LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 17. desember 2012 Tid: kl. 09:00-13:00
|
|
- Filip Hoff
- 7 år siden
- Visninger:
Transkript
1 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 17. desember 2012 Tid: kl. 09:00-13:00 OPPGAVE 1 (30%) a) Denne deloppgaven er en såkalt multiple choice oppgave hvor svaralternativene er Korrekt, Ikke Korrekt eller Pass. Selvsagt godtas også svar som Ja og Nei. Ved bedømmelse av eksamen er det kun selve svaret som teller, det gis ikke poeng for noen form for forklaringer. I dette løsningsforslaget er det likevel tatt med en kort forklaring av hensyn til senere års studenter som forbereder seg til eksamen. (i) Korrekt Entropi er definert som følger: ds δq T int. rev.. Denne definisjonslikningen kan altså kun benyttes for reversible prosesser, og dersom disse også er adiabatiske (altså δq = 0 ), så blir resultatet ds = 0, altså konstant entropi som er det samme som isentropisk. (ii) Ikke Korrekt Dette er likningen for eksergien til en varmemengde ved en temperatur over omgivelsestemperatur (T T 0 ). Uttrykket vil gi negativ eksergi for temperaturer under omgivelsestemperatur (T T 0 ). Det er vist i forelesningene og pensumnotatet om eksergi at eksergien for varme ved temperatur under omgivelsestemperatur kan utledes ved hjelp av en varmekraftmaskin på samme måte som for tilfellet over omgivelsestemperatur, men med andre reservoarer. Ved T < T 0 vil omgivelsene være det varme reservoaret, mens det kalde reservoaret (som mottar varmemengden Q ) har temperatur T. Korrekt eksergiuttrykk skal være: E x = Q T 1 T 0 (iii) Ikke korrekt Termodynamikkens 1. lov (Energilikningen) på sin mest generelle form er: de cv dt = Q cv cv + m i h i + V 2 i 2 + g z i m e h e + V 2 e 2 + g z e i e
2 Side 2 av 8 For stasjonære forhold, en inn-strøm og en ut-strøm, neglisjerbar endring i potensiell energi, neglisjerbar varmeutveksling med omgivelsene, samt at det ikke er noe arbeid knyttet til kontrollvolumet, vil Energilikningen forenkles til: 0 = m h i h e ( ) + V i 2 2 V e 2 Dersom det ikke er endring i diameter i røret (det er selvsagt en innsnevring i selve ventilen) og at definisjonen av inn og ut legges i tilstrekkelig stor avstand fra ventilen, kan også endring i kiisk energi neglisjeres (dette har sammenheng med antakelsen om stasjonære forhold og konservering av masse). Resultatet blir: h i h e = 0 eller Δh = 0 altså isentalpisk og absolutt ikke isentropisk!! Faktisk er det slik at ventil er sterkt irreversibel og representerer en betydelig entropiproduksjon (eller eksergitap). (iv) Korrekt Utledningen av denne relasjonen benytter Termodynamikkens 1. lov (energi) og 2. lov (entropi), samt antakelse om stasjonære og reversible forhold og neglisjering av endring i kiisk og potensiell energi. I tillegg benyttes (a) sammenhengen mellom varme og entropi og (b) 2. TdS likning: Q cv m = T ds og T ds = dh vdp (v) Ikke Korrekt Den såkalte ideelle gass modell inneholder bl.a. følgende 3 elementer: pv = RT, u = u(t ), h = h(t ) Indre energi (u) og entalpi (h) er altså kun funksjon av temperatur, mens dette ikke gjelder entropi som er funksjon av både trykk og temperatur. For ideell gass kan 2. TdS likning (se over) reformuleres ved å dividere med T, samt benytte ideell gass tilstandslikning til å erstatte v/t med R/p. Resultatet blir, når vi benytter forenklet differensial for entalpi som kun er funksjon av temperatur, dh = c p (T ) dt : ds = c p (T ) dt T R dp p Det fremgår klart av denne relasjonen at selv for ideell gass så er s = s(p,t ). b) Som antydet i oppgaveteksten vil det her være naturlig å ta utgangspunkt i 2. TdS likning. Dersom denne ikke huskes/beherskes kan den utledes fra Termodynamikkens 1. lov for et lukket system når endring i kiisk og potensiell energi neglisjeres, samt bruk av definisjonslikningen for entalpi. For helhetens skyld tas også denne utledningen med her, men dette er ikke nødvendig for å oppnå full score på oppgaven.
3 Side 3 av 8 Termodynamikkens 1. lov for lukket system når endring i kiisk og potensiell energi neglisjeres: du = δq δw Erstatter leddene for varme og arbeid: δq rev = TdS og δw rev = pdv Benytter definisjonen av entalpi og differensierer: H U + pv dh = du + pdv + Vdp Ved å ordne disse likningene samt konvertere til spesifikk form får vi 2. TdS likning: Tds = dh vdp For ideell gass samt isentropisk prosess ( ds = 0 ) får vi: c p (T ) dt T R dp p = 0 For konstant c p kan differensiallikningen løses analytisk: T 2 T 1 dt T = R c p p 2 dp p som gir ln T 2 = R ln p 2 c p T 1 Her kan konstantleddet på høyre side videreutvikles (for ideell gass): R c p = c p c v c p ( ) c v / c v ( ) = c / c p v c p / c v ( ) = k 1 k Resultatet er da en sammenheng mellom T og p som det bes om i oppgaveteksten etter en enkel eksponering av likningen over med naturlige logaritmer: T 2 = p 2 T 1 k 1 k OPPGAVE 2 (30%) Starter med å etablere data for entalpi og entropi for de 3 strømmene (tilstandene) i prosessen: Tilstand 1: Dette er opplagt underkjølt væske (vann), men Tabell A-5 kan ikke benyttes da denne starter ved et trykk på 25 bar. Oppgaven løses derfor ved å benytte modell for mettet væske, og data hentes fra Tabell A-2 ved 10 C: h 1 h f (T 1 ) = kj/kg og s 1 s f (T 1 ) = kj/kgk
4 Tilstand 2: Side 4 av 8 Selv om det står damp i oppgaveteksten, kan fasetilstanden sjekkes på følgende måte: Ved 1.5 bar er metningstemperaturen for vann i følge Tabell A-3 lik C. Siden temperaturen for tilstand 2 er 120 C, betyr dette at dampen er svakt overhetet, slik at Tabell A-4 skal benyttes. Ettersom denne tabellen har data for 1.5 bar og 120 C, finnes entalpi og entropi ved ren avlesning, uten interpolasjon: h 2 = kj/kg og s 2 = kj/kgk Tilstand 3: I likhet med strøm/tilstand 1 er også dette opplagt underkjølt væske/vann. Dermed benyttes også her modell for mettet væske, og data hentes fra Tabell A-2 ved 55 C: h 3 h f (T 3 ) = kj/kg og s 3 s f (T 3 ) = kj/kgk Oppgaven løses nå ved å benytte 3 balanselikninger: Massebalanse, Energibalanse (1. lov) og Entropibalanse (2. lov). Starter med Massebalansen, som på stasjonær form gir: 0 = m 1 + m 2 m 3 som gir m 3 = m 2 At ikke Massebalansen er løsbar alene, kompenseres ved at Energibalansen er overspesifisert ettersom både temperatur og trykk er gitt for alle 3 strømmene/tilstandene. Tallverdier for de to ukjente massestrømmene (strøm 2 og strøm 3) kan derfor finnes ved å benytte Energibalansen, som med antakelsene i oppgaveteksten forenkles til: 0 = Q cv + m 1 h 1 + m 2 h 2 m 3 h 3 Setter inn for kjente størrelser (merk at varmetapet gir negativt fortegn på Q cv ): 0 = m ( m 2 ) Løser likningen for ukjente massestrømmer: m 2 = 0.20 kg/s og dermed m 3 = 2.70 kg/s Neste skritt er å benytte Entropilikningen (Termodynamikkens 2. lov): ds cv dt = j Q j + m i s i m e s e + T j i e σ cv Denne likningen kan forenkles for dette spesielle tilfellet (merk at det kun er en varmeveksling med omgivelsene, og det er stasjonære forhold). Ved å sette inn for kjente størrelser, samt huske at temperaturen i varmeoverføringsleddet skal være i Kelvin får vi: 0 = σ cv Entropiproduksjonen blir altså: σ cv = kw/k
5 Side 5 av 8 OPPGAVE 3 (40%) a) De viktigste antakelsene som ligger til grunn for en ideell Brayton kjøleprosess er i en form for prioritert rekkefølge: Turbin og kompressor har isentropisk oppførsel Arbeidsmediet er luft som modelleres som ideell gass Det er ingen trykkfall i varmevekslere (og transportrør) Endring i kiisk og potensiell energi kan neglisjeres b) Figuren nedenfor til venstre viser et koblingsskjema (flytskjema) for en Brayton kjølekrets, som er karakterisert ved at arbeidsmediet (luft) er i gassfase gjennom hele syklusen. Q out W T W C W C W T Q in c) Figuren ovenfor til høyre viser Brayton kjølekretsen teg inn i et Ts-diagram. Heltrukne linjer er for ideell syklus, mens stiplede linjer viser prosessen når kompressor og turbin har en isentropisk virkningsgrad som er mindre enn 100% (gjelder kun spørsmål e). d) Starter med å etablere tilstandene i den ideelle syklusen. Ettersom arbeidsmediet er luft som modelleres som ideell gass, samt at prosessen er isentropisk, benyttes Tabell A-22, og bruk av relative trykk gjør det unødvendig å gå via entropiverdier. Relativt trykk er en størrelse som er innført for isentropiske prosesser og ideell gass (denne utledningen er ikke nødvendig for en fullgod besvarelse): Δs = 0 = s 0 (T 2 ) s 0 (T 1 ) R ln p 2 Løses den likningen med hensyn på trykkene får vi følgende relasjon hvor relativt trykk ( p r ) innføres og defineres (merk at denne størrelsen er ubenevnt, og altså ikke er et reelt trykk): p 2 = exp s0 (T 2 ) / R = p r2 exp s 0 (T 1 ) / R p r1
6 Side 6 av 8 Tilstand 1: Leser av verdier i Tabell A-22 for 270 K: h 1 = kj/kg og p r1 = Tilstand 2s: Finner først relativt trykk i denne tilstanden når trykkforholdet over kompressoren (og turbinen) er oppgitt til å være 3.0: p r2 = p 2 p r1 = = Interpolasjon i Tabell A-22 for den beregnede verdien av relativt trykk gir: h 2s = ( ) Tilstand 3: ( ) ( ) = kj/kg Tilstand 3 er gitt ved at temperaturen er oppgitt til å være 300 K. Leser av for denne verdien i Tabell A-22: h 3 = kj/kg og p r 3 = Tilstand 4s: Finner først relativt trykk i denne tilstanden når trykkforholdet over turbinen (og kompressoren) er oppgitt til å være 3.0: p r 4 = p 4 p = 1 r = p 3 Interpolasjon i Tabell A-22 for den beregnede verdien av relativt trykk gir: h 4 s = ( ) ( ) ( ) = kj/kg For å kunne beregne størrelsene (i) og (ii) i oppgaveteksten må massestrømmen beregnes fra den oppgitte volumetriske strømningshastigheten i tilstand 1: mv = AV m 1 = ( AV) 1 v 1 Spesifikt volum finnes fra tilstandslikning for ideell gass: pv = RT Massestrømmen (som selvsagt er konstant i kjølekretsen) kan nå beregnes som følger (pass på enhetene!):
7 Side 7 av 8 ( ) 1 m = m 1 = AV R M T = m 3 s 1 N/m 2 (bar) 105 bar 10 3 kj kmol K 270 (K) kg kmol kj Nm = kg/s (i) Netto kraftforbruk i kjølekretsen: = C T = m h 2s h 1 Innsatt verdier gir dette: ( ) ( h 3 h 4 s ) = (kg/s) ( ) ( ) (kj/kg) = kw (ii) Kretsen kjølekapasitet er den varmemengden som fjernes ved hjelp av varmeveksleren mellom tilstandene 4s og 1: Q in = m ( h 1 h 4 s ) = (kg/s) ( ) (kj/kg) = kw (iii) Kjølekretsen effektfaktor blir da: COP = β = Q in = = 2.72 e) Dersom kompressor og turbin ikke oppfører seg ideelt (adiabatisk og reversibelt, altså isentropisk), men har en isentropisk virkningsgrad på 80%, vil størrelsene i spørsmål (d) endres. Heldigvis kan resultatene fra den ideelle Brayton prosessen benyttes som basis for å beregne de justerte verdiene for (i), (ii) og (iii). i) Det virkelige kompressorarbeidet kan finnes fra den ideelle (isentropiske) situasjonen: C = m (h 2s h 1 ) = η is,c (kg/s) ( ) = kw 0.80 Tilsvarende finnes det reelle turbinarbeidet: T = η is,t m ( h 3 h 4 s ) = ( ) = kw Netto kraftforbruk i kjølekretsen blir da: = C T = = kw ii) For å beregne kretsens kjølekapasitet må først tilstand 4 etableres mht. entalpi: h 4 = h 3 η is,t ( h 3 h 4 s ) = ( ) = kj/kg
8 Dermed kan kretsens kjølekapasitet finnes: Side 8 av 8 Q in = m ( h 1 h 4 ) = ( ) = kw iii) Kretsens effektfaktor (Coefficient of Performance) blir da: COP = β = Kommentar: Q in = = Vi ser at kjølekretsens effektfaktor er dramatisk redusert fra 2.72 til 0.582, en faktor på nesten 5 (eller 4.67 for å være nøyaktig). Dette er en mye større effekt enn forventet av at turbin og kompressor har en isentropisk virkningsgrad på 80%. Årsaken til at effekten blir såpass dramatisk skyldes at alle elementene i uttrykket for COP endrer seg i negativ retning: Kompressorens kraftbehov øker Turbinens kraftproduksjon avtar Kretsens kjøle-effekt avtar Porsgrunn, Truls Gundersen (s)
Side 1 av 10 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK
Side 1 av 10 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.:
LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 9. desember 2008 Tid: kl. 09:00-13:00
Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 410 TERMODYNAMIKK 1 Tirsdag 9. desember 008 Tid: kl. 09:00-13:00
Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)
Side 1 av 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk
Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)
Side 1 av 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk
Faglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)
Side 1 av 13 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.:
Spesial-Oppsummering Høsten 2009 basert på Innspill fra Studenter
Spesial- Høsten 2009 basert på Innspill fra Studenter på Hjemmesiden (fra 2008) - formidler kvintessensen av TEP4120 - omhandler Kap. 1-6, Eksergi Light og Kap. 8-9 - mangler altså (fortsatt) Kap. 10 -
LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Mandag 6. desember 2010 Tid: kl. 09:00-13:00
Side av 8 NORGES EKNISK-NAURVIENSKAPELIGE UNIVERSIE (NNU) - RONDHEIM INSIU FOR ENERGI OG PROSESSEKNIKK LØSNINGSFORSLAG EKSAMEN EP 40 ERMODYNAMIKK Mandag 6. desember 00 id: kl. 09:00 - :00 OPPGAVE (40%)
Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)
Side 1 av 11 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk
Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)
Side 1 av 12 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk
Spørretime TEP Høsten Spørretime TEP Høsten 2009
Spørsmål knyttet til en Kjølekrets (Oppgave 3 på Eksamen August 2005) T 44ºC 3 11.6 bar 4 4 bar 2 1 15ºC 12 bar pv 1.01 = k s 3 4 Kjølevann 20ºC 30ºC Kondenser R134a Q C Fordamper Q inn =35 kw 2 1 W C
Faglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)
Side 1 av 14 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.:
Spørretime TEP Høsten 2012
Vi hadde noen spørsmål i forbindelse med eksergi og utledning av ΔS likningen Spørsmålene om Eksergi kom aldri? Ser derfor på utledningen av ΔS likningen Q (fra meg): Hvilken ΔS likning? u u Entropibalansen
Retningen til Spontane Prosesser. Prosessers Retning
Retningen til Spontane Prosesser T. Gundersen 5-1 Prosessers Retning Spontane Prosesser har en definert Retning Inverse Prosesser kan ikke skje uten ekstra hjelp i form av Utstyr og Energi i en eller annen
SIO 1027 Termodynamikk I Noen formler og uttrykk som er viktige, samt noen stikkord fra de forskjellige kapitler,, Versjon 25/
SIO 1027 Termodynamikk I Noen formler og uttrykk som er viktige, samt noen stikkord fra de forskjellige kapitler,, Versjon 25/11-2001 Geir Owren November 25, 2001 Som avtalt med referansegruppen, er det
Fuktig luft. Faseovergang under trippelpunktet < > 1/71
Fuktig luft 1/71 Faseovergang under trippelpunktet Fuktig luft som blanding at to gasser 2/71 Luft betraktes som en ren komponent Vanndamp og luft oppfører seg som en blanding av nær ideelle gasser 3/71
Oppsummering - Kap. 5 Termodynamikkens 2. Lov
EP 410 ermodynamikk 1 Spontane Prosesser Varmeoverføring ( > omg ), Ekspansjon (P > P omg ), og Frigjort Masse i Gravitasjonsfelt er Eksempler Energibalanser kan ikke prediktere Retning Hva kan ermodynamikkens.
Oppsummering av første del av kapitlet
Forelesningsnotater om eksergi Siste halvdel av kapittel 7 i Fundamentals of Engineering Thermodynamics, M.J. Moran & H.N. Shapiro Rune N. Kleiveland, oktober Notatene følger presentasjonen i læreboka,
Spørretime TEP Våren Spørretime TEP Våren 2011
Finnes det flere Eksamenssett i TEP4115? De 2 fagene TEP4120 (Høst) og TEP4115 (Vår) er identiske. På Hjemmesiden denne våren (TEP4115) har jeg lagt ut i hovedsak de eksamener som jeg har vært ansvarlig
LØSNINGSFORSLAG EKSAMEN TEP 4115/4120 TERMODYNAMIKK 1 (KONT) Fredag 19. august 2005 Tid: kl. 09:00-13:00
Side v 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 45/40 TERMODYNAMIKK (KONT) Fredg 9. ugust 005 Tid: kl. 09:00
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I BIT 130 Termodynamikk VARIGHET: 9.00 13.00 (4 timer). DATO: 1/12 2005 TILLATTE HJELPEMIDLER: Lommekalkulator OPPGAVESETTET BESTÅR AV: 2 oppgaver på 5
LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Lørdag 5. desember 2009 Tid: kl. 09:00-13:00
Side av NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 0 TERMODYNAMIKK Lørda. desember 009 Tid: kl. 09:00 - :00 OPPGAVE
LØSNINGSFORSLAG. EKSAMEN I SIO 4060 PROSESSINTEGRASJON Lørdag 10. mai 2003 Q H 190 C 180 C R C 170 C 900 kw R C 140 C 100 C 90 C
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM Institutt for Energi og Prosessteknikk Side 1 av 7 OPPGAVE 1 (65%) LØSNINGSFORSLAG EKSAMEN I SIO 4060 PROSESSINTEGRASJON Lørdag 10. mai
Retningen til Spontane Prosesser
Retningen til Spontane Prosesser Termodynamikkens 2. Lov 5-1 Prosessers Retning Spontane Prosesser har en definert Retning u Inverse motsatte Prosesser kan ikke skje uten ekstra hjelp i form av Utstyr
EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Laurdag 17. august 2013 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 Oppgåveteksten finst også på bokmål. EKSAMEN
EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 måndag 16. august 2010 Tid:
(Termo.2 16.8.2010) Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK
EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 måndag 15. august 2011 Tid: 09.00 13.00
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 Oppgåveteksten finst også på bokmål. EKSAMEN
KJ1042 Øving 3: Varme, arbeid og termodynamikkens første lov
KJ1042 Øving 3: arme, arbeid og termodynamikkens første lov Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hvordan ser Ideell gasslov ut? Ideell gasslov kan skrives P nrt der P er trykket, volumet,
LØSNINGSFORSLAG EKSAMEN TEP 4115 TERMODYNAMIKK 1 Lørdag 21. mai 2011 Tid: kl. 09:00-13:00
Side a 7 NORGES EKNISK-NAURVIENSKAPELIGE UNIVERSIE (NNU) - RONDHEIM INSIU FOR ENERGI OG PROSESSEKNIKK OPPGAVE (3%) LØSNINGSFORSLAG EKSAMEN EP 45 ERMODYNAMIKK Lørdag. mai id: kl. 9: - 3: a) ermodynamikkens.
Typisk T-v Diagram. Fasediagrammer & Projeksjoner. p-v p-t T-v. TEP 4120 Termodynamikk 1. Beregning av Egenskaper. TEP 4120 Termodynamikk 1
Fasediagrammer & Projeksjoner p-v p-t T-v 3-1 Typisk T-v Diagram 3-2 T-v Diagram for H 2 O 3-3 Lineær Interpolasjon i en Dimensjon Tabeller og Linearitet?? TABLE A-4 (Continued) T v u h s C m 3 /kg kj/kg
KJ1042 Øving 5: Entalpi og entropi
KJ1042 Øving 5: Entalpi og entropi Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hva er varmekapasitet og hva er forskjellen på C P og C? armekapasiteten til et stoff er en målbar fysisk størrelse
T L) = ---------------------- H λ A T H., λ = varmeledningsevnen og A er stavens tverrsnitt-areal. eks. λ Al = 205 W/m K
Side av 6 ΔL Termisk lengdeutvidelseskoeffisient α: α ΔT ------, eks. α Al 24 0-6 K - L Varmekapasitet C: Q mcδt eks. C vann 486 J/(kg K), (varmekapasitet kan oppgis pr. kg, eller pr. mol (ett mol er N
Typisk T-v Diagram. Fasediagrammer & Projeksjoner. p-v p-t T-v. TEP 4120 Termodynamikk 1. Beregning av Egenskaper. Beregning av Egenskaper
Fasediagrammer & Projeksjoner p-v p-t T-v T. Gundersen 3-1 Typisk T-v Diagram T. Gundersen 3-2 T-v Diagram for H 2 O T. Gundersen 3-3 Lineær Interpolasjon i en Dimensjon Tabeller og Linearitet?? T. Gundersen
T 2. + RT 0 ln p 2 K + 0, K ln. kg K. 2) Først må vi nne massestraumen av luft frå energibalansen: 0 = ṁ 1 (h 1 h 2 ) + ṁ 3 (h 3 h 4 ) kg s
LØYSINGSFORSLAG, eksamen 4. mai 208 i fag TEP425 TERMODYNAMIKK 2 v. Ivar S. Ertesvåg, sist endra 5. mai 208. Dette er eit UTKAST. Det kan vere skrive- og reknefeil her. Endring i spesikk eksergi konstant
a) Stempelet står i en posisjon som gjør at V 1 = 0.0200 m 3. Finn det totale spesikte volumet v 1 til inneholdet i tanken. Hva er temperaturen T 1?
00000 11111 00000 11111 00000 11111 DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I BIT 130 Termodynamikk VARIGHET: 900 1300 (4 timer). DATO: 22/5 2007 TILLATTE HJELPEMIDLER: Godkjent lommekalkulator
Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 8. august 2009 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 8. august
Kulde- og varmepumpetekniske prosesser Mandag 5. november 2012
TEP 4115 Termodynamikk I Kulde- og varmepumpetekniske prosesser Mandag 5. november 2012 Trygve M. Eikevik Professor Norges teknisk-naturvitenskapelige universitet (NTNU) trygve.m.eikevik@ntnu.no http://folk.ntnu.no/tme
EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Laurdag 18. august 2012 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Laurdag
Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839. EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Onsdag 22. mai 2013 Tid: 09.00 13.
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Onsdag
Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK august 2017 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 11. august
Figur 1: Isoterm ekspansjon. For en gitt temperatur T endrer trykket seg langs den viste kurven.
Fysikk / ermodynamikk åren 00 6. Gassers termodynamikk 6.. Ekspansjon av ideelle gasser vslutningsvis skal vi se på noen viktige prosesser som involverer ideelle gasser. isse prosessene danner i sin tur
KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger
Side 1 av 10 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger Oppgave 1 a) Et forsøk kan gjennomføres som vist i figur 1. Røret er isolert, dvs. at det ikke tilføres varme
HØGSKOLEN I STAVANGER
EKSAMEN I TE 335 Termodynamikk VARIGHET: 9.00 14.00 (5 timer). DATO: 24/2 2001 TILLATTE HJELPEMIDLER: Lommekalkulator OPPGAVESETTET BESTÅR AV 2 oppgaver på 5 sider (inklusive tabeller) HØGSKOLEN I STAVANGER
Oppsummering av TEP 4115
av TEP 4115 Versjon: Nr. 3 Våren 011 Formål: Metode: Fagweb: Formidle kvintessensen i faget Gi en kronologisk oversikt over sentrale definisjoner av størrelser, konsepter og likninger som utgjør hovedelementene
Oppsummering av TEP 4120
av TEP 410 Versjon: Nr. 1 Høsten 008 Formål: Metode: Fagweb: Formidle kvintessensen i faget Gi en kronologisk oversikt over sentrale definisjoner av størrelser, konsepter og likninger som utgjør hovedelementene
MAS117 Termodynamikk. Vanndamp som arbeidsfluid. Kapittel 10 Dampkraftsykluser del
MAS7 ermodynamikk Kapittel 0 Dampkraftsykluser del Vanndamp som arbeidsfluid Vanndamp egner seg godt som arbeidsfluid fordi vann er billig og lett tilgjengelig er ikke giftig eller eksplosjonsfarlig har
gass Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd A.Blekkan, tlf.:
NORGES TEKNISKE NTUR- VITENSKPELIGE UNIVERSITETET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI Side 1 av 5 Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd.Blekkan, tlf.: 73594157 EKSMEN
EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Laurdag 4. juni 2011 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 Oppgåveteksten finst også på bokmål./ EKSAMEN
Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK mai 2015 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 20. mai
NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg
Side 1 av 2/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg MIDTSEMESTEREKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Fredag 26.
Løsningsforslag til ukeoppgave 7
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 7 Oppgave 11.35 Virkningsgraden er 63,1 % Oppgave 11.37 W = 16, 6 kj Q L = 9, 70 kj Q H = W + Q L = 16, 6 kj + 9, 70 kj = 26, 3 kj η = W Q H =
FORELESNING I TERMODYNAMIKK ONSDAG Tema for forelesningen var studiet av noen viktige reversible prosesser som involverer ideelle gasser.
FORELESNING I TERMODYNMIKK ONSDG.03.00 Tema for forelesningen var studiet av noen viktige reversible prosesser som involverer ideelle gasser. Følgende prosesser som involverte ideelle gasser ble gjennomgått:.
KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger
Side 1 av 11 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger Oppgave 1 a) Gibbs energi for et system er definert som og entalpien er definert som Det gir En liten endring
Verdens Elektrisitetsproduksjon
Verdens Elektrisitetsproduksjon 2010: Kull: 42.2% Naturgass: 20.4% Fornybare: 19.4% Atomkraft: 13.6% Andre: 4.4% 8-1 Elektrisitetsproduksjon i andre Land Norge: 98-99% fra Vannkraft USA Frankrike 8-2 Den
Lørdag 20. mai C 180 C C 130 C C 60 C kw 50 C 30 C C 20 C
Side 1 av 10 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN I EMNE TEP 4215 PROSESSINTEGRASJON Lørdag 20. mai 2006 OPPGAVE
SAMMENDRAG AV FORELESNING I TERMODYNAMIKK ONSDAG 23.02.00
SAMMENDRAG A FORELESNING I TERMODYNAMIKK ONSDAG 3.0.00 Tema for forelesningen var termodynamikkens 1. hovedsetning. En konsekvens av denne loven er: Energien til et isolert system er konstant. Dette betyr
LØYSINGSFORSLAG, eksamen 20. mai 2015 i fag TEP4125 TERMODYNAMIKK 2 v. Ivar S. Ertesvåg, mai 2015/sist revidert 9.juni 2015.
Termodyn. 2, 20.5.205, side LØYSINGSFORSLAG, eksamen 20. mai 205 i fag TEP425 TERMODYNAMIKK 2 v. Ivar S. Ertesvåg, mai 205/sist revidert 9.juni 205. Les av i h-x-diagrammet: x = 0,05 kg/kg, T dogg, = 20
Side 1 av 4/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK mai 2018 Tid:
Side 1 av 4/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 Oppgåveteksten nst også på bokmål. EKSAMEN
videell P T Z = 1 for ideelle gasser. For virkelige gasser kan Z være større eller mindre enn 1.
LØSNINGSFORSLAG EKSAMEN 5. OKOBER 00 SMN 64 VARMELÆRE Løsning til oppgave Grunnleggende termodynamikk (0%) a) Oppførselen til en gass nær metning eller kritisk punkt vil ikke følge tilstandsligningen for
LØYSINGSFORSLAG, eksamen 21. mai 2008 i fag TEP4125 TERMODYNAMIKK 2 v. Ivar S. Ertesvåg, juni 2008/april 2011
Termodyn. 2, 21.5.2008, side 1 LØYSINGSFORSLAG, eksamen 21. mai 2008 i fag TEP4125 TERMODYNAMIKK 2 v. Ivar S. Ertesvåg, juni 2008/april 2011 1) Molmasse: M = i y im i = (0,91 16 + 0,08 30 + 0,01 28) kg/kmol
2) Finn entropiproduksjonsraten i blandeprosessen i oppgåve 1. (-rate= per tidseining)
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 Oppgåveteksten nst også på bokmål. EKSAMEN
Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK august 2018 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 10. august
Løsningsforslag eksamen TFY desember 2010.
Løsningsforslag eksamen TFY4115 10. desember 010. Oppgave 1 a) Kreftene på klossene er vist under: Siden trinsene og snorene er masseløse er det bare to ulike snordrag T 1 og T. b) For å finne snordraget
Løsningsforslag til øving 10
FY1005/TFY4165 Termisk fysikk Institutt for fysikk, NTNU Våren 2015 Løsningsforslag til øving 10 Oppgave 1 a) Helmholtz fri energi er F = U TS, slik at df = du TdS SdT = pdv SdT +µdn, som viser at Entalpien
TEP Termodynamikk 1
Institutt for Energi og Prosessteknikk TEP 4120 - Termodynamikk 1 Fagets Innhold og Læringsmål Termodynamiske Systemer, Egenskaper og Tilstander Begrepene Arbeid og Varme (og Energi generelt) Tilstandslikninger
Damp-prosessen / Rankine Cycle. Allerede de gamle Grekere...
Damp-prosessen / Rankine Cycle Ett av instituttene som ble slått sammen til EPT het engang Damp og Forbrenning Damp forbindes ofte med gammeldags teknologi dette er ikke tilfelle!! Men Damp har en lang
Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 august 2015 Tid: 4 timar
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 august
EKSAMENSOPPGAVE. Eksamen i:kje-1005 Termodynamikk og kinetikk Dato: Torsdag 05. juni 2014 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 2
EKSAMENSOPPGAVE Eksamen i:kje-1005 Termodynamikk og kinetikk Dato: Torsdag 05. juni 2014 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 2 Tillatte hjelpemidler: Enkel lommeregner Oppgavesettet er
Side 3 av 3/nyn. Bruk van der Waals likning p = Vedlegg: 1: Opplysningar 2: Mollier h-x-diagram for fuktig luft
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Torsdag
Øving 12 TKP
Øving 12 724144 3.5.13 i Innhold Oppgave 1 1 a) Simulering 1 b) Estimering av størrelse på varmevekslere og separator og kompressoreffekt 1 Estimering av størrelse på varmeveksler E-101 1 Estimering av
Løsningsforslag Øving 7
Løsningsforslag Øving 7 TEP4100 Fluidmekanikk, Vår 016 Oppgave 5- Løsning Vinden blåser med konstant hastighet 8 m/s. Vi ønsker å finne den mekaniske energien per masseenhet i vindstrømmen, samt det totale
Flervalgsoppgave. Kollisjoner. Kap. 6. Arbeid og energi. Energibevaring. Konstant-akselerasjonslikninger REP
Kap. 6. Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt:
TEMA: Konseptuelt Flytskjema for Benzen-produksjon fra Toluen. Løsningsforslag:
Norges Teknisk-Naturvitenskapelige Universitet Fag: Energi og Prosess Institutt for Energi og Prosessteknikk Nr.: TEP 4230 Trondheim, 10.09.03, T. Gundersen Del: Produksjonssystemer Øving: 5 År: 2003 Veiledes:
EKSAMEN I EMNE TFY4125 FYSIKK
Bokmål NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Studentnummer: Studieretning: Bokmål, Side 1 av 1 Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Steinar
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET FAKULTET FOR MASKINTEKNIKK EKSAMEN I EMNE SIO 7030 ENERGI OG PROSESSTEKNIKK
Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET FAKULTET FOR MASKINTEKNIKK Faglig kontakt under eksamen: Navn: Truls Gundersen Tlf.: 9371 / 9700 Språkform: Bokmål EKSAMEN I EMNE SIO 7030 ENERGI
Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK juni 2016 Tid:
Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 11. juni
TEMA: Destillasjon. Løsningsforslag: Komponentbalanse (molar basis) for acetaldehyd: F X F = B X B + D Y D
Norges Teknisk-Naturvitenskapelige Universitet Fag: Energi og Prosess Institutt for Termisk Energi og Vannkraft Nr.: TEP 4230 Trondheim, 06.10.04, T. Gundersen Del: Separasjonsprosesser Øving: 11 År: 2004
TEP Termodynamikk 1
Institutt for Energi og Prosessteknikk TEP 4120 - Termodynamikk 1 Fagets Innhold og Læringsmål Termodynamiske Systemer, Egenskaper og Tilstander Begrepene Arbeid og Varme (og Energi generelt) Tilstandslikninger
Løsningsforslag Øving 8
Løsningsforslag Øving 8 TEP4100 Fluidmekanikk, Vår 016 Oppgave 5-78 Løsning En vannslange koblet til bunnen av en tank har en dyse som er rettet oppover. Trykket i slangen økes med en pumpe og høyden av
Kretsprosesser. 2. hovedsetning
Kretsprosesser. 2. hovedsetning Reversible og irreversible prosesser (20.1) Adiabatisk prosess (19.8) Kretsprosesser: varmekraftmaskiner (20.2+3) kjølemaskiner (20.4) Carnotsyklusen (20.6) Eks: Ottosyklus
Termodynamikk ΔU = Q - W. 1. Hovedsetning = Energibevarelse: (endring indre energi) = (varme inn) (arbeid utført)
Termodynamikk 1. Hovedsetning = Energibevarelse: ΔU = Q - W (endring indre energi) = (varme inn) (arbeid utført) 2. Hovedsetning = Mulige prosesser: Varme kan ikke strømme fra kaldt til varmt legeme Prosesser
Hyperbar avfuktning, termodynamisk regneeksempel
Hyperbar avfuktning, termodynamisk regneeksempel Et klimaanlegg i en dykkerklokke skal levere luft med svært nøyaktig regulering av lufttilstanden. Anlegget skal i tillegg til å kjøle luften fjerne fuktighet.
Kretsprosesser. 2. hovedsetning
Ka0 Kretsrosesser.. hovedsetning Reversible og irreversible rosesser (0.) diabatisk rosess (9.8) Kretsrosesser: varmekraftmaskiner (0.+3) kjølemaskiner (0.4) Carnotsyklusen (0.6) Eks: Ottosyklus (0.3).
a) Oppførselen til en gass nær metning eller kritisk punkt vil ikke følge tilstandsligningen for ideelle gasser. Hvordan behandles dette?
LØSNINGSFORSLAG EKSAMEN 20086 SMN6194 VARMELÆRE DATO: 17. Okt. 2008 TID: KL. 09.00-12.00 Oppgave 1 (50%) a) Oppførselen til en gass nær metning eller kritisk punkt vil ikke følge tilstandsligningen for
NTNU Institutt for Termisk Energi og Vannkraft
NTNU Institutt for Termisk Energi og Vannkraft LØSNINGSFORSLAG TIL EKSAMEN I FAG 64182 PNEUMATIKK FREDAG 5. DESEMBER 1997 Oppgave 1 ( 15% ) a) Velg sylinder for et nettrykk på 6.3 bar. Kraften sylinderen
Eksamen TFY 4104 Fysikk Hausten 2009
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Eksamen TFY 404 Fysikk Hausten 2009 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 735933 Mandag 30. november
Kurs TEP4195 TURBOMASKINER
NTNU Institutt for Energi- og Prosessteknikk Kontaktperson i løpet av eksamen Navn: Torbjørn K. Nielsen/ Øyvind Hundseid Tlf: (73 5) 93572/ 93935 BOKMÅL Kurs TEP4195 TURBOMASKINER FREDAG 21. MAI 2004 TID:
NTNU Norges teknisk-naturvitenskapelige universitet. SIO 7050 Varmepumpende prosesser og systemer = 200 [kw] ved t R1 = 0 [ºC] t omg = 14 [ºC]
NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for ingeniørvitenskap og teknologi > Institutt for energi og prosessteknikk SIO 75 Varmepumpende prosesser og systemer 2 Termisk analyse av
Utvidet Oppsummering - Kap. 7
TEP 45 Termdynamikk Hva mener vi med Eksergianalyse? Metdikk fr Design g Analyse av Termiske Systemer i Prsessanlegg sm benytter: Masse g Energibalanser Termdynamikkens. Lv Ppulærvitenskapelige Definisjner
Repetisjonsoppgaver kapittel 5 løsningsforslag
Repetisjonsoppgaver kapittel løsningsforslag Termofysikk Oppgave 1 a) Fra brennkammeret overføres varme til fyrkjelen, i henhold til termofysikkens andre lov. Når vannet i kjelen koker, vil den varme dampen
Reversible prosesser: Termisk likevekt under hele prosessen Langsomt og kontrollert. [H&S] Kap.11. (1. hovedsetning.) Kretsprosesser.
ka [H&S] Ka.. (. hovedsetning.) Kretsrosesser. Forelest tidligere:. Energibevarelse:. hovedsetning Y&F 9.-4. rbeid og (,V)-diagram Y&F 9.2.5 Gassers C og C V Y&F 9.7 Foreleses nå:.2 Reversible rosesser
Side 1 av 2/nyn. MIDTSEMESTEREKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Fredag 20. februar 2013 Tid:
Side 1 av 2/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg MIDTSEMESTEREKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 Fredag 20.
KONTINUASJONSEKSAMEN I FAG TEP 4140 STRØMNINGSLÆRE 2 Dato??. august 2004 Tid: kl. 09:00 14:00
Side 1 av 8 Norges teknisk naturvitenskapelige universitet NTNU Fakultet for Ingeniørvitenskap og teknologi Institutt for Energi og Prosessteknikk Faglig kontakt under eksamen: Isabelle Roche-Cerasi, tlf.:
Oppsummering av TEP 4120
av TEP 4120 Versjon: Nr. 4 Høsten 2012 Formål: Formidle kvintessensen i faget Metode: Gi en kronologisk oversikt over sentrale definisjoner av størrelser, konsepter og likninger som utgjør hovedelementene
TEMA: Damp/Væske-likevekter og Flash-Separasjon. Løsningsforslag:
Norges Teknisk-Naturvitenskapelige Universitet Fag: Energi og Prosess Institutt for Energi og Prosessteknikk Nr.: TEP 4230 Trondheim, 06.10.04, T. Gundersen Del: Separasjonsprosesser Øving: 10 År: 2004
Kretsprosesser. 2. hovedsetning
Kretsprosesser. 2. hovedsetning Reversible og irreversible prosesser (20.1) Adiabatisk prosess (19.8) Kretsprosesser: varmekraftmaskiner (20.2+3) Virkningsgrad kjølemaskiner (20.4) Effektfaktor Carnotsyklusen
Løysingsframlegg TFY 4104 Fysikk Kontinuasjonseksamen august 2010
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY 404 Fysikk Kontinuasjonseksamen august 200 Faglærar: Professor Jens O Andersen Institutt for Fysikk, NTNU Telefon:
TFY4102 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 12.
TFY4102 Fysikk. Institutt for fysikk, NTNU. Løsningsforsag ti øving 12. Oppgave 1. Termisk fysikk: Idee gass. Voumutvidese. a) Hvis du vet, eer finner ut, at uft har massetetthet ca 1.2-1.3 kg/m 3 (mindre
Den spesifike (molare) smeltevarmen for is er den energi som trengs for å omdanne 1 kg (ett mol) is med temperatur 0 C til vann med temperatur 0 C.
Øvelse 1 Faseoverganger Denne øvelsen går ut på å bestemme smeltevarmen for is og fordampningsvarmen for vann ved 100 C. Trykket skal i begge tilfeller være lik atmosfæretrykket. 1.1 Smeltevarmen Den spesifike
dp ρ L D dp ρ v V Både? og v endres nedover et rør, men produktet er konstant. (Husk? = 1/V). Innsatt og med deling på V 2 gir dette:
SIK005 Strømning og transportprosesser Kompressibel strømning Rørstrømning Både i forbindelse med vår naturgassproduksjon på kontinentalsokkelen og i miljøsammenheng er strømningsberegninger på gass av
KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger
Side 1 av 6 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger Oppgave 1 a) Termodynamikkens tredje lov kan formuleres slik: «Entropien for et rent stoff i perfekt krystallinsk