. Forskjellige typer feil: a) Definisjonsusikkerhet Eksempel: Tenk deg at du skal måle lengden av et noe ullent legeme, f.eks. en sau. Botemiddel: Legg vekt på

Detaljer

Kap. 27 Kjapp historie. Kap. 27 Magnetisk felt og magnetiske krefter. Kap. 27 Magnetisme. Kraft på ledningsbit. Kap 27

Kap. 27 Kjapp historie. Kap. 27 Magnetisk felt og magnetiske krefter. Kap. 27 Magnetisme. Kraft på ledningsbit. Kap 27 Kap. 27 Magnetisk felt og magnetiske krefter Kortfatta målsetning: Forstå at magnetiske monopoler ikke fins, kun dipoler. (mens elektriske monopoler fins, dvs. +q, -q) Lære at permanente magneter og elektromagneter

Detaljer

TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22

TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22 TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas

Detaljer

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. september 2011 Kapittel 4.7. Newtons metode 3 Eksakt løsning Den eksakte løsningen av

Detaljer

Bevegelse med friksjon nedover en kuleoverflate

Bevegelse med friksjon nedover en kuleoverflate Bevegelse med friksjon nedover en kuleoverflate Geir-Arne Fuglstad Geir Bogfjellmo 9. oktober 2006 Innhold 1 Generelle lover 2 1.1 Newtons 2. lov............................ 2 1.2 Friksjonsarbeid............................

Detaljer

Husk å skrive kandidatnr øverst til høyre på arkene!

Husk å skrive kandidatnr øverst til høyre på arkene! Eksamen Fysikk (FO34) vår, 3timer Les dette først! De 9 første oppgavene besvares ved at du setter et kryss i valgt alternativ og leverer disse arkene (s. 3 7) inn som svar sammen med din løsning av oppgave,

Detaljer

Oppgave 4 : FYS linjespesifikk del

Oppgave 4 : FYS linjespesifikk del Oppgave 4 : FYS 10 - linjespesifikk del Fysiske konstanter og definisjoner: Vakuumpermittiviteten: = 8,854 10 1 C /Nm a) Hva er det elektriske potensialet i sentrum av kvadratet (punktet P)? Anta at q

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET ENKELTVIS 7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET VEKSELSTRØM ENKELTVIS

7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET ENKELTVIS 7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET VEKSELSTRØM ENKELTVIS 7. ESSTANS - SPOLE - KONDENSATO TLKOPLET ENKELTVS 7. ESSTANS - SPOLE - KONDENSATO TLKOPLET VEKSELSTØM ENKELTVS DEELL ESSTANS TLKOPLET VEKSELSTØM Når en motstandstråd blir brettet i to og de to delene av

Detaljer

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og

Detaljer

Midtsemesterprøve torsdag 7. mai 2009 kl

Midtsemesterprøve torsdag 7. mai 2009 kl Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Våren 2009 Tillatte hjelpemidler: Midtsemesterprøve torsdag 7. mai 2009 kl 09.15 11.15. Oppgaver på side 5 10. Svartabell

Detaljer

LAVFREKVENS FELT. Magnetiske og elektrisk felt Virkning på kroppen Eksempler på felt og kilder inne, ute og i bilen Måling og fremgangsmåte

LAVFREKVENS FELT. Magnetiske og elektrisk felt Virkning på kroppen Eksempler på felt og kilder inne, ute og i bilen Måling og fremgangsmåte Magnetiske og elektrisk felt Virkning på kroppen Eksempler på felt og kilder inne, ute og i bilen Måling og fremgangsmåte LAVFREKVENS FELT Jostein Ravndal Ravnco Resources AS www.ravnco.com Magnetfelt

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

Begrep. Protoner - eller Hvordan få et MR-signal? Kommunikasjon. Hoveddeler. Eksempel: Hydrogen. Hvordan få et signal?

Begrep. Protoner - eller Hvordan få et MR-signal? Kommunikasjon. Hoveddeler. Eksempel: Hydrogen. Hvordan få et signal? Begrep Protoner - eller Hvordan få et MR-signal? Rune Sylvarnes NORUT Informasjonsteknologi Høgskolen i Tromsø MR - fenomenet magnetisk resonans NMR - kjerne MR, vanligvis brukt om MR på lab (karakterisering

Detaljer

Mal for rapportskriving i FYS2150

Mal for rapportskriving i FYS2150 Mal for rapportskriving i FYS2150 Ditt navn January 21, 2011 Abstract Dette dokumentet viser hovedtrekkene i hvordan vi ønsker at en rapport skal se ut. De aller viktigste punktene kommer i en sjekkliste

Detaljer

Treleder kopling - Tredleder kopling fordeler lednings resistansen i spenningsdeleren slik at de til en vis grad kanselerer hverandre.

Treleder kopling - Tredleder kopling fordeler lednings resistansen i spenningsdeleren slik at de til en vis grad kanselerer hverandre. Treleder kopling Tredleder kopling fordeler lednings resistansen i spenningsdeleren slik at de til en vis grad kanselerer hverandre. Dersom Pt100=R, vil treleder koplingen totalt kanselerere virkningen

Detaljer

Løsningsforslag til eksamen i FYS1000, 13/6 2016

Løsningsforslag til eksamen i FYS1000, 13/6 2016 Løsningsforslag til eksamen i FYS1000, 13/6 2016 Oppgave 1 a) Sola skinner både på snøen og på treet. Men snøen er hvit og reflekterer det meste av sollyset. Derfor varmes den ikke så mye opp. Treet er

Detaljer

Løysingsframlegg kontinuasjonseksamen TFY 4104 Fysikk august 2011

Løysingsframlegg kontinuasjonseksamen TFY 4104 Fysikk august 2011 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg kontinuasjonseksamen TFY 4104 Fysikk august 011 Faglærar: Professor Jens O Andersen Institutt for Fysikk, NTNU Telefon:

Detaljer

Eksamensoppgave i TFY4155 ELEKTRISITET OG MAGNETISME FY1003 ELEKTRISITET OG MAGNETISME

Eksamensoppgave i TFY4155 ELEKTRISITET OG MAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Institutt for fysikk Eksamensoppgave i TFY455 ELEKTRISITET OG MAGNETISME FY003 ELEKTRISITET OG MAGNETISME Faglig kontakt under eksamen: Institutt for fysikk v/arne Mikkelsen, Tlf: 486 05 392 / 7359 3433

Detaljer

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag ide av LØNINGFOLAG EKAMEN TMA4 MATEMATIKK 2 Lørdag 4. aug 24 Oppgave Grenseverdien eksisterer ikke. For eksempel er grenseverdien

Detaljer

INF L4: Utfordringer ved RF kretsdesign

INF L4: Utfordringer ved RF kretsdesign INF 5490 L4: Utfordringer ved RF kretsdesign 1 Kjøreplan INF5490 L1: Introduksjon. MEMS i RF L2: Fremstilling og virkemåte L3: Modellering, design og analyse Dagens forelesning: Noen typiske trekk og utfordringer

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

.ASJONALE -ATEMATIKK 1MX 3KOLENR

.ASJONALE -ATEMATIKK 1MX 3KOLENR Delprøve 1MX Du skal prøve så godt du kan å svare på alle oppgavene i dette heftet, selv om noen kan være vanskeligere eller annerledes enn du er vant til. Noen svar skal du regne ut, noen ganger skal

Detaljer

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 2. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 2. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk 2 Vår 217 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 11.1.9: Den aktuelle kurven er gitt ved r(t) (3 cos t, 4 cos t, 5 sin t).

Detaljer

Kap. 6+7 Arbeid og energi. Energibevaring.

Kap. 6+7 Arbeid og energi. Energibevaring. TFY4145/FY11 Mekanisk fysikk Størrelser og enheter (Kap 1) Kinematikk i en, to og tre dimensjoner (Kap. +3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons lover (Kap. 4)

Detaljer

Randkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π.

Randkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π. Ma - Løsningsforslag til uke 17 i 7 Eks. mai 1999 oppgave 4 ylinderen x + y = 1 skjærer ut ei flate av planet z = x + 1 dvs. x + z = 1 med enhetsnormal i positiv z-retning lik n= 1 [ 1 1]. Flata blir en

Detaljer