LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl
|
|
- Kristin Thomassen
- 6 år siden
- Visninger:
Transkript
1 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: / LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl Eksamen bestod av 4 oppgaver, i alt 10 deloppgaver som alle telte like mye under bedømmelsen. Løsningsforslaget er på 6 sider (inklusive denne). 1
2 OPPGAVE 1 a) Inne i en leder er E = 0 i elektrostatisk likevekt. Gauss lov, E da = Q in /ε 0, med sylinderformet gaussflate med radius r bittelitt mindre enn a gir da null netto ladning inne i lederen. Dermed blir ladningen uniformt fordelt på innerlederens overflate, dvs ved r = a = mm. En sylinderformet gaussflate med radius r bittelitt større enn b (dvs inne i ytterlederen) gir også Q in = 0 ettersom E = 0 også på denne gaussflaten. (På gauss sylinderens endeflater står E normalt på flatenormalen og gir ingen fluks gjennom disse.) Dermed må ladningen være uniformt fordelt på ytterlederens indre overflate, dvs ved r = b = 1.85 mm. b) Her kjenner vi fordelingen av fri ladning på de to lederne. Med Gauss lov for D finner vi at D 0, og dermed E 0, kun i PE-laget. For a r b (gauss sylinder med radius r og lengde L): D(r) 2πr L = L D(r) = 2πr E(r) = 2πε r ε 0 r Av symmetrigrunner (og noe vi allerede har brukt ovenfor) må det elektriske feltet stå vinkelrett på koaksialkabelens symmetriakse: E(r) = E(r) ˆr Skisse av E(r): E a b c d /2 4 r Gauss sylindre med r < a eller r > b gir Q in = 0, og dermed E = 0. 2
3 c) Elektriske dipoler (atomer eller molekyler) rettes inn langs det ytre elektriske feltet. Nettoeffekten blir indusert ladning på dielektrikumets overflate, positiv på den ene siden og like mye negativ på den andre siden. Det totale elektriske feltet inne i dielektrikumet blir mindre enn det påtrykte feltet. I koaksialkabelen får vi negativ indusert ladning σ a < 0 ved r = a, dvs på PE lagets indre overflate, og positiv indusert ladning σ b > 0 ved r = b, dvs på PE lagets ytre overflate. (I PVC laget får vi ingen polarisering siden det her ikke er noe elektrisk felt.) Vi kan bruke den oppgitte sammenhengen mellom indusert ladning pr flateenhet og polariseringen: σ a = P (a) = χ e ε 0 E(a) = (ε r 1)ε 0 2πε r ε 0 a = (ε r 1) 2πaε r σ b = P (b) = (ε r 1)ε 0 2πε r ε 0 b = (ε r 1) 2πbε r Kommentar: Dette betyr at på en lengde L av kabelen har vi en indusert ladning q i a = σ a L 2πa = L ε r 1 ε r på indre overflate av PE laget, og dermed en total ladning pr lengdeenhet ( tot = 1 ε ) r 1 = ε r ε r Tilsvarende finner vi på PE lagets ytre overflate en total ladning pr lengdeenhet /ε r. d) Kapasitansen (til en lengde L) finner vi ved å bestemme potensialforskjellen mellom innerlederen og ytterlederen: V = b a E(r)dr = b Dermed blir kapasitansen pr lengdeenhet: a C L = dr 2πε r ε 0 r = 2πε r ε 0 ln b a = Q V L = 2πε rε 0 ln(b/a) Q/L 2πε r ε 0 ln b a Tallverdi: C L = 2π ln(3.70/0.57) 66 pf/m Kommentar: Materialer og dimensjoner i denne oppgaven tilsvarer en såkalt RG 59 koaksialkabel fra Draka Norsk Kabel. Den skal være velegnet til både innendørs og utendørs bruk, med anvendelser innen video og høyhastighets dataoverføring. 3
4 OPPGAVE 2 Vi setter motstanden i hver pære lik R. Strømmen gjennom pære 3 kaller vi I 3. a) Krets A: R tot = 3R, I 3 = I tot = V 0 /R tot = V 0 /3R. Krets B: V 0 = RI 3 dvs I 3 = V 0 /R. Krets C: R tot = R + (1/R + 1/R) 1 = 3R/2, I 3 = I tot /2 = V 0 /2R tot = V 0 /3R. Konklusjon: Pære 3 lyser sterkest i krets B, og like svakt i kretsene A og C. Dersom vi skrur ut pære 2: A: Åpen krets I 3 = 0, dvs pære 3 slokker. B: Ingen endring (fortsatt spenning V 0 over pære 3) C: R tot = 2R som gir I 3 = I tot = V 0 /2R, som er mer enn med pære 2 innskrudd. Altså lyser nå pære nr 3 sterkere enn med pære 2 innskrudd. Kommentar: Jeg har her antatt at resultatet blir en åpen krets der pære nr 2 skrus ut, og ikke en kortslutning. Antagelse om kortslutning fulgt av fornuftig argumentasjon vil belønnes rundhåndet. (Kortslutning gjennom pæreholder 2 gir i krets A: større I 3 og sterkere lys; i krets B: I 3 = 0, dvs pære 3 slokker (og stor strøm totalt!); i krets C: I 3 = 0, dvs pære 3 slokker.) b) Total strøm levert av spenningskilden: Totalt effekttap i de tre pærene blir dermed: I tot = V 0 = V 0 R tot 3R/2 = 2V 0 3R P tot = V 0 I tot = 2V 0 2 3R = = 13.5 W OPPGAVE 3 a) Kvalitativt: d F B N I I dl (ut av planet) m d F x I dl (inn i planet) B Vi ser at total (netto) kraft på ringen peker mot venstre, altså tiltrekning. 4
5 b) Total kraft på ringen blir: F = IR dφ ˆφ (B z ẑ + B rˆr) = IRB z dφ ˆr + IRB r dφ( ẑ) Her endrer ˆr seg under integrasjonen. Vi ser, av symmetrigrunner, at det første leddet må bli lik null. Derimot er ẑ konstant under integrasjonen, så vi får og dermed dφ( ẑ) = 2πẑ F = 2πIRB r ẑ Rettet mot venstre, som forventet. Der ringen er, har vi selvsagt r = R, så med oppgitte tallverdier: ( ) 1 2 F = 2π ln 2 N = 4 π ln 2 N 0.97 N 3 9 OPPGAVE 4 a) Magnetisk fluks gjennom ringen: φ(t) = B A = B πr 2 cos ωt Figuren i oppgaveteksten viser at ringens flatenormal, og dermed A, er parallell med B ved tidspunktet t = 0. Valget cos ωt er konsistent med dette. Indusert spenning i ringen blir dermed, i følge Faradays induksjonslov: Spenningsamplituden er altså Ohms lov gir V (t) = dφ dt = ωbπr2 sin ωt I(t) = V (t) R V 0 = ωbπr 2 = ωbπr2 R sin ωt b) En leder med konduktivitet σ, lengde l og tverrsnitt S har resistans R = (Utledes eventuelt fra sammenhengen j = σe mellom strømtetthet og elektrisk felt, som gir I = j A = σea = σ(v/l)a = V/R) Her er lengden lik ringens omkrets, l = 2πr, og tverrsnittet er S = πa 2, slik at R = l σs 2πr σ πa = 2r 2 σa 2 5
6 Kirchhoffs spenningsregel for kretsen med R og L i serie gir dvs Vi ser da at og V L di dt RI = 0 di dt + R L I = V L = V 0 sin ωt L ω 0 = R L α 0 = V 0 L = ωbπr2 L Kommentar: Legg merke til at det her er snakk om både gjensidig induksjon og selvinduksjon: Det uniforme magnetfeltet B er skapt av elektrisk strøm i en annen krets. I praksis kunne ringen for eksempel ha befunnet seg i rommet mellom nordpolen av en spole og sørpolen av en annen spole. På grunn av at ringen roterer, blir den magnetiske fluksen fra disse spolene ( krets 1 ) gjennom ringen ( krets 2 ) tidsavhengig, og det induseres en elektromotorisk spenning i ringen altså gjensidig induksjon. Denne effekten er representert ved spenningskilden V (t) i RL kretsen i oppgaven. Spenningskilden V (t) fører til en tidsavhengig strøm I(t) i ringen. Denne strømmen vil dermed også resultere i en tidsavhengig magnetisk fluks gjennom ringen, slik at det induseres en motspenning i ringen altså selvinduksjon. Denne effekten er representert ved selvinduktansen L i RL kretsen, og ved leddet L di/dt i ligningen som vi fikk ved å bruke Kirchhoffs spenningsregel. Den videre analyse av slike vekselstrømkretser (dvs: å løse resulterende differensialligninger og bestemme resulterende strømmer) vil være tema i senere kurs, eksempelvis FY1013 Elektrisitet og magnetisme II og TFY4185 Måleteknikk. 6
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl
NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 ØSNINGSFOSAG TI EKSAMEN I FY1003 EEKTISITET OG MAGNETISME
EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155
LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I TFY4155 ELEKTOMAGNETISME
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET
LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPEIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 ØSNINGSFORSAG TI EKSAMEN I TFY4155 EEKTROMAGNETISME
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET
EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 4. desember
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl K. Rottmann: Matematisk formelsamling (eller tilsvarende).
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 17. desember
KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 KONTNUASJONSEKSAMEN TFY4155 ELEKTOMAGNETSME Fredag 11.
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: Prøveeksamen 2017 Oppgavesettet er på 9 sider Vedlegg: Tillatte hjelpemidler: Formelark
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTISITET OG MAGNETISME I TFY4155
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt uner eksamen: Jon Anreas Støvneng Telefon: 7 59 6 6 / 41 4 9 0 LØSNINGSFORSLAG TIL EKSAMEN I FY100 ELEKTRISITET OG MAGNETISME
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG
Løsningsforslag TFE4120 Elektromagnetisme 29. mai 2017
Norges teknisk naturvitenskapelige universitet Institutt for elektroniske systemer Side 1 av 6 Løsningsforslag TFE4120 Elektromagnetisme 29. mai 2017 Oppgave 1 a) Start med å tegne figur! Tegn inn en Gauss-flate
Mandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7.
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke19 Mandag 7. mai Elektromagnetisk induksjon (fortsatt) [FGT 30.1-30.6; YF 29.1-29.5; TM 28.2-28.3; AF 27.1-27.3; LHL 24.1;
Midtsemesterprøve fredag 10. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2006 Midtsemesterprøve fredag 10. mars kl 0830 1130. Løsningsforslag 1) A. (Andel som svarte riktig: 83%) Det
EKSAMEN I FAG SIF 4012 ELEKTROMAGNETISME (SIF 4012 FYSIKK 2) Onsdag 11. desember kl Bokmål
Side av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 4 43 39 3 EKSAMEN I FAG SIF 42 ELEKTROMAGNETISME
a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.
Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har
Tirsdag r r
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 6 Tirsdag 05.02.08 Gauss lov [FGT 23.2; YF 22.3; TM 22.2, 22.6; AF 25.4; LHL 19.7; DJG 2.2.1] Fra forrige uke; Gauss
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl
NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 EEKTISITET OG MAGNETISME TFY4155
Øving 13. Induksjon. Forskyvningsstrøm. Vekselstrømskretser.
Inst for fysikk 2017 FY1003 Elektr & magnetisme Øving 13 Induksjon Forskyvningsstrøm Vekselstrømskretser Denne siste øvingen innholder ganske mye, for å få dekket opp siste del av pensum Den godkjennes
EKSAMENSOPPGAVE. Fys-1002 Elektromagnetisme. Adm.bygget B154 Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Elektromagnetisme Dato: Onsdag 26. september 2018 Klokkeslett: Kl. 9:00-13:00 Sted: Tillatte hjelpemidler: Adm.bygget B154 Kalkulator
EKSAMENSOPPGAVE. Eksamen i: FYS- 1002 Elektromagnetisme Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154
side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS- 1002 Elektromagnetisme Dato: Tid: Sted: Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154 Tillatte hjelpemidler:
Løsningsforslag til øving 5
Institutt for fysikk, NTNU FY1013 Elektrisitet og magnetisme II Høst 2005 Løsningsforslag til øving 5 Veiledning mandag 26. og onsdag 28. september a) Med motstand og kapasitans C i serie: cos ωt = I +
EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne
Midtsemesterprøve fredag 11. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2005 Midtsemesterprøve fredag 11. mars kl 1030 1330. Løsningsforslag 1) B. Newtons 3. lov: Kraft = motkraft. (Andel
LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 9. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag
Onsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 7 Onsdag 11.02.09 og fredag 13.02.09 Gauss lov [FGT 23.2; YF 22.3; TM 22.2, 22.6; AF 25.4; LHL 19.7; DJG 2.2.1] Gauss
Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 6 Mandag 05.02.07 Oppsummering til nå, og møte med Maxwell-ligning nr 1 Coulombs lov (empirisk lov for kraft mellom to
UNIVERSITETET I OSLO
UNIVESITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: 29. November 2016 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 3 sider. Vedlegg: Tillatte
Øving 15. H j B j M j
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007 Veiledning: Uke 17 Innleveringsfrist: Mandag 30. april Øving 15 Oppgave 1 H j j M j H 0 0 M 0 I En sylinderformet jernstav
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PRØVE 2 I FYS135 - ELEKTRO- MAGNETISME, 2004.
NOGES LANDBUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PØVE 2 I FYS3 - ELEKTO- MAGNETISME, 2004. Dato: 20. oktober 2004. Prøvens varighet: 08:4-09:4 ( time) Informasjon: Alle
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: 10. oktober 2016 Tid for eksamen: 10.00 13.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte
Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)
Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen
Midtsemesterprøve torsdag 7. mai 2009 kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Våren 2009 Tillatte hjelpemidler: Midtsemesterprøve torsdag 7. mai 2009 kl 09.15 11.15. Oppgaver på side 5 10. Svartabell
LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I FAG SIF 4012 ELEKTROMAGNETISME (SIF 4012 FYSIKK 2) Mandag 29. juli kl
Side av 9 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I FAG SIF 4 ELEKTROMAGNETISME
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.
TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =
Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12
nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 Mandag 19.03.07 Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Likespenningskilde
EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 9. desember 2005 kl
NORGES TEKNSK- NATURTENSKAPELGE UNERSTET NSTTUTT FOR FYSKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 EKSAMEN FY1013 ELEKTRSTET OG MAGNETSME Fredag 9. desember 2005 kl.
Onsdag isolator => I=0
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 13 Onsdag 26.03.08 RC-kretser [FGT 27.5; YF 26.4; TM 25.6; AF Note 25.1; LHL 22.4; DJG Problem 7.2] Rommet mellom de
Kontinuasjonseksamensoppgave i TFY4120 Fysikk
Side 1 av 10 Bokmål Institutt for fysikk Kontinuasjonseksamensoppgave i TFY4120 Fysikk Faglig kontakt under eksamen: Ragnvald Mathiesen Tlf.: 97692132 Eksamensdato: 13.08.2014 Eksamenstid (fra-til): 09:00-13:00
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 10.
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 015. Løsningsforslag til øving 10. Oppgave A B C D 1 x x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 1 x 13 x 14 x 15 x 16 x 17 x 18 x 9 x 0 x 1) Glass-staven
Løsningsforslag til øving
1 FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2012. Løsningsforslag til øving 11-2012 Oppgave 1 a) Forplantning i z-retning betyr at E og B begge ligger i xy-planet. La oss for eksempel
EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling.
EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: Mandag 4. juni, 2018 Klokkeslett: 9:00 13:00 Sted: ADM B154 Tillatte hjelpemidler: Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling. Eksamenoppgaven
KONTINUASJONSEKSAMEN I EMNE SIE 4010 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet Side 1 av 6 Fakultet for informatikk, matematikk og elektroteknikk Institutt for fysikalsk elektronikk Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen:
EKSAMEN I TFY4155 ELEKTROMAGNETISME OG FY1003 ELEKTRISITET OG MAGNETISME
TFY4155/FY1003 31. mai 2010 Side 1 av 8 NOGS TKNSK-NATUVTNSKAPLG UNVSTT NSTTUTT FO FYSKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 KSAMN TFY4155 LKTOMAGNTSM OG FY1003
Løsningsforslag til øving 13
Institutt for fysikk, NTNU TFY4155/FY1003 Elektromagnetisme Vår 2009 Løsningsforslag til øving 13 Oppgave 1 a) Sløyfas magnetiske dipolmoment: m = IA ˆn = Ia 2 ˆn Sløyfa består av 4 rette ledere med lengde
Mandag dq dt. I = Q t + + x (tverrsnitt av leder) Med n = N/ V ladningsbærere pr volumenhet, med midlere driftshastighet v og ladning q:
Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2007, uke Mandag 2.03.07 Elektrisk strøm. [FGT 26.; YF 25.; TM 25.; AF 24., 24.2; LHL 2.; DJG 5..3] Elektrisk strømstyrke = (positiv)
TFY4104 Fysikk. Institutt for fysikk, NTNU. ving 11.
TFY0 Fysikk. Institutt for fysikk, NTNU. ving. Opplysninger: Noe av dette kan du fa bruk for: =" 0 = 9 0 9 Nm /, e = :6 0 9, m e = 9: 0 kg, m p = :67 0 7 kg, g = 9:8 m/s Symboler angis i kursiv (f.eks
b) Vi legger en uendelig lang, rett stav langs y-aksen. Staven har linjeladningen λ = [C/m].
Oppgave 1 a) Punktladningen q 1 = 1.0 10 9 [C] ligger fast i punktet (2.0, 0, 0) [m]. Punktladningen q 2 = 4.0 10 9 [C] ligger i punktet ( 1.0, 0, 0) [m]. I) Finnes det punkt(er) i rommet med elektrisk
Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].
Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen
Flervalgsoppgaver. Gruppeøving 10 Elektrisitet og magnetisme
Flervalgsoppgaver. Figuren viser tverrsnittet av en lang, rett solenoide med et homogent magnetfelt B innvendig. Magnetfeltet har retning ned i papirplanet og styrken er økende med tida. Hva er retningen
1. En tynn stav med lengde L har uniform ladning λ per lengdeenhet. Hvor mye ladning dq er det på en liten lengde dx av staven?
Ladet stav 1 En tynn stav med lengde L har uniform ladning per lengdeenhet Hvor mye ladning d er det på en liten lengde d av staven? A /d B d C 2 d D d/ E L d Løsning: Med linjeladning (dvs ladning per
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 9. E dl = 0. q i q j 4πε 0 r ij. U = i<j
TFY404 Fysikk. Institutt for fysikk, NTNU. Høsten 207. Løsningsforslag til øving 9. Oppgave. a) C V = E dl = 0 dersom dl E b) B U = e2 4πε 0 r = e e 4πε 0 r = e.6 0 9 9 0 9 0 0 = 4.4 ev c) D Total potensiell
FYS1120 Elektromagnetisme
Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo FYS1120 Elektromagnetisme J. Skaar: Øvingsoppgaver til midtveiseksamen (med fasit) Her er 46 flervalgsoppgaver som kanskje kan være nyttige
Oppgave 4 : FYS linjespesifikk del
Oppgave 4 : FYS 10 - linjespesifikk del Fysiske konstanter og definisjoner: Vakuumpermittiviteten: = 8,854 10 1 C /Nm a) Hva er det elektriske potensialet i sentrum av kvadratet (punktet P)? Anta at q
EKSAMEN I EMNE TFY4120 FYSIKK. Fredag 3. desember 2004 Tid: kl
Studentnummer: Studieretning: Bokmål Side 1 av 1 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Jon Otto Fossum,
Mandag Ledere: Metaller. Atomenes ytterste elektron(er) er fri til å bevege seg gjennom lederen. Eksempler: Cu, Al, Ag etc.
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 7 Mandag 12.02.07 Materialer og elektriske egenskaper Hovedinndeling av materialer med hensyn på deres elektriske egenskaper:
EKSAMENSOPPGAVE. Adm.bygget, Aud.max. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Dato: 30. september 2016 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: Adm.bygget, Aud.max ü Kalkulator med tomt dataminne
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I EMNE TFY4120 FYSIKK. Fredag 3. desember 2004 Tid: kl
Studentnummer: Studieretning: Bokmål Side 1 av 1 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Jon Otto Fossum,
Løsningsforslag til øving 4
Institutt for fysikk, NTNU FY3 Elektrisitet og magnetisme II Høst 25 Løsningsforslag til øving 4 Veiledning mandag 9. og onsdag 2. september Likeretter a) Strømmen som leveres av spenningskilden må gå
Onsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektromagnetisme Vår 2009, uke17 Onsdag 22.04.09 og fredag 24.04.09 Energi i magnetfelt [FGT 32.2, 32.3; YF 30.3; TM 28.7; AF 26.8, 27.11; LHL 25.3; DJG 7.2.4]
OBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME
ide 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon OBLIGATORIK MIDTEMETERØVING I EMNE TFE
Løsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S =
Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekommuniksjon Side 1 v 5 Løsningsforslg TFE4120 Elektromgnetisme 24. mi 2011 Oppgve 1 ) Av symmetrigrunner må det elektriske
Fysikkk. Støvneng Tlf.: 45. Andreas Eksamensdato: Rottmann, boksen 1 12) Dato. Sign
Instituttt for fysikk Eksamensoppgave i TFY4104 Fysikkk Faglig kontakt under eksamen: Jon Andreas Støvneng Tlf.: 45 45 55 33 Eksamensdato: 18. desember 2013 Eksamenstid (fra-til): 0900-1300 Hjelpemiddelkode/Tillattee
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Ola Hunderi, tlf (mobil: )
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Ola Hunderi, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektromagnetisk teori Torsdag 1 desember
Sammendrag, uke 13 (30. mars)
nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2005 Sammendrag, uke 13 (30. mars) Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Spenningskilde
Institutt for fysikk. Eksamen i TFY4106 FYSIKK Torsdag 6. august :00 13:00
NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Johan S. Høye/Professor Asle Sudbø Telefon: 91839082/40485727 Eksamen i TFY4106 FYSIKK Torsdag 6. august 2009 09:00 13:00 Tillatte
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Løsningsforslag til eksamen i FYS35, ELEKTROMAGNETISME, høst 004. (med forbehold om feil) Oppgave a) Dersom vi hadde hatt magnetiske
Løysingsforslag Kontinuasjonseksamen TFE4120 Elektromagnetisme 13. august 2004
Løysinsforsla Kontinuasjonseksamen TFE4120 Elektromanetisme 13. auust 2004 Oppåve 1 a) Fiure 1: Ei telefonlinje som år parallelt med ei straumlinje. Det skraverte området er definert av kurva C 2. Innbyrdes
EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt
Midtsemesterprøve fredag 23. mars 2007 kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme I TFY4155 Elektromgnetisme Vår 2007 Midtsemesterprøve fredg 23. mrs 2007 kl 1415 1615. Løsningsforslg 1) I et område er det elektriske feltet
Løsningsforslag til ukeoppgave 10
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 10 Oppgave 17.15 Tegn figur og bruk Kirchhoffs 1. lov for å finne strømmene. Vi begynner med I 3 : Mot forgreningspunktet kommer det to strømmer,
og P (P) 60 = V 2 R 60
Flervalgsoppgaver 1 Forholdet mellom elektrisk effekt i to lyspærer på henholdsvis 25 W og 60 W er, selvsagt, P 25 /P 60 = 25/60 ved normal bruk, dvs kobla i parallell Hva blir det tilsvarende forholdet
Onsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 13 Onsdag 25.03.09 og fredag 27.03.09 Amperes lov [FGT 30.1, 30.3; YF 28.6, 28.7; AF 26.2; H 23.6; G 5.3] B dl = µ 0
Norges teknisk-naturvitenskapelig universitet Institutt for fysikk, NTNU
Side 1 av 8 Bokmål Norges teknisk-naturvitenskapelig universitet Institutt for fysikk, NTNU TFY410 Fysikk Studentnr Studieretning. Faglig kontakt under eksamen: Navn: Ragnvald Mathiesen Tlf.: 7359 336
Løsningsforslag til øving 4
Institutt for fysikk, NTNU TFY455/FY003 Elektrisitet og magnetisme Vår 2007 Veiledning uke 5 Løsningsforslag til øving 4 Oppgave a) Vi benytter oss av tipsene gitt i oppgaveteksten og tar utgangspunkt
FYS1120 Elektromagnetisme H10 Midtveiseksamen
FYS1120 Elektromagnetisme H10 Midtveiseksamen Oppgave 1 a) Vi ser i denne oppgave på elektroner som akselereres gjennom et elektrisk potensial slik at de oppnår en hastighet 1.410. Som vist på figuren
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME Eksamensdag: 10. desember 2004 Tid for eksamen: Kl. 09:00-12:30 (3,5 timer) Tillatte hjelpemidler:
Frivillig test 5. april Flervalgsoppgaver.
Inst for fysikk 2013 TFY4155/FY1003 Elektr & magnetisme Frivillig test 5 april 2013 Flervalgsoppgaver Kun ett av svarene rett Du skal altså svare A, B, C, D eller E (stor bokstav) eller du kan svare blankt
EKSAMEN I EMNE SIE 4010 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 8 Fakultet for informatikk, matematikk og elektroteknikk Institutt for fysikalsk elektronikk Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen:
FYS1120 Elektromagnetisme, vekesoppgåvesett 9 Løsningsforslag
FYS1120 Elektromagnetisme, vekesoppgåvesett 9 Løsningsforslag 16. november 2016 I FYS1120-undervisninga legg vi meir vekt på matematikk og numeriske metoder enn det oppgåvene i læreboka gjer. Det gjeld
KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt
EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon ide 1 av 7 Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen: Guro vendsen (73592773) Hjelpemidler: C - pesifiserte
UNIVERSITETET I TROMSØ. EKSAMENSOPPGAVE i FYS-1002
UNIVERSITETET I T R O M S Ø UNIVERSITETET I TROMSØ Intitutt for fysikk og teknologi EKSAMENSOPPGAVE i FYS-1002 Eksamen i: Fys-1002 Elektromagnetisme Eksamensdato: 10. juni, 2013 Tid: 09:00 13:00 Sted:
EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Dato: 10.juni 2016 Klokkeslett: 09.00-13.00 Sted: Åsgårdveien 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne ü Rottmann:
9) Mhp CM er τ = 0 i selve støtet, slik at kula glir uten å rulle i starten. Dermed må friksjonskraften f virke mot venstre, og figur A blir riktig.
TFY4104 Fysikk Eksamen 18. desember 2013 Løsningsforslag, kortversjon uten oppgavetekst og figurer 1) (4 0.264/0.164) (USD/USgal)(NOK/USD)(USg/L) = 6.44 NOK/L C) 6.44 2) N2: F = ma i a i = F/m B) a 1 =
Løsningsforslag til øving 3
Institutt for fysikk, NTNU TFY455/FY003 Elektromagnetisme Vår 2009 Løsningsforslag til øving 3 Oppgave a) C V = E dl = 0 dersom dl E b) B På samme måte som et legeme med null starthastighet faller i gravitasjonsfeltet
EKSAMEN i TFY4155/FY1003 ELEKTRISITET OG MAGNETISME
Side 1 av 7 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL EKSAMEN i TFY4155/FY1003 ELEKTRISITET OG MAGNETISME Eksamensdato: Tirsdag 24 mai 2011 Eksamenstid: 09:00-13:00 Faglig
Løsningsforslag til øving 9
FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2010. Løsningsforslag til øving 9 Oppgave 1 a) Forplantning i z-retning betyr at E og B begge ligger i xy-planet. La oss for eksempel velge
TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22
TFY4104 Fysikk Eksamen 28. november 2016 Side 13 av 22 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas
FYS1120 Elektromagnetisme ukesoppgavesett 7
FYS1120 Elektromagnetisme ukesoppgavesett 7 25. november 2016 Figur 1: En Wheatstone-bro I FYS1120-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør.
EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk naturitenskapelige uniersitet Institutt for elektronikk og telekommunikasjon ide 1 a 8 Faglærer: Johannes kaar EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Fredag 27. mai 2016 Oppgae 1 En koaksialkabel
Løysingsforslag Kontinuasjonseksamen TFE4120 Elektromagnetisme 13. august 2004
Løysinsforsla Kontinuasjonseksamen TFE4120 Elektromanetisme 13. auust 2004 Oppåve 1 a) Fiure 1: Ei telefonlinje som år parallelt med ei straumlinje. Det skraverte området er definert av kurva C 2. Innbyrdes