Løsningsforslag Øving 8

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Løsningsforslag Øving 8"

Transkript

1 Løsningsforslag Øving 8 TEP4100 Fluidmekanikk, Vår 016 Oppgave 5-78 Løsning En vannslange koblet til bunnen av en tank har en dyse som er rettet oppover. Trykket i slangen økes med en pumpe og høyden av vannsøylen blir målt. Vi ønsker å bestemme trykkøkningen pumpen må gi for at vannet skal kunne nå denne høyden. Antagelser 1 Strømningen er stasjonær og inkompressibel. Friksjon mellom vannet og luften, og friksjonen i røret kan neglisjeres. 3 Vannoverflaten er åpen mot atmosfæren. Egenskaper Tettheten til vann er ρ = 1000 kg/m 3. Analyse Vi velger punkt 1 som den frie overflaten i vanntanken og punkt som toppen av vannsøylen, der V = 0 and = P = P atm. Referansehøyden er ved bunnen av tanken. Vi får da z 1 = 0 m, z = 7 m, og setter h L = 0 for å finne minste trykkøkning. Vi antar også at hastigheten ved den frie overflaten er svært lav (V 1 = 0). Energiligningen blir da g + z 1 + h pumpe = P ρg + α V g + z + h turbin + h tap h pumpe = z z 1 Setter inn tall og får h pumpe = 7 m 0 m = 7 m En vannhøyde på 7 m tilsvarer en trykkøkning P pumpe,min = ρgh pumpe = (1000 kg/m 3 )(9.81 m/s )(7 m) = N/m = 68.7 kpa Pumpen må derfor kunne gi en trykkøkning på minimum 68.7 kpa. Diskusjon Resultatet er en minste trykkøkning, og i praksis vil en større trykkøkning være nødvendig på grunn av tap til friksjon. Oppgave 5-81 Løsning Vann strømmer gjennom et horisontalt rør med angitt volumstrøm. Trykktapet over en ventil er målt, og vi ønsker å finne det korresponderende høydetapet og nødvendig effekt 1

2 for å overvinne dette tapet. Antagelser 1 Strømningen er stasjonær og inkompressibel. Røret er horisontalt. 3 Gjennomsnittshastigheten over innløp og utløp er like store, da diameteren er konstant. Egenskaper Tettheten til vann er ρ = 1000 kg/m 3 Analyse Vi velger ventilen som kontrollvolumet og punktene 1 og som henholdsvis innløp og utløp. For z 1 = z og V 1 = V, samt α 1 = α fordi u 1 (r) = u (r), kan energiligningen forenkles som følger g + z 1 + h pumpe = P ρg + α V g + z + h turbin + h tap Setter inn tallverdier h tap = P ρg h tap = 10 3 N/m (1000 kg/m 3 )(9.81 m/s ) = 0.04 m Pumpeeffekten som kreves for å overvinne dette trykktapet er Ẇ pumpe = ṁgh tap = ρ gh tap = (1000 kg/m 3 )(0.00 m 3 s)(9.81 m/s )(0.04 m) = 40 W Trykktapet over ventilen tilsvarer dermed en vannsøylehøyde på 0.04 m, og det vil minst kreve en pumpe som kan gi 40 W nyttig effekt for å overvinne trykktapet. Diskusjon Nødvendig pumpeeffekt kan også finnes fra Ẇ pumpe = P = (0.00 m 3 /s)(000 Pa) = 40 W Oppgave 5-87 Løsning Vann under trykk i en tank leveres via en slange til et tak. Vi skal finne volumstrømmen ut av slangen på taket, altså hvor mye vann som leveres per tidsenhet. Antagelser 1 Strømningen er stasjonær og inkompressibel. Korreksjonsfaktoren for kinetisk energi settes til α = 1 (vi ser nærmere på dette i diskusjonsdelen). Egenskaper Tettheten til vann er ρ = 1000 kg/m 3. Analyse Vi velger punkt 1 på den frie overflaten i tanken og punkt ved utløpet til slangen. Vi benytter oss av at hastigheten til den frie overflaten er veldig lav (V 1 = 0), og at

3 trykket i utløpet av slangen må være likt det atmosfæriske trykket (P = P atm ). Energiligningen kan da forenkles g + z 1 + h pumpe = P ρg + α V g + z + h turbin + h tap P atm Vi løser for V og setter inn tallverdier for å finne utløpshastigheten [ ] 1 P1,overtrykk V = g(z z 1 + h tap ) α ρ [ 1 (3 10 = 5 ] Pa) kg/m 3 (9.81 m/s )(8 m + m) Den initiale volumstrømmen blir da = m/s = 0.1 m/s V ρg = α g + z z 1 + h tap = A utløp V = πd 4 V π(0.05 m) = (0.095 m/s) 4 = m 3 /s = 9.86 L/s Diskusjon Dette er volumstrømmen vi får helt i starten, når vannivået i tanken er på sitt høyeste. Utløpshastigheten vil naturlig nok reduseres etter hvert som trykket og vannivået i tanken minker. Hvis vi antar at strømningen i slangen er fullstendig utviklet og turbulent i utløpet, kan vi anslå α Dette resulterer i at V 19.6 m/s, og = 9.63 L/s, noe som tilsvarer rundt.4 % lavere volumstrøm. Oppgave 5-93 Løsning En brannbåt slukker branner ved å suge opp sjøvann og spyle det ut av en dyse. Tapet i systemet, volumstrømmen og dysens høyde over sjøen er gitt. Vi skal finne nødvendig pumpeeffekt og utløpshastighet fra dysen. Antagelser 1 Strømningen er stasjonær og inkompressibel. Korreksjonsfaktoren for kinetisk energi settes til α = 1. Egenskaper Sjøvannets tetthet er oppgitt til ρ = 1030 kg/m 3. Analyse Vi velger punkt 1 på den frie sjøoverflaten og punkt i utløpet av dysen. Vi ser for oss en strømlinje som går fra den frie overflaten, ned til rørets innløp, og videre gjennom systemet. Trykket i begge punktene er lik atmosfæretrykket, = P = P atm, og V 1 = 0. Vi kan da løse energiligningen for pumpehøyden g + z 1 + h pumpe = P ρg + α V g + z V + h turbin + h tap h pumpe = z z 1 + α g + h tap 3

4 Utløpshastigheten finner vi ved hjelp av den oppgitte volumstrømmen V = A = Ved innsetting finner vi pumpehøyden h pumpe = 3 m + 1 πd /4 = 0.04 m3 /s π(0.05 m) /4 = 0.37 m/s = 0.4 m/s (0.37 m/s) (9.81 m/s ) + 3 m = 7.15 m = 7. m Korresponderende effekt finner vi ved å multiplisere pumpehøyden med massestrømmen og gravitasjonskonstanten Ẇ pumpe = ρ gh pumpe = (1030 kg/m 3 )(0.04 m 3 /s)(9.81 m/s )(7.15 m) = W Vi må ta høyde for pumpens virkningsgrad for å finne pumpens reelle akseleffekt Ẇ pumpe,aksling = Ẇpumpe η pumpe = W 0.70 = W = 15.7 kw Diskusjon 30% av effekten som tilføres pumpen går tapt (70% virkningsgrad). Den resterende effekten benyttes først og fremst til å øke vannets bevegelsesenergi og bare en liten del går med til å løfte sjøvannet og dermed øke dets potensielle energi. Forberedelse til labøving - løsning a) I overgangen I II er p = ρ s gh = 800kg/m m/s 0.035m = 55Pa Bernoullis ligning samt kontinuitetsligningen p ρv 1 = p + 1 ρv, 1 =, gir π 4 D 1V 1 = π 4 D V, p = p p 1 = 1 ( ) ρv 1 1 D4 1 D 4, 4

5 altså p V 1 = ρ(1 D1 4/D4 ) =.73m/s, V = V 1 D 1/D = 10.1m/s b) Reynolds tall I rør II finnes ein trykkgradient på Pa/m: c) Hastighet Reynolds tall Re = V D /ν = dp dx = 0.0m 9.81m/s 800kg/m 3 0m V 3 = V D /D 3 = 40.41m/s Re = V 3 D 3 /ν = I rør III finnes ein trykkgradient på Pa/m: dp dx = 0.045m 9.81m/s 800kg/m 3 1m = 7.85Pa/m, = 333.5Pa/m, d) Trykkgradientene er negative i begge rørene, dp/dx < 0. I det trange røret er motstanden størst på grunn av den høye hastigheten, og dermed er dp/dx størst her. Dersom ein bruker Bernoulli fra II til III og antar at summen av det statiske og dynamiske trykket er konstant må det statiske trykket avta når hastigheten øker. I tillegg vil vi såklart også ha eit bidrag til trykktapet fra friksjon i innsnevringen. Dersom rør II var 1m, altså like langt som rør III ville utlslaget på manometeret kun blitt på ca 1mm. På den skalaen vi har her ville det blitt vanskelig å lese av nøyaktig, derfor oppnår vi ei meir nøyaktig måling av trykkgradienten dersom vi bruker eit lengre rør. I labben vil du sjå at vi skråstiller manometeret for å oppnå ekstra nøyaktighet. 5

Løsningsforslag Øving 7

Løsningsforslag Øving 7 Løsningsforslag Øving 7 TEP4100 Fluidmekanikk, Vår 016 Oppgave 5- Løsning Vinden blåser med konstant hastighet 8 m/s. Vi ønsker å finne den mekaniske energien per masseenhet i vindstrømmen, samt det totale

Detaljer

Løsningsforslag Øving 10

Løsningsforslag Øving 10 Løsningsforslag Øving 0 TEP400 Fluidmekanikk, Vår 03 Oppgave 8-30 Løsning Volumstrømmen av vann gjennom et rør er gitt. Trykkfallet, tapshøyden og pumpens effekt skal bestemmes. Antagelser Strømningen

Detaljer

Løsningsforslag Øving 6

Løsningsforslag Øving 6 Løsningsforslag Øving 6 TEP4100 Fluidmekanikk, Aumn 016 Oppgave 4-109 Løsning Vi skal bestemme om en strømning er virvlingsfri, hvis den ikke er det skal vi finne θ-komponenten av virvlingen. Antagelser

Detaljer

Løsningsforslag til Øving 6 Høst 2016

Løsningsforslag til Øving 6 Høst 2016 TEP4105: Fluidmekanikk Løsningsforslag til Øving 6 Høst 016 Oppgave 3.13 Skal finne utløpshastigheten fra røret i eksempel 3. når vi tar hensyn til friksjon Hvis vi antar at røret er m langt er friksjonen

Detaljer

Auditorieøving 6, Fluidmekanikk

Auditorieøving 6, Fluidmekanikk Auditorieøving 6, Fluidmekanikk Utført av (alle i gruppen): Oppgave 1 En beholder er åpen i ene enden og har et hull i bunnen, påsatt et innadrettet rør av lengde l og med sirkulært tverrsnitt A 0. Beholderen,

Detaljer

Løsningsforslag Øving 1

Løsningsforslag Øving 1 Løsningsforslag Øving 1 TEP4100 Fluidmekanikk, Vår 2016 Oppgave 1-59 Løsning Luftstrømmen gjennom en vindturbin er analysert. Basert på en dimensjonsanalyse er et uttrykk for massestrømmen gjennom turbinarealet

Detaljer

Løsningsforslag Øving 4

Løsningsforslag Øving 4 Løsningsforslag Øving 4 TEP4100 Fluidmekanikk, Vår 2016 Oppgave 3-162 Løsning En halvsirkelformet tunnel skal bygges på bunnen av en innsjø. Vi ønsker å finne den totale hydrostatiske trykkraften som virker

Detaljer

Løsningsforslag Øving 3

Løsningsforslag Øving 3 Løsningsforslag Øving 3 TEP400 Fluidmekanikk, Vår 206 Oppgave 3-86 Løsning En sikkerhetsdemning for gjørmeskred skal konstrueres med rektangulære betongblokker. Gjørmehøyden som får blokkene til å begynne

Detaljer

p atm ρg +h(t)+0 = p atm dh h = ( r R )2 2gdt dh = ( r T T = (1 1 )( R 2H

p atm ρg +h(t)+0 = p atm dh h = ( r R )2 2gdt dh = ( r T T = (1 1 )( R 2H 49 Løsning D.1 I grensen r R vil synkehastigheten til vannoverflaten være neglisjerbar sammenlignet med V(t), den instantane utløpshastigheten gjennom hullet. Det er egentlig ikke en stasjonær strøm siden

Detaljer

Løsningsforslag Øving 3

Løsningsforslag Øving 3 Løsningsforslag Øving 3 TEP4105 Fluidmekanikk, Høst 2017 Oppgave 3-75 Løsning En sikkerhetsdemning for gjørmeskred skal konstrueres med rektangulære betongblokker. Gjørmehøyden som får blokkene til å begynne

Detaljer

INTRODUKSJON HYDRODYNAMIKK

INTRODUKSJON HYDRODYNAMIKK INTRODUKSJON HYDRODYNMIKK Introduksjon Elementær matematikk = π r = π 4 D real () av en sirkel som funksjon av radius (r) og diameter (D) P = π r = π D Omkrets (P) av en sirkel som funksjon av radius (r)

Detaljer

D. Energibetraktninger ved stasjonær strøm

D. Energibetraktninger ved stasjonær strøm D. Energibetraktninger ved stasjonær strøm Oppgave D.1 En sylindrisk tank med vertikal akse og radius R, åpen mot atmosfæren i toppen, er fylt til høyde H med en ideell inkompressibel væske. Midt i bunnen

Detaljer

Oppsummering av første del av kapitlet

Oppsummering av første del av kapitlet Forelesningsnotater om eksergi Siste halvdel av kapittel 7 i Fundamentals of Engineering Thermodynamics, M.J. Moran & H.N. Shapiro Rune N. Kleiveland, oktober Notatene følger presentasjonen i læreboka,

Detaljer

Feltlikninger for fluider

Feltlikninger for fluider Kapittel 10 Feltlikninger for fluider Oppgave 1 Gitt et to-dimensjonalt strømfelt v = ωyi+ωxj. a) Den konvektive akselerasjonen for et to-dimensjonalt felt er gitt ved b) Bevegelseslikninga (Euler-likninga):

Detaljer

- trykk-krefter. µ. u u u x. u venstre side. Det siste forsvinner fordi vi nettopp har vist x. r, der A er en integrasjonskonstant.

- trykk-krefter. µ. u u u x. u venstre side. Det siste forsvinner fordi vi nettopp har vist x. r, der A er en integrasjonskonstant. Løsningsforslag, MPT 1 Fluiddynamikk, vår 7 Oppgave 1 1. Bevarelse av impuls, massefart,..; k ma. Venstre side er ma og høyre side kreftene (pr. volumenhet). Substansielt deriverte: Akselerasjon av fluidpartikkel,

Detaljer

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Kalkulator, én valgfri standard formelsamling. I h c A.

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Kalkulator, én valgfri standard formelsamling. I h c A. DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT60 Fluidmekanikk DATO: 15. mai 006 TID FOR EKSAMEN: kl. 09-13 (4 timer) TILLATTE HJELPEMIDDEL: Kalkulator, én valgfri standard formelsamling OPPGAVESETTET

Detaljer

I. Stasjonær strøm i rør

I. Stasjonær strøm i rør I. Stasjonær strøm i rør Oppgave I.1 En olje med kinematisk viskositet 0.135 St flyter gjennom et rør med diameter 15 cm. Hva er (omtrentlig) øvre grense for strømhastigheten hvis strømmen skal være laminær?

Detaljer

Fluidmekanikk Kopieringsgrunnlag for tillegg til Rom Stoff Tid Forkurs kapittel 6: Fysikk i væsker og gasser

Fluidmekanikk Kopieringsgrunnlag for tillegg til Rom Stoff Tid Forkurs kapittel 6: Fysikk i væsker og gasser Fluidmekanikk Kopieringsgrunnlag for tillegg til Rom Stoff Tid Forkurs kapittel 6: Fysikk i væsker og gasser Av Arne Auen Grimenes Per Jerstad Bjørn Sletbak Fluidstrøm iskøs / ikke-viskøs Inkompressibel

Detaljer

Hjelpemidler: A - Alle trykte og håndskrevne hjelpemidler tillatt.

Hjelpemidler: A - Alle trykte og håndskrevne hjelpemidler tillatt. NORGES TEKNISK-NATURVITENSKAPLIGE UNIVERSITET, INSTITUTT FOR VASSBYGGING Side av Faglig kontakt under eksamen: Prof. Geir Moe, Tel. 79 467 (.6$0(,(0(6,%+

Detaljer

dp ρ L D dp ρ v V Både? og v endres nedover et rør, men produktet er konstant. (Husk? = 1/V). Innsatt og med deling på V 2 gir dette:

dp ρ L D dp ρ v V Både? og v endres nedover et rør, men produktet er konstant. (Husk? = 1/V). Innsatt og med deling på V 2 gir dette: SIK005 Strømning og transportprosesser Kompressibel strømning Rørstrømning Både i forbindelse med vår naturgassproduksjon på kontinentalsokkelen og i miljøsammenheng er strømningsberegninger på gass av

Detaljer

Løsningsforslag Øving 12

Løsningsforslag Øving 12 Løsningsforslag Øving 1 TEP4100 Fluidmekanikk, Vår 013 Oppgave 9-89 Løsning Vi skal finne et uttrykk for trykket som funksjon av x og y i et gitt hastighetsfelt. Antagelser 1 Strømningen er stasjonær.

Detaljer

Løsningsforslag til Øving 3 Høst 2010

Løsningsforslag til Øving 3 Høst 2010 TEP5: Fluidmekanikk Løsningsforslag til Øving 3 Høst 2 Oppgave 2.32 Vi skal finne vannhøyden H i røret. Venstre side (A) er fylt med vann og 8cm olje; SG =,827 = ρ olje /ρ vann. Høyre side (B) er fylt

Detaljer

Løsningsforslag til eksamen i FYS1000, 16/8 2013

Løsningsforslag til eksamen i FYS1000, 16/8 2013 Løsningsforslag til eksamen i FYS1000, 16/8 2013 Oppgave 1 a) Totalrefleksjon oppstår når lys går fra et medium med større brytningsindeks til et med mindre. Da vil brytningsvinkelen være større enn innfallsvinkelen,

Detaljer

Løsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009

Løsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009 Løsningsforslag til eksamen i EA04 - Fysikk, 5..009 Oppgae a) Klossen er i kontakt med sylinderen så lenge det irker en normalkraft N fra sylinderen på klossen og il forlate sylinderen i det N = 0. Summen

Detaljer

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard formelsamling

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard formelsamling DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai 2007 TID FOR EKSAMEN: kl. 09-13 (4 timer) TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard

Detaljer

F. Impulser og krefter i fluidstrøm

F. Impulser og krefter i fluidstrøm F. Impulser og krefter i fluidstrøm Oppgave F.1 Ved laminær strøm gjennom et sylindrisk tverrsnitt er hastighetsprofilet parabolsk, u(r) = u m (1 (r/r) 2 ) hvor u max er maksimalhastigheten ved aksen,

Detaljer

Løsningsforslag til Øving 9 Høst 2014 (Nummerne refererer til White s 6. utgave)

Løsningsforslag til Øving 9 Høst 2014 (Nummerne refererer til White s 6. utgave) TEP45: Fluidmekanikk Oppgave 8. Løsningsforslag til Øving 9 Høst 4 (Nummerne refererer til White s 6. utgave Vi skal finne sirkulasjonen Γ langs kurven C gitt en potensialvirvel i origo med styrke K. I

Detaljer

Løsningsforslag til eksamen i FYS1000, 14/8 2015

Løsningsforslag til eksamen i FYS1000, 14/8 2015 Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en

Detaljer

Løsningsforslag Øving 5

Løsningsforslag Øving 5 Løsningsforslag Øving 5 TEP41 Fluidmekanikk, Vår 216 Oppgave til forberedning til Lab x dx y y Figure 1 a) Oppdriftskraften på kvartsirkelen er F B = γu = γ π2 4 L der γ = ρg er den spesifikke vekten av

Detaljer

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard formelsamling

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard formelsamling DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT60 Fluidmekanikk DATO: 15. mai 008 TID FOR EKSAMEN: kl. 09-13 (4 timer) TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Én valgfri standard

Detaljer

ELEVARK. ...om å tømme en beholder for vann. Innledning. Utarbeidet av Skolelaboratoriet ved NTNU - NKR

ELEVARK. ...om å tømme en beholder for vann. Innledning. Utarbeidet av Skolelaboratoriet ved NTNU - NKR ELEVARK...om å tømme en beholder for vann Innledning Problemstilling: Vi har et sylindrisk beger med et sirkulært hull nær bunnen. Vi ønsker å bestemme sammenhengen mellom væskehøyden som funksjon av tiden

Detaljer

Detaljert modellering av 'gas blowby'

Detaljert modellering av 'gas blowby' Bilag Innhold BILAG 1 FLYTSKJEMA... 57 B1.1 MODELL 1... 57 B1.2 MODELL2... 58 B1.3 MODELL 3... 59 B1.4 MODELL 4... 60 BILAG 2 DIMENSJONER PÅ UTSTYR... 61 B2.1 DIMENSJONER FOR MODELL 1-3... 61 B2.2 MODELL

Detaljer

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær) Side 1 av 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk

Detaljer

Foreløpig løsningsforslag til eksamen i fag TEP4110 Fluidmekanikk

Foreløpig løsningsforslag til eksamen i fag TEP4110 Fluidmekanikk NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET SIDE AV 9 Foreløpig løsningsforslag til eksamen i fag TEP40 Fluidmekanikk Torsdag 6. desember 0 Ligningsnummer i løsningsforslaget henviser til læreboken:

Detaljer

Løsningsforslag til eksamen i FYS1000, 19/8 2016

Løsningsforslag til eksamen i FYS1000, 19/8 2016 Løsningsforslag til eksamen i FY1000, 19/8 016 Oppgave 1 a) C D A B b) I inusert A + B I ien strømmen går mot høyre vil magnetfeltet peke ut av planet inne i strømsløyfa. Hvis vi velger positiv retning

Detaljer

G + + 2f G V V D. V 1 m RT 1 RT P V = nrt = = V = 4 D = m

G + + 2f G V V D. V 1 m RT 1 RT P V = nrt = = V = 4 D = m Institt for kjemisk prosessteknologi TK00 Strømning og transportprosesser Øving 8 Løsningsforslag Oppgave Starter med energiligningen på differensiell form d dp dl G + + f G = 0 Setter så inn for G= v

Detaljer

ρ = = = m / s m / s Ok! 0.1

ρ = = = m / s m / s Ok! 0.1 Løsningsfoslag TEP 00 FLUIDMEKNIKK.juni 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d g 6

Detaljer

9. Fluidmekanikk. Fysikk for ingeniører. 9. Fluidmekanikk. Side 9-1

9. Fluidmekanikk. Fysikk for ingeniører. 9. Fluidmekanikk. Side 9-1 Fysikk for ingeniører 9 Fluidmekanikk Side 9-9 Fluidmekanikk Hittil har vi holdt oss til faste stoffer, der partiklene ikke kan bevege seg i forhold til hverandre Vi har riktignok innsett at legemer har

Detaljer

Q = π 4 D2 V = π 4 (0.1)2 0.5 m 3 /s = m 3 /s = 3.93 l/s Pa

Q = π 4 D2 V = π 4 (0.1)2 0.5 m 3 /s = m 3 /s = 3.93 l/s Pa 35 Løsning C.1 Q π 4 D2 V π 4 (0.1)2 0.5 m 3 /s 0.00393 m 3 /s 3.93 l/s G gsρ vann Q 9.81 1.26 998 0.00393 N/s 0.0484 kn/s ṁ G/g 48.4/9.81 kg/s 4.94 kg/s Løsning C.2 Omregning til absolutt trykk: p abs

Detaljer

VEDLEGG : Grunnkurs vindforhold

VEDLEGG : Grunnkurs vindforhold VEDLEGG : Grunnkurs vindforhold Introduksjon til Vindkraft En vindturbin omformer den kinetiske energien fra luft i bevegelse til mekanisk energi gjennom vingene og derifra til elektrisk energi via turbinaksling,

Detaljer

I regninger av dette slaget lønner det seg ofte å innføre referanseverdier for størrelsene som varierer, for å spare arbeid ved gjentagelser:

I regninger av dette slaget lønner det seg ofte å innføre referanseverdier for størrelsene som varierer, for å spare arbeid ved gjentagelser: 3 Løsning I. Fra definisjonen av Reynoldstall: V krit = Re kritν = 300 0.35 0 4 0.5 m/s = 0.07 m/s Løsning I. Finn først fra definisjonen av Reynoldstall hvilken verdi av viskositeten som tilsvarer det

Detaljer

Fasit for Midtvegsprøva i Fys1000 V 2009

Fasit for Midtvegsprøva i Fys1000 V 2009 Fasit for Midtvegsprøva i Fys000 V 2009 Oppgave a) På toppen av banen er horisontalkomponeneten av farta v y = 0, og horisontalkomponenten (konstant lik) v x = v 0x = v o cosθ 0 = v 0 /2. Stigehøgda h

Detaljer

NORGES TEKNISK- SIDE 1 AV 3 NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI EKSAMEN I FAG TKP4100 STRØMNING OG VARMETRANSPORT

NORGES TEKNISK- SIDE 1 AV 3 NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI EKSAMEN I FAG TKP4100 STRØMNING OG VARMETRANSPORT NORGES TEKNISK- SIDE AV 3 Faglig kontakt under eksamen: Reidar Kristoffersen, tlf: 739367 EKSAMEN I FAG TK400 STRØMNING OG VARMETRANSORT Torsdag 0 juni 00 Tid: 0900-300 C: Innføring i informasjonsteknologi:

Detaljer

dp dz dp dz 1 (z z 0 )

dp dz dp dz 1 (z z 0 ) 25 Løsning B.1 Fra adiabatisk gassligning: ρ ρ 0 p p 0 ) 1/κ, p 0, ρ 0 gitt ved havoverflaten a) Integrer hydrostatikkens grunnligning. La z være høydekoordinat: dp ρg dz p dp ρ z 0g dz p 0 p 1/κ p 1/κ

Detaljer

SIO 1027 Termodynamikk I Noen formler og uttrykk som er viktige, samt noen stikkord fra de forskjellige kapitler,, Versjon 25/

SIO 1027 Termodynamikk I Noen formler og uttrykk som er viktige, samt noen stikkord fra de forskjellige kapitler,, Versjon 25/ SIO 1027 Termodynamikk I Noen formler og uttrykk som er viktige, samt noen stikkord fra de forskjellige kapitler,, Versjon 25/11-2001 Geir Owren November 25, 2001 Som avtalt med referansegruppen, er det

Detaljer

Forelesning 23 den 18/4 2017

Forelesning 23 den 18/4 2017 Forelesning 3 den 18/4 017 Eksperiment Toricelli hvor fort renner vann ut av et kar? Vi navngir eksperimentet til ære for Evangelista Torricelli (1608 1647) som oppdaget Toricellis lov i 1643. Toricelli

Detaljer

NTNU Institutt for Termisk Energi og Vannkraft

NTNU Institutt for Termisk Energi og Vannkraft NTNU Institutt for Termisk Energi og Vannkraft LØSNINGSFORSLAG TIL EKSAMEN I FAG 64182 PNEUMATIKK FREDAG 5. DESEMBER 1997 Oppgave 1 ( 15% ) a) Velg sylinder for et nettrykk på 6.3 bar. Kraften sylinderen

Detaljer

Løsningsforslag til eksamen i FYS1000, 15/8 2014

Løsningsforslag til eksamen i FYS1000, 15/8 2014 Løsningsforslag til eksamen i FY1000, 15/8 2014 Oppgave 1 a) Lengden til strengen er L = 1, 2 m og farten til bølger på strengen er v = 230 m/s. Bølgelengden til den egensvingningen med lavest frekvens

Detaljer

Fysikkolympiaden 1. runde 27. oktober 7. november 2014

Fysikkolympiaden 1. runde 27. oktober 7. november 2014 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 7. oktober 7. november 014 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 17. desember 2012 Tid: kl. 09:00-13:00

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 17. desember 2012 Tid: kl. 09:00-13:00 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 17. desember 2012 Tid: kl. 09:00-13:00

Detaljer

Typisk T-v Diagram. Fasediagrammer & Projeksjoner. p-v p-t T-v. TEP 4120 Termodynamikk 1. Beregning av Egenskaper. TEP 4120 Termodynamikk 1

Typisk T-v Diagram. Fasediagrammer & Projeksjoner. p-v p-t T-v. TEP 4120 Termodynamikk 1. Beregning av Egenskaper. TEP 4120 Termodynamikk 1 Fasediagrammer & Projeksjoner p-v p-t T-v 3-1 Typisk T-v Diagram 3-2 T-v Diagram for H 2 O 3-3 Lineær Interpolasjon i en Dimensjon Tabeller og Linearitet?? TABLE A-4 (Continued) T v u h s C m 3 /kg kj/kg

Detaljer

Fuktig luft. Faseovergang under trippelpunktet < > 1/71

Fuktig luft. Faseovergang under trippelpunktet < > 1/71 Fuktig luft 1/71 Faseovergang under trippelpunktet Fuktig luft som blanding at to gasser 2/71 Luft betraktes som en ren komponent Vanndamp og luft oppfører seg som en blanding av nær ideelle gasser 3/71

Detaljer

Kurs TEP4195 TURBOMASKINER

Kurs TEP4195 TURBOMASKINER NTNU Institutt for Energi- og Prosessteknikk Kontaktperson i løpet av eksamen Navn: Torbjørn K. Nielsen/ Øyvind Hundseid Tlf: (73 5) 93572/ 93935 BOKMÅL Kurs TEP4195 TURBOMASKINER FREDAG 21. MAI 2004 TID:

Detaljer

Energieffektive kanalnett - utføring og utfordringer

Energieffektive kanalnett - utføring og utfordringer Energieffektive kanalnett - utføring og utfordringer INNLEDNING ØKTE KRAV TIL ENERGIØKONOMISKE VENTILASJONSANLEGG ØKER KRAV TIL KOMPETANSE. HVORDAN BØR ET KANLNETT UTFØRES FOR Å BIDRA TIL LAVT ENERGIBRUK

Detaljer

GEF Løsningsforslag til oppgaver fra kapittel 9

GEF Løsningsforslag til oppgaver fra kapittel 9 GEF1100 - Løsningsforslag til oppgaver fra kapittel 9 i.h.h.karset@geo.uio.no Oppgave 1 a) Når vi studerer havet, jobber vi ofte med følgende variable: tetthet, trykk, høyden til havoverflaten, temperatur,

Detaljer

hvor s er målt langs strømningsretningen. Velges Darcy enheter så har en

hvor s er målt langs strømningsretningen. Velges Darcy enheter så har en Skisse til løsning Eksamen i Reservoarteknikk. september, 998 Oppgave a) v k dφ s µ ds ; () hvor s er målt langs strømningsretningen. Velges Darcy enheter så har en v s : volumhastighet, cm/s k : permeabilitet,

Detaljer

Eksamen i fag SIF 4002 FYSIKK mandag 3. mai 2001 Løsningsskisse

Eksamen i fag SIF 4002 FYSIKK mandag 3. mai 2001 Løsningsskisse Eksamen i fag SIF 4002 FYSIKK mandag 3 mai 2001 Løsningsskisse Oppgave 1 a Sammenheng vinkelhastighet-lineær hastighet: ω = v/r Energibevarelse: V pot = mgh 0 W kin = mv0 2/2 + Iω2 0 /2 Med innsatt Iω

Detaljer

1 β = AV 2 u 2 da I 2 I 1 = 1 V = 4 3. 2g V 2 2 +h 2. 2g h 2 h 1 +h 2 2g h 1 V 1 = V 2 =

1 β = AV 2 u 2 da I 2 I 1 = 1 V = 4 3. 2g V 2 2 +h 2. 2g h 2 h 1 +h 2 2g h 1 V 1 = V 2 = 83 Løsning F. Referer til løsningen av Oppgave D.3: Vi beregnet der integralet I N = ur N da = un m R N + Med denne definisjonen, samt V = u m / se løsning D.3, blir β = AV u da som vi ble bedt om å vise.

Detaljer

Prosjektoppgave fagtekniker i hydraulikk. Lars Hodnekvam Thorsen

Prosjektoppgave fagtekniker i hydraulikk. Lars Hodnekvam Thorsen Prosjektoppgave fagtekniker i hydraulikk Lars Hodnekvam Thorsen 2015 Innledning: Oppgaven går ut på analysering og beregning av hydrauliske kretser. Oppgaven tar for seg to forskjellige kretsløp, et lukket

Detaljer

GEF1100: kapittel 6. Ada Gjermundsen. September 2017

GEF1100: kapittel 6. Ada Gjermundsen. September 2017 GEF1100: kapittel 6 Ada Gjermundsen September 2017 Hvem er jeg? (forha pentligvis snart Dr.) Ada Gjermundsen ada.gjermundsen@geo.uio.no adagjermundsen@gmail.com Studerer varmetransport i atmosfære og hav

Detaljer

EKSAMEN I FAG SIO 1043 STRØMNINGSLÆRE Lørdag 1. juni 2002 Tid: kl. 09:00 15:00

EKSAMEN I FAG SIO 1043 STRØMNINGSLÆRE Lørdag 1. juni 2002 Tid: kl. 09:00 15:00 Side 1 av 10 Norges teknisk natrvitenskapelige niversitet NTNU Fakltet for Ingeniørvitenskap og teknologi Instittt for Mekanikk, Termo og Fliddynamikk Faglig kontakt nder eksamen: Per-Åge Krogstad, tlf.:

Detaljer

EKSAMEN I: BIT260 Fluidmekanikk DATO: 26. august TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Ei valgfri standard formelsamling

EKSAMEN I: BIT260 Fluidmekanikk DATO: 26. august TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Ei valgfri standard formelsamling DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT60 Fluidmekanikk DATO: 6. august 010 TID FOR EKSAMEN: kl. 09-13 (4 timer) TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Ei valgfri standard

Detaljer

Impuls, bevegelsesmengde, energi. Bevaringslover.

Impuls, bevegelsesmengde, energi. Bevaringslover. Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde

Detaljer

Løsningsforslag nr.4 - GEF2200

Løsningsforslag nr.4 - GEF2200 Løsningsforslag nr.4 - GEF2200 i.h.h.karset@geo.uio.no Oppgave 1 - Definisjoner og annet pugg s. 375-380 a) Hva er normal tykkelse på det atmosfæriske grenselaget, og hvor finner vi det? 1-2 km. fra bakken

Detaljer

Typisk T-v Diagram. Fasediagrammer & Projeksjoner. p-v p-t T-v. TEP 4120 Termodynamikk 1. Beregning av Egenskaper. Beregning av Egenskaper

Typisk T-v Diagram. Fasediagrammer & Projeksjoner. p-v p-t T-v. TEP 4120 Termodynamikk 1. Beregning av Egenskaper. Beregning av Egenskaper Fasediagrammer & Projeksjoner p-v p-t T-v T. Gundersen 3-1 Typisk T-v Diagram T. Gundersen 3-2 T-v Diagram for H 2 O T. Gundersen 3-3 Lineær Interpolasjon i en Dimensjon Tabeller og Linearitet?? T. Gundersen

Detaljer

FYSIKK-OLYMPIADEN

FYSIKK-OLYMPIADEN Norsk Fysikklærerforening I samarbeid med Skolelaboratoriet, Fysisk institutt, UiO FYSIKK-OLYMPIADEN 04 05 Andre runde: 5/ 05 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet: klokketimer

Detaljer

For å få maksimal effekt ut av en pumpe og motor er det viktig å kunne gjøre visse beregninger m.h.t. trykk og vannmengde.

For å få maksimal effekt ut av en pumpe og motor er det viktig å kunne gjøre visse beregninger m.h.t. trykk og vannmengde. Beregning av trykk Kjetil Storli Aquatools AS Beregning av trykk For å få maksimal effekt ut av en pumpe og motor er det viktig å kunne gjøre visse beregninger m.h.t. trykk og vannmengde. Det er derfor

Detaljer

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Side 1 av 4 INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Side 1 av 4 INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK NORGES TEKNISK-NATURVITENSKAPEIGE UNIVERSITET Side 1 av 4 INSTITUTT OR ENERGI- OG PROSESSTEKNIKK aglig kontakt under eksamen: Navn: Helge Andersson, tlf.: 735 93556 (TEP41) ars Sætran, tlf.: 735 93716

Detaljer

HAVBØLGER. Her skal vi gjennomgå den enkleste teorien for bølger på vannoverflaten:

HAVBØLGER. Her skal vi gjennomgå den enkleste teorien for bølger på vannoverflaten: HAVBØLGER Her skal vi gjennomgå den enkleste teorien for bølger på vannoverflaten: Airy teori, også kalt lineær bølgeteori eller bølger av første orden Fremstillingen her vil temmelig nøyaktig følge kompendiet

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si

Detaljer

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6 Løsningsforslag kontinuasjonseksamen YS1 H11 Oppgae 1 Sar KORTpå disse oppgaene: a) Totalrefleksjon: Når lyset inn mot en flate kommer i en slik inkel at ingenting blir brutt og alt blir reflektert. Kriteriet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 8. juni 2015 Tid for eksamen: 9.00-13.00, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

FAG SIB 5025 HYDROMEKANIKK. Laboratorieøving nr.1 Oppgavetekst

FAG SIB 5025 HYDROMEKANIKK. Laboratorieøving nr.1 Oppgavetekst FAG SIB 505 HYDROMEKANIKK Laboratorieøving nr.1 Oppgavetekst Gruppe Dag Navn Navn Navn Navn Navn FAG SIB 505 Hydromekanikk, Laboratorieøving 1, Oppgavetekst 1 Innholdsfortegnelse 1. Hydrostatikk trykk

Detaljer

1. Atmosfæren. 2. Internasjonal Standard Atmosfære. 3. Tetthet. 4. Trykk (dynamisk/statisk) 5. Trykkfordeling. 6. Isobarer. 7.

1. Atmosfæren. 2. Internasjonal Standard Atmosfære. 3. Tetthet. 4. Trykk (dynamisk/statisk) 5. Trykkfordeling. 6. Isobarer. 7. METEOROLOGI 1 1. Atmosfæren 2. Internasjonal Standard Atmosfære 3. Tetthet 4. Trykk (dynamisk/statisk) 5. Trykkfordeling 6. Isobarer 7. Fronter 8. Høydemåler innstilling 2 Luftens sammensetning: Atmosfæren

Detaljer

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm]. Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen

Detaljer

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa.

2,0atm. Deretter blir gassen utsatt for prosess B, der. V 1,0L, under konstant trykk P P. P 6,0atm. 1 atm = 1,013*10 5 Pa. Oppgave 1 Vi har et legeme som kun beveger seg langs x-aksen. Finn den gjennomsnittlige akselerasjonen når farten endres fra v 1 =4,0 m/s til v = 0,10 m/s i løpet av et tidsintervall Δ t = 1,7s. a) = -0,90

Detaljer

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 23. februar, 2012 Tid for eksamen : kl. 9.00-13.00 Sted : Administrasjonsbygget, Rom B154 Hjelpemidler : K. Rottmann: Matematisk Formelsamling,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF1 Eksamensdag: 3. November 9 Tid for eksamen: 9.-1. Oppgavesettet er på 5 sider Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene. Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har

Detaljer

ResTek1 Løsning Øving 5

ResTek1 Løsning Øving 5 ResTek1 Løsning Øving 5 Ogave 1 Bruker at cr = h(ρ w ρ o ) 62:4=144, når er i si, h ft, ρ g/cm 3,ogat cl = σ L =σ R cr, som gir at cl = 0:188h. Dette gir følgende tabell, 1000 md røve 200 md røve h[ft]

Detaljer

Ekstraordinær EKSAMEN. MEKANIKK Fagkode: ILI 1439

Ekstraordinær EKSAMEN. MEKANIKK Fagkode: ILI 1439 HØGSKOLEN NRVK Teknologisk vdeling Studieretning: llmenn Maskin Studieretning: llmenn Bgg / Miljøteknikk Ekstraordinær EKSMEN MEKNKK Fagkode: L 439 Tid: 07.08.0, kl. 0900-400 Tillatte hjelpemidler: B:

Detaljer

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Kalkulator, ei valgfri standard formelsamling. I h c A.

EKSAMEN I: BIT260 Fluidmekanikk DATO: 15. mai TILLATTE HJELPEMIDDEL: Kalkulator, ei valgfri standard formelsamling. I h c A. DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT60 Fluidmekanikk DATO: 15. mai 006 TID FOR EKSAMEN: kl. 09-13 (4 timer) TILLATTE HJELPEMIDDEL: Kalkulator, ei valgfri standard formelsamling OPPGÅVESETTET

Detaljer

Eksamen i GEOF330 Dynamisk Oseanografi. Oppgave 1: Stående svingninger

Eksamen i GEOF330 Dynamisk Oseanografi. Oppgave 1: Stående svingninger Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i GEOF330 Dynamisk Oseanografi 15. Desember 2006, kl 0900-1400 Tillatte hjelpemiddel: Kalkulator og matematisk formelsamling Oppgave

Detaljer

Trykkrørsystemer. Hydraulisk dimensjonering. Formeloversikt. Mai 2007 Teknisk håndbok, side 16. Pipelife Norge AS. q v = v 1 A 1 = v 2 A 2

Trykkrørsystemer. Hydraulisk dimensjonering. Formeloversikt. Mai 2007 Teknisk håndbok, side 16. Pipelife Norge AS. q v = v 1 A 1 = v 2 A 2 Trykkrørsystemer Pipelife har trykkrørsystemer i PVC og PE. For PVC benyttes muffeskjøter og oerganger til flensedeler - for eksempel flensespiss, flensemuffe eller spareflens. PE-rør skjøtes enten med

Detaljer

Hemodynamikk. Stein Samstad. Avdeling for hjertemedisin Institutt for sirkulasjon og bildediagnostikk

Hemodynamikk. Stein Samstad. Avdeling for hjertemedisin Institutt for sirkulasjon og bildediagnostikk Hemodynamikk Stein Samstad Avdeling for hjertemedisin Institutt for sirkulasjon og bildediagnostikk 1 Gustava Apelfjær, 78 år Brystsmerter Nitroglycerin Syncope Systolisk bilyd Venstre ventrikkel hypertrofi

Detaljer

Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010

Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010 NTNU Institutt for Fysikk Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010 Kontakt under eksamen: Tor Nordam Telefon: 47022879 / 73593648 Eksamenstid: 4 timer (09.00-13.00) Hjelpemidler: Tabeller

Detaljer

FAG SIB 5025 HYDROMEKANIKK. Laboratorieøving nr.2 Oppgavetekst

FAG SIB 5025 HYDROMEKANIKK. Laboratorieøving nr.2 Oppgavetekst FAG SIB 505 HYDROMEKANIKK Laboratorieøving nr. Oppgavetekst Gruppe Dag Navn Navn Navn Navn Navn FAG SIB 505 Hydromekanikk, Laboratorieøving, Oppgavetekst 1 Innholdsfortegnelse 1. Stålerefleksjon Plan flate

Detaljer

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær) Side 1 av 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk

Detaljer

OPPGAVE 1 Francis Turbin

OPPGAVE 1 Francis Turbin NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for Terisk Energi og Vannkraft Eksaen i fag TEP 95 TURBOMASKNER, Løsningsforslag. Juni 005 Tid: 5.00 9.00 Faglig kontakt under eksaen: Navn: Ole

Detaljer

Løsningsforslag: oppgavesett kap. 9 (1 av 3) GEF2200

Løsningsforslag: oppgavesett kap. 9 (1 av 3) GEF2200 Løsningsforslag: oppgavesett kap. 9 ( av 3) GEF s.m.blichner@geo.uio.no Oppgave - Denisjoner og annet pugg s. 375-38 a) Hva er normal tykkelse på det atmosfæriske grenselaget, og hvor nner vi det? ˆ -

Detaljer

VA-dagane på Vestlandet 2014

VA-dagane på Vestlandet 2014 Driftsassistansen i Hordaland Vatten og avlaup VA-dagane på Vestlandet 2014 Haugesund 10-11. september 2014 11. september 2014 Selvrensing og rensing av trykkledninger (dykker- og pumpeledninger) Gunnar

Detaljer

EKSAMEN I: BIT260 Fluidmekanikk DATO: 20. desember TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Ei valgfri standard formelsamling

EKSAMEN I: BIT260 Fluidmekanikk DATO: 20. desember TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Ei valgfri standard formelsamling DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I: BIT60 Fluidmekanikk DATO: 0. desember 006 TID FOR EKSAMEN: kl. 09-13 (4 timar) TILLATTE HJELPEMIDDEL: Bestemt, enkel kalkulator (kode C) Ei valgfri standard

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 4

Løsningsforslag for øvningsoppgaver: Kapittel 4 Løsningsforslag for øvningsoppgaver: Kapittel 4 Jon Walter Lundberg.0.05 4.04 Kari og Per trekker i hver sin ende av et tau. Per får en stund godt tak og trekker tauet og Kari etter seg med konstant fart.

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Emne: Gruppe(r): Eksamensoppgaven består av: Kybernetikk I E Antall sider (inkl. forsiden): 7 Emnekode: SO 8E Dato: 7. juni Antall oppgaver: Faglig veileder:

Detaljer

FLYGETEORI Bok 1 Michael Katz Nedre Romerike Flyklubb michael@katz.no 5. august 2009

FLYGETEORI Bok 1 Michael Katz Nedre Romerike Flyklubb michael@katz.no 5. august 2009 FLYGETEORI Bok 1 Michael Katz Nedre Romerike Flyklubb michael@katz.no 5. august 2009 Innhold 1 Krefter på yet 3 1.1 Kraftkomponenter.................................... 3 1.2 Likevektssituasjoner...................................

Detaljer

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk

Detaljer

LØSNINGSFORSLAG 6027 VVS-TEKNIKK KONTINUASJONSEKSAMEN 12. AUGUST 1994 OPPGAVE 1 (40%)

LØSNINGSFORSLAG 6027 VVS-TEKNIKK KONTINUASJONSEKSAMEN 12. AUGUST 1994 OPPGAVE 1 (40%) 6027 VVS-TEKNIKK KONTINUASJONSEKSAEN 12. AUGUST 1994 LØSNINGSFORSLAG OPPGAVE 1 (40%) Dimensjoneringskriteriet er å opprettholde tilstrekkelig trykk ved aktuelt utstyr for å kunne tappe ønsket vannmengde.

Detaljer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL TFY46 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. Oppgave. a) Hastigheten v til kule like før kollisjonen finnes lettest ved å bruke energibevarelse: Riktig svar: C. m gl = 2 m v 2

Detaljer

Oppgavesett nr.5 - GEF2200

Oppgavesett nr.5 - GEF2200 Oppgavesett nr.5 - GEF2200 i.h.h.karset@geo.uio.no Oppgave 1 a) Den turbulente vertikalfluksen av følbar varme (Q H ) i grenselaget i atmosfæren foregår ofte ved turbulente virvler. Hvilke to hovedmekanismer

Detaljer

FLUID- OG GASSDYNAMIKK

FLUID- OG GASSDYNAMIKK FLUID- OG GASSDYNAMIKK Alle kontinuerlige stoffer kan forekomme i tre aggregattilstander ; fast stoff, flytende form (fluid, væske) og gassform. Eksempler: Vann T

Detaljer