Kap. 23 Elektrisk potensial
|
|
- Monika Frantzen
- 8 år siden
- Visninger:
Transkript
1 Kp. 23 Elektisk potensil Skl definee på gunnlg v elektisk felt E: Elektisk potensiell enegi, U Elektisk potensil, V (Ketsteknikk: El. potensilfoskjell = spenning) Potensilgdient og elektisk felt. Ekvipotensilflte
2 Gvitsjon (punktmsse): Kft: Pot.enegi: m1m 2 F( ) G 2 m m U ( ) G 1 2 (lltid negtiv) (lltid negtiv) Elektisitet (punktldninge): Kft: 1 q1q2 F( ) (Coul) 2 4 (pos/neg) Pot.enegi: U ( ) 1 4 q q 1 2 (pos/neg) Skl utlede U()
3 Kp. 23. Elektisk potensil Elektisk potensiell enegi, U U U W q E dl Definisjon: (23.2) U Rundt pkt.ldning, eltivt = : (23.9) = : E-feltet e konsevtivt: (eid uvhengig vegen) U 4 q q U ( ) 1 1 Rundt pkt.ldning: (23.8) q q 4 E dl 1
4 Eks. 1, fots. v: Hvo sto e 1 coulom? Du og din kmet/vennine holde hve ei kule med ldning +1, C. Dee evege dee mot hvende f uendelig i et elles elektisk nøytlt om ) Hvo næme kn dee komme hvende? Ant dee kn tykke med F = 5 N hve. (Sv: 4,2 km) ) Hvo stot e det elektiske feltet i vstnd 4,2 km? (Sv: 5 N/C) c) Hvo mye eid fo å føe dee smmen f = til =4,2 km? (nt en v dee stå i o) F Aeid v elektisk kft F: F W q E q kq 4,2 km elle enklee f d d 1 2 = -9 1 Nm /C (1C) = -2,1 MJ W U k q q 4,2 km ( ) 9 1 Nm /C (1C) = 2,1 MJ «Våt» eid = - eid v F = - W = + 2,1 MJ (som å løfte 1 kg 2,2 km opp, elle c. ¼ v koppens enegiuk pe dg)
5 Eks. 2 Y&F Ex To og te punktldninge ) Finn potensiell enegi til q 1 og q 2 (eltivt ) ) Finn nødvendig eid fo å plssee q 3 = potensiell enegi fo q 3 (i noskp v q 1 og q 2 ) c) Finn totl potensiell enegi
6 Elektisk potensil V ( = U/q ) : Reltivt potensil, f def. v pot.en: Asolutt potensil (eltivt ): U U V V E l q d (23.17) undt én punktldning: undt mnge punktldninge: undt kontinuelig ldninge: U ( ) 1 q V ( ) (23.14) q 4 1 qi V ( x, y, z) (23.15) 4 1 dq V ( x, y, z) (23.16) 4 i i
7 Eks. 3, fots. v: Hvo sto e 1 coulom? Du og din kmet/vennine holde hve ei kule med ldning +1, C. Dee evege dee mot hvende f uendelig i et elles elektisk nøytlt om ) Hvo næme kn dee komme hvende? Ant dee kn tykke med F = 5 N hve. (Sv: 4,2 km) ) Hvo stot e det elektiske feltet i vstnd 4,2 km? (Sv: 5 N/C) c) Hvo mye eid fo å føe dee smmen f = til =4,2 km? (nt en v dee stå i o) (Sv: 2,1 MJ) d) Hv e potensilfoskjellen mellom dee (ved =4,2 km)? Enklest, f utegnet eid i pkt c): V = W/q 2 = 2,1 MJ / 1, C = 2,1 MV Elle f potensil V() undt punktldning: V() = k q 1 / = 9, 1 9 Nm 2 /C 2 1, C / 4,24 km = 2,12 MV = 2,1 MV
8 Beegning v potensil: Metode 1, Supeposisjon v punktldninge (V el. ): diskete ldninge: 1 qi V ( x, y, z) (23.15) 4 i i kontinuelig ldninge: 1 dq V ( x, y, z) (23.16) 4 V V V V ( ) ( ) Metode 2: F definisjonen, nå E e kjent: V V E d l (23.17)
9 Eks. 4: V undt dipol (me i øving 4) Finn potensil V (eltivt uendelig) undt dipol z x Metode 1: 1 qi V ( ) 4 i i 1 dq V ( ) 4 Metode 2: V V E d l
10 E f tidligee: Eks.5: V mellom to (uendelige) pllellplte (Y&F Ex. 23.9) +σ z Metode 1: 1 qi V ( ) 4 i i 1 dq V ( ) 4 E = σ/ε Metode 2: V V E d l -σ (Y&F Fig 23.18)
11 E = σ/2ε +σ Eks 5B: Flteldning z V Metode 1: 1 qi V ( ) 4 i i 1 dq V ( ) 4 Metode 2: V V E d l V(z) høyest V(z) på plt, vt på egge side
12 E f Eks.3 i kp 22 (Ex. 22.5): Eks.6: V inni og utenfo ldd ledekule (Y&F Ex. 23.8) Met. 1: Eks. 6B: Nott på wesidene Metode 1: 1 qi V ( ) 4 i i 1 dq V ( ) 4 Metode 2: V V E d l (Y&F Fig 23.16)
13 Eks.7: V på ksen til tynn ing (Y&F Ex ) dq Metode 1 fodi: Vnskeligee å finne E(x) (Eks. 4 kp 21) enn å finne V(x) Resultt: V(x) = k Q / (Y&F Fig 23.2) Eks. 4 kp 21: E x = k Q x / 3 (21.8) Metode 1: 1 qi V ( ) 4 i i 1 dq V ( ) 4 Metode 2: V V E d l
14 Eks.8: V inni og utenfo unifomt ldd kule Met. 1: Eks. 8B: Nott på wesidene Metode 1: 1 qi V ( ) 4 i i 1 dq V ( ) 4 Metode 2 Metode 2: V V E d l E f Eks.1 i kp 22 (Ex. 22.9): (Y&F Fig 22.22)
15 Eksemple i foelesning (Eks ), Y&F Ed13 (Ex ), og Lillestøl (L ) Dipol Eks. 2 Kp 21. E-felt Kp 22. Guss lov Kp 23. Potensil Ex L19.6 Linjeldning endelig Eks. 3 Ex Linjeldning uendelig (Eks. 3) L19.7 Tynn ing Eks. 4 Ex Sikulæ plte Eks. 5 Ex Uendelig plte Eks. 6 Ex L19.9 Pllellplte Ex Kule med homogen ldning Eks. 7 Eks. 5 Ex. 22.6, L19.13 Eks. 2 Ex L19.14 Eks. 4 Ex Ex Eks. 9 Ex Eks. 7 Ex Met 2: Eks. 7B Eks. 5B L19.15 Ex Eks. 5 Eks. 1 Ledekule Eks. 3 Ex. 22.9, L19.12 Ex Ex Eks. 8 L19.19 Eks. 6 Ex Met 1 Met 1 Met 2 Met 2 Met 2 Met 2 Met 1: Eks. 6B
16 Eks.9: V undt uendelig lng linjeldning (Y&F Ex 23.1) E f Eks.5,kp.22 (Ex.22.6): Refensepunkt : og e egge uukelige. E 2 4 Metode 2 V ( ) V ( ) E d 2 ln 1 Metode 1: 1 qi V ( ) 4 i i 1 dq V ( ) Metode 2: V V E d l
17 Eks.6: V inni og utenfo ldet ledekule (Y&F Ex. 23.8) - deivet E = -dv/d - integet V ( ) V ( ) E d (Y&F Fig 23.16)
18 Eks.8: V inni og utenfo unifomt ldd kule - deivet E = - dv/d - integet ~ - 2 V ( ) V ( ) E d ~ 1/ (Y&F Fig 22.22)
19 Gdienten til en skl e en vekto: (f fomelsmling s. 2): Ktesiske kood: Sylindekood: Kulekood:
20 Ekvipotensilflte = flte med innydes konstnt potensil.
21 Gvitsjonen h også ekvipotensilflte. Høydekote på kt e skjæing mellom epf. og teenget: Ekvidistnse: Δh = 2 m ( gv.potensil: ΔV = Δgh )
22 Punktldning Ekvipotensilflte lå, ekvidistnse ΔV = 2 V. Feltlinje øde. (Y&F Fig 23.23)
23 Pkt. 3 Dipol + Høyest Lvest Pkt. 2 Pkt. 1 Pkt. 1 Pkt. 3 Pkt. 2 Gf f øving 6 (Mtl elle Python) -
24 To positive ldninge (Y&F Fig 23.23)
25 Kp. 23: Oppsummeing 1 Elektisk potensil Enhet: [V] = J / C = volt = V Enegienhete: 1 CV = tilleggsenegi fo 1C ved å flytte 1 V høyee = 1 J 1 ev = tilleggsenegi fo 1e ved å flytte 1 V høyee =,16 J Asolutt potensil definet eltivt =
26 E og V undt ulike ldningssmlinge
27 E og V undt ulike ldningssmlinge Fo lle: dv E( ) d dv E( z) dz E( ) V( ) V(z) z NÆRME STOR PLATE z E = σ/2ε +σ
28 Kp. 23: Oppsummeing 2 Elektisk potensil Løsningsmetodikk fo E og V: Hvis E enkel å finne (eks. f Guss' lov): Bestem E, deette V f Metode 2. Hvis V enkel å finne (f metode 1): Bestem V, deette E f E = gd V Ldninge kn flyttes uten eid på ekvipotensilflte. E e noml til ekvipotensilflte. Elektisk lede e på en og smme potensilflte.
29 Ledeflte e lltid ekvipotensilflte Fo pkt.ldning næ ledeflte e E-feltet som mellom +Q og Q Klles speilingsmetoden (Y&F Fig 23.24)
Kap. 23 Elektrisk potensial
Kp. 3 Elektisk potensil Skl definee p gunnlg v elektisk felt E: Elektisk potensiell enegi, U Elektisk potensil, V (Ketsteknikk: El. potensilfoskjell spenning) Aeid keves fo føe smmen ldninge Pføt eid gi
DetaljerKap. 23 Elektrisk potensial. Kap. 23. Elektrisk potensial
Kp3 7..5 Kp. 3 Elektsk potensl Skl defnee p gunnlg v elektsk felt E: Elektsk potensell eneg, U Elektsk potensl, V (Ketsteknkk: El. potenslfoskjell spennng) Ekvpotenslflte Potenslgdent og elektsk felt.
DetaljerKap. 23 Elektrisk potensial. Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap 23
Kp 23 Kp. 23 Elektsk potensl Skl defnee på gunnlg v elektsk felt E: Elektsk potensell eneg, U Elektsk potensl, V (Ketsteknkk: El. potenslfoskjell spennng) Aed keves fo å føe smmen ldnnge Påføt ed g potensell
DetaljerKap. 23 Elektrisk potensial. Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap
Kp23 28.1.211 Kp. 23 Elektsk potensl Skl defnee på gunnlg v elektsk felt E: Elektsk potensell eneg, U Elektsk potensl, V (Ketsteknkk: El. potenslfoskjell spennng) Aed må gjøes fo å føe smmen ldnnge Påføt
DetaljerKap. 23 Elektrisk potensial. Kap. 23. Elektrisk potensial. Kap
Kp. 3 Eektsk potens Sk defnee på gunng v eektsk fet E: Eektsk potense eneg, U Eektsk potens, V (Ketsteknkk: E. potensfoskje = spennng) Ekvpotensfte Potensgdent og eektsk fet. Gvtsjon (punktmsse): Kft:
DetaljerEks. 1, forts. av: Hvor stor er 1 coulomb? Kap. 23 Elektrisk potensial
Kp23 26.1.215 Kp. 23 Eektsk potens Sk defnee p gunng v eektsk fet E: Eektsk potense eneg, U Eektsk potens, V (Ketsteknkk: E. potensfoskje spennng) Ekvpotensfte Potensgdent og eektsk fet. Eks. 1, fots.
DetaljerMidtsemesterprøve onsdag 7. mars 2007 kl Versjon A
Institutt fo fysikk, NTNU FY1003 lektisitet og mgnetisme I TFY4155 lektomgnetisme Vå 2007 Midtsemestepøve onsdg 7. ms 2007 kl 1300 1500. Løsningsfoslg. Vesjon 1) Hvilken påstnd om elektisk potensil e feil?
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 10. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
TFY0 Fysikk. Institutt fo fysikk, NTNU. Høsten 06. Øving 0. Opplysninge: esom ikke nnet e oppgitt, nts det t systemet e i elektosttisk likevekt. esom ikke nnet e oppgitt, e potensil undefostått elektosttisk
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 9. Veiledning: 18. oktober. Innleveringsfrist: 23. oktober kl 14.
TFY404 Fysikk. Institutt fo fysikk, NTNU. Høsten 203. Øving 9. Veiledning: 8. oktobe. Innleveingsfist: 23. oktobe kl 4. Oppgve ) Figuen vise et unifomt elektisk felt (heltukne linje). Lngs hvilken stiplet
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. ving 10.
TFY0 Fysikk. Institutt fo fysikk, NTNU. ving 0. Opplysninge: esom ikke nnet e oppgitt, nts det t systemet e i elektosttisk likevekt. esom ikke nnet e oppgitt, e potensil"undefosttt elektosttisk potensil",
DetaljerKap. 22. Gauss lov. Gauss lov skjematisk. Eks.1: Homogent ladd kule =Y&F Ex = LHL Vi skal se på: Fluksen til elektrisk felt E Gauss lov
Kap.. Gauss lov Vi skal se på: Fluksen til elektisk felt E Gauss lov Integalfom og diffeensialfom Elektisk ledee. Efelt fa Coulombs lov: q E = k E = k å n q n n n dq E= k ò tot. ladn. Punktladn Flee punktladn.
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. ving 9.
TFY404 Fsikk. Institutt fo fsikk, NTNU. ving 9. Oppgve ) Figuen vise et unifomt elektisk felt (heltukne linje). Lngs hvilken stiplet linje ende potensilet seg ikke? 2 C 3 D 4 2 3 4 b) Den potensielle enegien
DetaljerLøsningsforslag, Midtsemesterprøve torsdag 6. mars 2008 kl Oppgavene med kort løsningsskisse
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2008 Løsningsforslg, Midtsemesterprøve torsdg 6. mrs 2008 kl 1000 1200. Fsit side 12. Oppgvene med kort løsningsskisse
DetaljerMidtsemesterprøve torsdag 6. mars 2008 kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2008 Midtsemesterprøve torsdg 6. mrs 2008 kl 1000 1200. Oppgver på side 3 10. Svrtbell på side 11. Sett tydelige
DetaljerØving 1. Institutt for fysikk, NTNU Fag SIF 4012 Elektromagnetisme og MNFFY 103 Elektrisitet og magnetisme Høst 2002
Institutt fo fysikk, NTNU Fg SIF 4 Elektomgnetisme og MNFFY Elektisitet og mgnetisme Høst Øving Veiledning: Tosdg 9. ugust Innleveingsfist: Tisdg. septembe kl. Oppgve En ldning q e plsset i (,y)(,) og
DetaljerØving 6. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme. Veiledning: Uke 7 Innleveringsfrist: Mandag 19. februar.
Institutt fo fsikk, NTNU TFY4155/FY1003: Elektisitet og mgnetisme Vå 2007 Veiledning: Uke 7 Innleveingsfist: Mndg 19. febu Øving 6 Oppgve 1 z Figuen ove vise en gussflte (dvs lukket flte) S fomet som en
DetaljerLøsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A)
Institutt for fysikk, NTNU FY100 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Løsningsforslg, Midtsemesterprøve fredg 1. mrs 2009 kl 1415 1615. Fsit side 10. Oppgvene med kort løsningsforslg
DetaljerØving 9. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
Institutt for fysikk, NTNU TFY4155/FY1003: Elektromgnetisme år 2009 Øving 9 eiledning: Mndg 09. og fredg 13. (evt 06.) mrs Innleveringsfrist: Fredg 13. mrs kl. 1200 (Svrtbell på siste side.) Opplysninger:
DetaljerOppgave 8.12 Gitt en potensialhvirvel med styrke K i origo. Bestem sirkulasjonen ' langs kurven C. Sirkulasjonen er definert som: ' /
Løsning øving 3 Oppgve 8. Gitt en potensilhvivel med styke i oigo. Bestem sikulsjonen ' lngs kuven C. C y (I oppgven stå det t vi skl gå med klokk, men he h vi gått mot klokk i oveensstemmelse med definisjonen
DetaljerUNIVERSITETET I OSLO
UNIVESITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: FYS1120 Elektromgnetisme Eksmensdg: 5. oktober 2015 Tid for eksmen: 10.00 13.00 Oppgvesettet er på 8 sider. Vedlegg: Tilltte hjelpemidler:
DetaljerTFE4120 Elektromagnetisme
NTNU IET, IME-fkultetet, Noge teknisk-ntuvitenskpelige univesitet TFE4120 Elektomgnetisme Løsningsfoslg øving 5 Oppgve 1 ) Pg. symmeti h vi E = E()ˆ gjennom hele oppgven. i) Vi l Gussflten S væe oveflten
DetaljerFagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. kap21 18.01.2016. mg mg. Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk
kap1 18.01.016 TFY4155/FY1003 lektisitet og magnetisme Fagovesyn: lektostatikk, inkl. elektisk støm Magnetostatikk lektodynamikk l.mag. e gunnlag fo: Ketselemente (motstand, kondensato, spole, diode, tansisto)
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 8. a =
TFY414 Fysikk. Institutt for fysikk, NTNU. Lsningsforslg til ving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, s elektronets kselersjon blir = e m E lts mot venstre. b) C Totlt elektrisk felt i
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E
TFY414 Fysikk. Institutt for fysikk, NTNU. Høsten 16. Løsningsforslg til øving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, så elektronets kselersjon blir = e m E ltså mot venstre. b) C Totlt elektrisk
DetaljerMidtsemesterprøve fredag 13. mars 2009 kl (Versjon B)
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Midtsemesterprøve fredg 13. mrs 2009 kl 1415 1615. (Versjon ) Oppgver på side 3 9. Svrtbell på side 11. Sett
DetaljerFagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. mg mg. kap Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk
kap1 14.01.014 TFY4155/FY1003 lektisitet og magnetisme Fagovesyn: lektostatikk, inkl. elektisk støm Magnetostatikk lektodynamikk l.mag. e gunnlag fo: Ketselemente (motstand, kondensato, spole, diode, tansisto)
DetaljerØving 4: Coulombs lov. Elektrisk felt. Magnetfelt.
Lørdgsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 007. Veiledning: 9. september kl 1:15 15:00. Øving 4: oulombs lov. Elektrisk felt. Mgnetfelt. Oppgve 1 (Flervlgsoppgver) ) Et proton med hstighet
DetaljerMidtsemesterprøve fredag 23. mars 2007 kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme I TFY4155 Elektromgnetisme Vår 2007 Midtsemesterprøve fredg 23. mrs 2007 kl 1415 1615. Løsningsforslg 1) I et område er det elektriske feltet
DetaljerØving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
Institutt fo fysikk, NTNU TFY455/FY003: lektisitet og magnetisme Vå 2008 Øving 8 Veiledning: 04.03 i R2 25-400, 05.03 i R2 25-400 Innleveingsfist: Fedag 7. mas kl. 200 (Svatabell på siste side.) Opplysninge:
DetaljerLøsningsforslag SIE4010 Elektromagnetisme 5. mai 2003
Oppgve 1 Løsningsforslg SIE4010 Elektromgnetisme 5. mi 2003 ) Av symmetrigrunner må det elektriske feltet være rdielt rettet og uvhengig v φ, E = E(r)u r.vilrs være overflten til en sylinder med rdius
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk ntuitenskpelige uniesitet Institutt fo elektonikk og telekommuniksjon ide 1 8 Bokmål/Nynosk Fglig/fgleg kontkt unde eksmen: Johnnes k (48497352) Hjelpemidle: C - pesifisete tykte og håndskene
DetaljerLøsning øving 12 N L. Fra Faradays induksjonslov får vi da en indusert elektromotorisk spenning:
nstitutt fo fysikk, NTNU Fg SF 4 Elektognetise og MNFFY 3 Elektisitet og gnetise Høst øsning øving Oppgve Mgnetfeltet inne i solenoiden e : ( H( (N/) ( (dvs fo < R). Utenfo solenoiden: ( > R) Fo å eegne
Detaljer1b) Beregn den elektriske ladningstettheten inni kjernen og finn hvor stor den totale ladningen er.
FYS112 H-211: Løsningsforslg for vsluttende eksmen Oppgve 1 I en modell for en kuleformet tomkjerne med rdius R vrierer det elektriske feltet inne i kjernen som E(r) = Cr(xe x + ye y + ze z ). Her er C
DetaljerMidtsemesterprøve onsdag 7. mars 2007 kl
Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 2007 Midtsemestepøve onsdag 7. mas 2007 kl 1300 1500. Svatabellen stå på side 11. Sett tydelige kyss. Husk å skive
DetaljerTre klasser kollisjoner (eksempel: kast mot vegg)
kap8 2.09.204 Kap. 8 Bevegelsesmengde. Kollisjone. assesente. Vi skal se på: ewtons 2. lov på ny: Definisjon bevegelsesmengde Kaftstøt, impuls. Impulsloven Kollisjone: Elastisk, uelastisk, fullstendig
DetaljerFagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. mg mg. kap Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk
kap 3.0.05 TFY455/FY003 lektisitet og magnetisme Fagovesyn: lektostatikk, inkl. elektisk støm Magnetostatikk lektodynamikk l.mag. e gunnlag fo: Ketselemente (motstand, kondensato, spole, diode, tansisto)
DetaljerKap 21 Elektrisk ladning / Elektrisk felt
Kp lektisk lning / lektisk felt. To like elektiske lninge e plsset i vstn.. Kften so hve v lningene vike på en ne e e.5. Beste støelsen på hve v lningene. b Se so i, en enne gng e en ene lningen obbelt
DetaljerLøsningsforslag Kollokvium 1
Løsningsforslg Kollokvium 1 30. jnur 015 Her finner dere et løsningsforslg for oppgvene som ble diskutert på Kollokvium 1. Oppgve 1 Regning med enheter ) Energienheten 1 ev (elektronvolt) er definert som
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 9.
TFY44 Fysikk. Institutt for fysikk, NTNU. Lsningsforslg til ving 9. Ogve. ) C V E dl dersom dl? E b) B U e 4" r e e 4" r e :6 9 9 9 4:4 ev c) D Totl otensiell energi for et system med unktldninger er i
DetaljerKap. 22. Gauss lov. Vi skal se på: Fluksen til elektrisk felt E Gauss lov. Elektrisk ledere. Integralform og differensialform
Kap. 22. Gauss lov Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform Elektrisk ledere. E-felt fra Coulombs lov: E k q r 2 r E k n q r n 2 0n r 0n dq E k r 2 r tot.
DetaljerKap 28: Magnetiske kilder
: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft qv x B Definisjon
DetaljerKap 28: Magnetiske kilder. Kap 28: Magnetiske kilder. Kap 28. Rottmann integraltabell (s. 137) μ r. μ r. μ r. μ r
Kap 8 Kap 8: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft
DetaljerGauss lov. Kap. 22. Gauss lov. Gauss lov skjematisk. Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform
Kap. 5..6 Kap.. Gauss lov Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform Elektrisk ledere. Efelt fra Coulombs lov: q E k r r E k n q r n n r n dq E k r r tot. ladn.
DetaljerKap 28: Magnetiske kilder
: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft qv x B Definisjon
DetaljerLøsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S =
Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekommuniksjon Side 1 v 5 Løsningsforslg TFE4120 Elektromgnetisme 24. mi 2011 Oppgve 1 ) Av symmetrigrunner må det elektriske
DetaljerMidtsemesterprøve fredag 23. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme I TFY4155 Elektromgnetisme år 2007 Midtsemesterprøve fredg 23. mrs kl 1415 1615. Svrtbellen står på et eget rk. Sett tydelige kryss. Husk å skrive
DetaljerVår 2004 Ordinær eksamen
år Ordinær eksmen. En bil kjører med en hstighet på 9 km/h lngs en rett strekning. Sjåføren tråkker plutselig på bremsene, men gjør dette med økende krft slik t (den negtive) kselersjonen (retrdsjonen)
DetaljerPensum. Fagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. kap21.ppt<file> Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk
kap1.ppt TFY4155/FY1003 Elektisitet og magnetisme Fagovesyn: Elektostatikk, inkl. elektisk støm Magnetostatikk Elektodynamikk El.mag. e gunnlag fo: Ketselemente (motstand, kondensato, spole, diode,
DetaljerPensum. Fagoversyn: kap21.ppt<file> -TFY4155 Elektromagnetisme -FY1003 Elektrisitet og magnetisme
kap1.ppt -TFY4155 Elektomagnetisme -FY1003 Elektisitet og magnetisme Fagovesyn: Elektostatikk, inkl. elektisk støm Magnetostatikk Elektodynamikk El.mag. e gunnlag fo: Ketselemente (motstand, kond.,
DetaljerFasit. Grunnbok. Kapittel 2. Bokmål
Fsit 9 Grunnbok Kpittel Bokmål Kpittel Lineære funksjoner rette linjer. ƒ(x) = 4x + 5 ƒ() = 3 ƒ(4) = ƒ(6) = 9.6 ƒ(x) = -x b ƒ(x) = x b ƒ(x) = (x + ) 3 ƒ() = ƒ(4) = 8 ƒ(6) = 4 ƒ(x) = x 4 ƒ() = - ƒ(4) =
DetaljerLøsning øving 9 ( ) ( ) sin ( )
nsttutt fo fskk, NTNU Fg SF 4 Elektomgnetsme og MNFFY Elektstet og mgnetsme Høst Løsnng øvng 9 Oppgve Ktesske koodnte: Enhetsvektoen stå nomlt på, som dnne en vnkel med -ksen. Det et t dnne en vnkel med
DetaljerA. forbli konstant B. øke med tida C. avta med tida D. øke først for så å avta E. ikke nok informasjon til å avgjøre
Flervlgsoppgver 1. En induktor L og en motstnd R er forbundet til en spenningskilde E som vist i figuren. Bryteren S 1 lukkes og forblir lukket slik t konstnt strøm går gjennom L og R. Så åpnes bryter
DetaljerMandag E = V. y ŷ + V ẑ (kartesiske koordinater) r sin θ φ ˆφ (kulekoordinater)
Institutt fo fysikk, NTNU TFY4155/FY13: Elektisitet og magnetisme Vå 26, uke 6 Mandag 6.2.6 Beegning av E fa V [FGT 24.4; YF 23.5; TM 23.3; F 21.1; LHL 19.9; DJG 2.3.1, 1.2.2] Gadientopeatoen : V = V V
Detaljerdx = 1 2y dy = dx/ x 3 y3/2 = 2x 1/2 + C 1
NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten Løsningsforslg - Øving 7 Avsnitt 6.5 ) En hr t y = e, så y + 3y = e + 3e = e. b) En hr t y = e 3 e (3/), så y + 3y = e 3e (3/) + 3e + 3e (3/) = e. c)
DetaljerSammendrag, uke 14 (5. og 6. april)
Institutt fo fysikk, NTNU TFY4155/FY1003: Elektisitet og magnetisme Vå 2005 Sammendag, uke 14 (5. og 6. apil) Magnetisk vekselvikning [FGT 28, 29; YF 27, 28; TM 26, 27; AF 22, 24B; H 23; DJG 5] Magnetisme
DetaljerOppsummering Fysikkprosjekt
Tekno-/Realstat høsten 011 MTFYMA, BFY, LUR Oppsummeing Fysikkposjekt m? F? v m p a F v? a? p? Lineæ bevegelse Rotasjonsbevegelse Navn: Symbol: Navn: Symbol: distanse masse hastighet akseleasjon kaft bevegelsesmengde,
DetaljerKap. 24 Kapasitans og dielektrika. Van de Graaf generator. Kap 24. Van de Graaf-generator i Gamle fysikk, 1952
Kap. 4 Kapasitans og dielektrika Grunnleggende forståelse for HVA en kondensator er, HVORFOR den virker som den gjør, hvilke BEGRENSINGER den har og hvorfor et DIELEKTRIKUM er påkrevd i en kondensator.
DetaljerLøsningsforslag kapittel 3
Løsningsoslg kpittel 3 3.1 ) Uttykket o (den konigusjonelle) entopien S e gitt ved S k ln W, de W uttykke ntll skillbe mikotilstnde. Siden kystllen inneholde n vknse odelt ove N N! N! tomplsse e W og S
DetaljerTema 2: Stokastiske variabler og sannsynlighetsfordelinger Kapittel 3 ST :44 (Gunnar Taraldsen)
Tem 2: Stokstiske vribler og snnsynlighetsfordelinger Kpittel 3 ST1101 2019-01-13 12:44 (Gunnr Trldsen) Det nts i nottet t S er et utfllsrom utstyrt med en snnsynlighet P (A) for enhver hendelse A F. F
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk ntuitenskpelige uniesitet Institutt fo elektonikk og telekommuniksjon ide 1 8 Fglæe: Johnnes k EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Lødg 25. mi 2013 Oppge 1 En koksilkbel bestå en innelede
DetaljerLØSNINGSFORSLAG TIL EKSAMEN MAI 2007
NTNU Noges teknisk-ntuvitenskpelige univesitet Fkultet fo ntuvitenskp og teknologi Institutt fo mteilteknologi TMT40 KJEMI LØSNINGSFORSLAG TIL EKSAMEN MAI 007 OPPGAVE ) - ph definees som den negtive logitmen
DetaljerPensum. Fagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. kap21.ppt<file> Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk
kap1.ppt TFY4155/FY1003 Elektisitet og magnetisme Fagovesyn: Elektostatikk, inkl. elektisk støm Magnetostatikk Elektodynamikk El.mag. e gunnlag fo: Ketselemente (motstand, kond., spole, diode, tansisto)
DetaljerØving 13, løsningsskisse.
TFY455/FY3 Elektr & mgnetisme Øving 3, løsningsskisse nduksjon Forskyvningsstrøm Vekselstrømskretser nst for fysikk 5 Oppgve nduktns for koksilkbel ) Med strømmen jmt fordelt over tverrsnittet på lederne
DetaljerMEK 4520 BRUDDMEKANIKK Løsningsforslag til obligatorisk øving 1.
- - ME 45 RDDMEAN Løsningsfoslg til obligtoisk øving. Oppgve () Vis t spekkbeiet ( enegy elese te ) fo et lineæ-elstisk mteile e knyttet til ening i komplinsen. Definisjon v : A, F hvo e lget tøyningsenegi
Detaljer1 Mandag 18. januar 2010
Mndg 8. jnur 2 I denne første forelesningen skl vi friske opp litt rundt funksjoner i en vribel, se på hvordn de vokser/vtr, studere kritiske punkter og beskrive krumning og vendepunkter. Vi får ikke direkte
DetaljerLøsningsforslag til Øvingsoppgave 5
Oppgve 5.1 ) Figu 5.1 vise et foenklet tilstndsdigm fo det metstbile system jen-kbon, Fe-C. Skiv på digmmet stuktuelementene og fsene som tilhøe de enkelte flte. Mek v eutektisk og eutektoidisk eksjon
DetaljerMandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4 Mandag 22.01.07 Elektriske feltlinjer [FGT 22.2; YF 21.6; TM 21.5; F 21.6; LHL 19.6; DJG 2.2.1] gir en visuell framstilling
DetaljerLøsningsforslag for eksamen i FY101 Elektromagnetisme torsdag 12. desember 2002
Løsningsfoslag fo eksamen i FY Elektomagnetisme tosdag. desembe Ved sensueing vil alle delspøsmål i utgangspunktet bli gitt samme vekt (uavhengig av oppgavenumme), men vi fobeholde oss etten til justeinge.
DetaljerMAT 1110: Løsningsforslag til obligatorisk oppgave 2, V-06
MAT : Løsningsforslg til obligtorisk oppgve, V-6 Oppgve : ) Hvis = (,,...) og = (,,...) er to vektorer, vil kommndoen >> plot(,) tegne rette forbindelseslinjer mellom punktene (, ), (, ) osv. For å plotte
DetaljerLøsningsforslag til ukeoppgave 11
Oppgave FYS1001 Vå 2018 1 Løsningsfoslag til ukeoppgave 11 Oppgave 23.04 B F m qv = F m 2eV = 6, 3 10 3 T Kaft, magnetfelt og fat stå vinkelett på hveande. Se læebok s. 690. Oppgave 23.09 a) F = qvb =
DetaljerM2, vår 2008 Funksjonslære Integrasjon
M, vår 008 Funksjonslære Integrsjon Avdeling for lærerutdnning, Høgskolen i Vestfold. pril 009 1 Arelet under en grf Vi begynner vår diskusjon v integrsjon, på smme måte som vi begynte med derivsjon, ved
DetaljerBASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12.
BASISÅR I IDRETTSVITENSKAP 1/11 Us indiiduell skiflig eksmen i 1BA 111- Beegelseslæe Mndg. ugus 11 kl. 1.-1. Hjelpemidle: klkulo og elle i fysikk Eksmensoppgen eså 3 side inklude fosiden Sensufis: 1. sepeme
DetaljerNORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME
NORGES LANDBRUKSHØGSKOLE nstitutt for mtemtiske relfg og teknologi EKSAMEN FYS135 - ELEKTROMAGNETSME Eksmensdg: 12. desember 2003 Tid for eksmen: Kl. 14:00-17:00 (3 timer) Tilltte hjelpemidler: B2 - Enkel
DetaljerEKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)
KANDIDATNUMMER: EKSAMEN FAGNAVN: Mtemtikk FAGNUMMER: REA EKSAMENSDATO: 5. desember 6 KLASSE:. klssene, ingenørutdnning. TID: kl. 9... FAGLÆRER: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 7 (innkl. forside
DetaljerKap. 24 Kapasitans og dielektrika
Kap. 24 Kapasitans og dielektrika Grunnleggende forståelse for HVA en kondensator er, HVORFOR den virker som den gjør, hvilke BEGRENSINGER den har og hvorfor et DIELEKTRIKUM er påkrevd i en kondensator.
DetaljerTall i arbeid Påbygging terminprøve våren 2013
Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer
DetaljerBioberegninger - notat 3: Anvendelser av Newton s metode
Bioberegninger - nott 3: Anvendelser v Newton s metode 20. februr 2004 1 Euler-Lotk ligningen L oss tenke oss en populsjon bestående v individer v ulik lder. L n være mksiml lder. L m i være ntll vkom
DetaljerIntegralregning. Mål. for opplæringen er at eleven skal kunne
8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene
DetaljerFY1003 Elektrisitet og magnetisme. Fagoversyn: Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk
FY1003 Elektrisitet og magnetisme Fagoversyn: Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk El.mag. er grunnlag for: Kretselementer (motstand, kondensator, spole, diode, transistor)
Detaljergir g 0 (x) = 2x + x 2 (x + 3) x x 2 x 1 (x + 3) 2 x 5 + 2x 4 + 6x 3 + x 2 + x + 3 x 2 (x + 3) 2 g(x; y) h(x) F (x; y) =
Oppgve ) gir b) c) d) e) f() = 5 4 3 gir f () = 3 6 + 3 g() = + 3 f)når så blir Merk her t = Tilsvrende er gir g () = + ( + 3) ( + 3) 5 + 4 + 6 3 + + + 3 ( + 3) h() = f() gir h () = f () + f() f() = g(;
DetaljerTre klasser kollisjoner (eksempel: kast mot vegg)
Kap. 8 Bevegelsesmengde. Kollsjone. assesente. V skal se på: ewtons. lov på ny: Defnsjon bevegelsesmengde Kollsjone: Kaftstøt, mpuls. Impulsloven Elastsk, uelastsk, fullstendg uelastsk assesente (tyngdepunkt)
Detaljer9 Potenser. Logaritmer
9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner
DetaljerMidtsemesterprøve fredag 10. mars kl
Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 006 Midtsemestepøve fedag 10. mas kl 0830 1130. Svatabellen stå på et eget ak. Sett tydelige kyss. Husk å skive på
DetaljerEffektivitet og fordeling
Effektivitet og fordeling Vi skl svre på spørsmål som dette: Hv etyr det t noe er smfunnsøkonomisk effektivt? Er det forskjell på smfunnsøkonomisk og edriftsøkonomisk effektivitet? Er det en motsetning
DetaljerMer øving til kapittel 2
Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem
Detaljer1 Mandag 25. januar 2010
Mndg 5. jnur Vi fortsetter med å se på det bestemte integrlet, bl.. på hvordn vi kn bruke numeriske beregninger til å bestemme verdien når vi ikke nødvendigvis kn finne en nti-derivert. Videre skl vi t
DetaljerTall i arbeid Påbygging terminprøve våren 2014
Terminprøve våren 014 Tll i rei Påygging terminprøve våren 014 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 1 Skriv tllet Skriv tllet 6 3,15
DetaljerLøsningsforslag Eksamen 30. mai 2007 FY2045 Kvantefysikk
Eksmen FY045 30. mi 007 - løsningsforslg 1 Oppgve 1 Løsningsforslg Eksmen 30. mi 007 FY045 Kvntefysikk. I grensen 0 er potensilet V x et enkelt okspotensil, V = V 0 for < x < 0 og uendelig ellers. Den
DetaljerFAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann
UNISITTT I AGD Gid K S A M N S O P P G A : FAG: FYS Fyikk/Kjei LÆ: Fyikk : Pe Henik Hogd Gehe Lehnn Kle: Do:.. kenid, f-il: 9.. kenoppgen eå følgende Anll ide: 6 inkl. foide / edlegg Anll oppge: 5 Anll
DetaljerLøsningsforslag TEP 4110 FLUIDMEKANIKK 18.desember ρ = = = m / s m / s 0.1
Løsningsfoslag TEP 40 FLUIDMEKNIKK 8.desembe 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d
DetaljerBetinget bevegelse
Betinget bevegelse 1.0.013 innleveing på fonte FYS-MEK 1110 1.0.013 1 Innleveinge aksenavn! enhete! kommente esultatene utegninge: skitt fo skitt, ikke bae esultatet vi tenge å fostå hva du ha gjot sett
DetaljerFagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. mg mg. kap21. Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk
kap1 TFY4155/FY1003 Elektisitet og magnetisme Fagovesyn: Elektostatikk, inkl. elektisk støm Magnetostatikk Elektodynamikk El.mag. e gunnlag fo: Ketselemente (motstand, kondensato, spole, diode, tansisto)
DetaljerLøsningsforslag til eksamensoppgaver i ECON 2200 våren 2015
Løsningsforslg til eksmensogver i ECON 00 våren 05 Ogve (7 oeng) Deriver følgende funskjoner 3 ) f ( ) gir f ( ) 3 ) f ( ) e e( ) gir f ( ) e c) f ( ) ln gir f ( ) 3 3 (3 ) 3 lterntivt f ( ) ln ln 3 gir
Detaljern_angle_min.htm
Kp 9 Rotjon 9.1 En ptikkel beege eg i en ikelbne ed kontnt inkelhtighet lik 1. -1. Siule, ål og beegn ho to inkel diuekto h beeget eg i løpet.. Mek: Mek i checkboken D lik t du ende iuleingen f 3D til
DetaljerKapittel 3. Potensregning
Kpittel. Potensregning I potensregning skriver vi tll som potenser og forenkler uttrykk som inneholder potenser. Dette kpitlet hndler blnt nnet om: Betydningen v potenser som hr negtiv eksponent eller
DetaljerBrøkregning og likninger med teskje
Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 otasjon av stive legeme Vi skal se på: Vinkelhastighet, vinkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) otasjonsenegi E k Teghetsmoment I Kaftmoment τ ulling Spinn (deieimpuls):
DetaljerEKSAMEN I FAG FASTE STOFFERS FYSIKK 2 Fakultet for fysikk, informatikk og matematikk 15 august 2000 Tid:
Side v 6 Nrges teknisk-nturvitenskpelige universitet Institutt fr fysikk Fglig kntkt under eksmen: Nvn: Ol Hunderi Tlf.: 94 EKSMEN I FG 7445 - FSTE STOFFERS FYSIKK Fkultet fr fysikk, infrmtikk g mtemtikk
DetaljerIntegrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016
Integrsjon et supplement til Klkulus Hrl Hnhe-Olsen 14. novemer 2016 Dette nottet er ment som et supplement og elvis lterntiv til eler v kpittel 8 i Tom Linstrøm: Klkulus (åe 3. og 4. utgve). Foruten et
Detaljer