EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
|
|
- Einar Berg
- 7 år siden
- Visninger:
Transkript
1 Noges teknisk ntuitenskpelige uniesitet Institutt fo elektonikk og telekommuniksjon ide 1 8 Fglæe: Johnnes k EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Lødg 25. mi 2013 Oppge 1 En koksilkbel bestå en innelede med dius og en yttelede med inde dius b, se fig. 1. Ant t ledene e ideelle og t kbelen e netto uldet. I hele oppgen holdes potensilet på inneledeen konstnt lik V 0, mens potensilet på ytteledeen e V = 0. Kbelens lengde e mye støe enn b. ) Mellom ledene befinne det seg luft, med pemittiitet ɛ = ɛ 0. Finn det elektiske feltet E oelt. b) Finn potensilet oelt. c) Finn kpsitnsen pe lengdeenhet. d) Koksilkbelen bukes nå til å måle konduktiiteten σ til en æske, se fig. 2. Kbelen senkes ned i æsken slik t omådet 0 < z < L mellom inneledeen og ytteledeen bli fyllt æsken. Det e fotstt en spenning V 0 mellom inne- og ytteledeen, og stømmen måles med et mpeemete. Koksilkbelen e åpen i begge endene og omådet oenfo æsken e fyllt med luft. e bot f ndeffektene. Bestem stømmen I, uttykt ed σ og nde støelse som e oppgitt i oppgen. V = V = V 0 ǫ b b Figu 1: Koksilkbel.
2 ide 2 8 I V 0 0 σ L z Figu 2: Måle konduktiiteten til en æske. e) Ant t mn ikke kn se bot f ndeffektene. Beski hodn mn kn gjøe målinge slik t mn kn få en nøyktig edi på σ. Oppge 2 I denne oppgen skl i se næmee på pinsippene fo en induksjonson. ) Gitt en tettiklet solenoide med N iklinge, lengde l og dius. Pemebiliteten e oelt µ 0. Vi nt fo enkelhets skyld t l, slik t du kn se bot f mgnetfeltet utenfo solenoiden. Finn den mgnetiske flukstettheten B i solenoiden. b) Vi l nå stømmen I iee hmonisk, med fekens f. F esulttet ditt i ) følge det t B-feltet også iee hmonisk, med smme fekens f og en mplitude B 0. En tynn metllplte med dius, tykkelse d og konduktiitet σ, plssees på solenoiden, se fig. 3. Denne plten epesentee ksseollebunnen. Vi se bot f selinduktnsen til plten. Vi se også bot z } d I l Figu 3: En metllplte med tykkelse d e plsset på toppen en solenoide. Denne plten epesentee sele bunnen i ksseollen.
3 ide 3 8 f spedning flukslinje. Demed nt i t B-feltet i plten e unifomt og i z-etning, med mplitude B 0 og fekens f. Vis t φ-komponenten til det indusete elektiske feltet i plten e de α e en fse. E φ = πfb 0 sin(2πft + α), (1) c) Vi nt t det ikke e nde kilde til elektiske felte, slik t E = E φ ˆφ. Finn effekten (pg. ielstømmene J = σe) som me opp plten. d) Ant t plten e lget et feomgnetisk mteile. Finnes det et nnet pinsipp enn ielstømmene oenfo, som il føe til en oppming plten? Oppge 3 En kdtisk sløyfe beege seg med hstighet f uendeligheten mot en lng, ett lede. itusjonen i fig. 4 e ed et gitt tidspunkt t = 0. Pemebiliteten oelt e µ 0, og esistnsen i sløyf kn nts å æe null. z I x Figu 4: En uendelig lng, ett lede, og en kdtisk sløyfe som beege seg med hstighet mot den ette ledeen. ) I deloppge ) og b) nt i t = 0 slik t det ikke gå støm i den kdtiske sløyf. Ant t den ette ledeen kn egnes å æe uendelig lng, h sikulæt tesnitt og sylindesymmetisk fodelt støm. Finn den mgnetiske flukstettheten B oelt utenfo ledeen. b) Vis t den elektomotoiske spenningen (emf en) som indusees i den kdtiske sløyf, kn skies e = µ 0 I 2 2π( t)(2 t). (2)
4 ide 4 8 c) Ant nå t 0. Finn ldningen på den høye kondenstoplten som funksjon tiden. løyfs selinduktns kn nts å æe neglisjeb. Oppge 4 Til het spøsmålene som e stilt nedenfo, e det foeslått 4 s. Oppgi hilket s du mene e best dekkende fo het spøsmål. ene, som ikke skl begunnes, gis i skjemet på siste side. Denne siden ies f og leees inn som del beselsen. Det gis 3 poeng fo het iktig s, 1 poeng fo het glt s og 0 poeng fo ubest. Helgdeing (me enn ett kyss) gi 0 poeng. ) H e iktig om loen D = ρ? i) Det e en esjon Guss lo. ii) Den e på diffeensilfom. iii) Den kn skies om til D d = Q fi, i, de Q fi, i = ρd. He e olumet som omsluttes den lukkede flten. i) Alle ltentiene oenfo. b) To like punktldninge befinne seg en stnd f hende. Det finnes ingen nde kilde til elektiske felte. Vi se på det elektiske feltet E, og potensilet V med uendelig som efense, i et obsesjonspunkt som e midt mellom ldningene. H e d ett? i) E = 0 og V = 0. ii) E 0 og V = 0. iii) E = 0 og V 0. i) Ingen ltentiene oenfo e koekte. c) K. Ule fotelle t det elektiske feltet utenfo ei kule med dius e E = Qˆ 4πɛ 0 2. Du føye til t i) nå kul h totl ldning Q. ii) nå kul h totl ldning Q som e sylindesymmetisk fodelt. iii) nå kul h totl ldning Q som e kulesymmetisk fodelt. i) Nei, dette uttykket gjelde be fo feltet f en punktldning. d) En bllong h blitt oppldet ed å h blitt gnidd mot en gense. Bllongen feste seg til tket og bli så idt sittende, se fig. 5. H et du d om dens totle ldning Q og tyngde mg? Ant t bllongen e kulefomet med dius og t ldningen Q e jent fodelt utoe oeflten. Ant idee t tket h potensilet null oelt og t det ikke fosinne neneedig med ldning f bllongen til tket. i) ii) Q 2 4πɛ 0 2 Q 2 16πɛ 0 2 mg. mg.
5 ide V = 0 Figu 5: En bllong med dius og ldning Q henge i tket. iii) i) Q 4πɛ 0 2 mg. Q 2 4πɛ 0 mg. e) Gitt en genseflte mellom to lineæe, isotope medie, med ɛ 0, ɛ, µ 0 og µ oelt. Det e ingen fi ldningstetthet elle fi stømtetthet på genseflten. På den ene siden flten e feltene E 1 = 0 og B 1 = 0. H kn du si om feltene E 2 og B 2 ett på den nde siden? (I ltentiene nedenfo stå t og n fo henholdsis tngensilkomponent og nomlkomponent.) i) E 2t = 0 og B 2n = 0 mens E 2n og B 2t kn æe ulik null. ii) E 2 = 0 og B 2 = 0. iii) sin(e 2 ) = π/0.53. i) Nei.
6 ide 6 8 Fomle i elektomgnetisme: ef F = Qq 4πɛR ˆR, 2 E = F/q, V P = E dl, V = Q P 4πɛR, E = V, D d = Q fi i, D = ρ, D = ɛ 0 E + P, P = ɛ 0 χ e E, D = ɛe, ɛ = ɛ 0 (1 + χ e ), = Q/V, = ɛ/d, W e = 1 2 V 2, w e = 1 2 D E, p = Qd, J = NQ, J = σe, P J = J Ed, db = µ 0 Idl ˆR 4π R 2, df = Idl B, F = Q(E + B), T = m B, m = I, H = B M, M = χ m H, B = µh, µ = µ 0 (1 + χ m ), µ 0 B = 0, H dl = J d, w m = 1 2 B H, L 12 = Φ 12 I 1 = L 21 = Φ 21 I 2, L = Φ I, W m = 1 2 n I k Φ k = 1 2 k=1 n j=1 k=1 n L jk I j I k, F = ( W m ) uten kilde elle tp, F = +( W m ) I=konst, J + ρ t = 0. Mxwells likninge: E = B t, E dl = H dl = H = J + D t, D = ρ, D d = Q fi i, B = 0, B d = 0. B t d, ( J + D t e = dφ dt, ) d, Potensile i elektodynmikken: B = A, E = V A t, 2 V ɛµ 2 V t 2 = ρ ɛ, 2 A ɛµ 2 A t 2 = µj, V (, t) = 1 ρ(, t R/c)d, A(, t) = µ J(, t R/c)d. 4πɛ R 4π R Gensebetingelse: E 1t = E 2t, D 1n D 2n = ρ sˆn, H 1t H 2t = J s ˆn, B 1n = B 2n. Konstnte: µ 0 = 4π 10 7 H/m ɛ 0 = 1/(µ 0 c 2 0) F/m Lyshstighet i kuum: c 0 = 1/ µ 0 ɛ 0 = m/s m/s Lyshstighet i et medium: c = 1/ µɛ Elementældningen: e = Elektonets hilemsse: m e = kg tndd tyngdekselesjon: g = m/s 2 Gitsjonskonstnt: γ = N m 2 /kg 2.
7 ide 7 8 Diffeensielle ektoidentitete: ˆx V = V (x ilkålig kse) x (V + W ) = V + W (V W ) = V W + W V f(v ) = f (V ) V (A B) = (A )B + (B )A + A ( B) + B ( A) (A + B) = A + B (V A) = V A + A V (A B) = B A A B (A + B) = A + B (V A) = ( V ) A + V A ( A) = 0 ( V ) = 2 V ( V ) = 0 ( A) = ( A) 2 A ylindisk koodintsystem: V = V ˆ + 1 V φ ˆφ + V ẑ A = 1 A = ˆ + ˆφ (A ) ( 1 A z ( A A z 2 V = A φ φ + A z φ A ) φ ) + ẑ ( (Aφ ) A ) φ ( V ) V 2 φ V 2 fæisk koodintsystem: V = V ˆ + 1 V θ ˆθ + 1 V sin θ φ ˆφ Integlidentitete: V d = V d Ad = A d (Diegensteoemet) Ad = d A A d = A dl (tokes teoem) Ktesisk koodintsystem: V = V V ˆx + x y ŷ + V ẑ A = A x x + A y y + A z ( Az A = ˆx + ŷ ( Ax y A ) y ) + ẑ A z x ( Ay x A ) x y A = 1 ( 2 A ) (sin θa θ ) sin θ θ + 1 A φ sin θ φ A = ˆ ( (sin θaφ ) A ) θ sin θ θ φ + ˆθ ( 1 A sin θ φ (A ) φ) + ˆφ ( (Aθ ) A ) θ 2 V = ( 1 2 sin θ 2 V ) θ 1 2 V 2 sin 2 θ φ 2 ( sin θ V θ ) 2 V = 2 V x V y V 2 2 A = ( 2 A x )ˆx + ( 2 A y )ŷ + ( 2 A z )ẑ
8 ide 8 8 EMNE TFE4120 ELEKTROMAGNETIME KANDIDATNR.:... kupong Mek med kyss i de ktuelle utene. Kun ett kyss fo het spøsmål. pøsmål Alt. i) Alt. ii) Alt. iii) Alt. i) ) b) c) d) e)
EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk ntuitenskpelige uniesitet Institutt fo elektonikk og telekommuniksjon ide 1 8 Bokmål/Nynosk Fglig/fgleg kontkt unde eksmen: Johnnes k (48497352) Hjelpemidle: C - pesifisete tykte og håndskene
DetaljerKONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk natuitenskapelige uniesitet Institutt fo elektoniske systeme ide 1 a 7 Faglæe: Johannes kaa KONTINUAJONEKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME August 2017 Alle anlige deloppgae telle 4 poeng.
DetaljerKONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk natuitenskapelige uniesitet Institutt fo elektonikk og telekommunikasjon ide 1 a 7 Faglæe: Johannes kaa KONTINUAJONEKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Tosdag 15. august 2013 Oppgae 1
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk nturitenskpelige uniersitet Institutt for elektronikk og telekommuniksjon ide 1 7 Fglærer: Johnnes kr EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Torsdg 21. mi 2015 Oppge 1 I hele denne oppgen
DetaljerKONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk natuvitenskapelige univesitet Institutt fo elektonikk og telekommunikasjon ide 1 av 8 Bokmål/Nynosk Faglig/fagleg kontakt unde eksamen: Jon Olav Gepstad 41044764) Hjelpemidle: C - pesifisete
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk naturitenskapelige uniersitet Institutt for elektronikk og telekommunikasjon ide 1 a 7 Faglærer: Johannes kaar EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Onsdag 17. august 2016 Oppgae 1 I denne
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk naturitenskapelige uniersitet Institutt for elektronikk og telekommunikasjon ide 1 a 8 Faglærer: Johannes kaar EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Fredag 27. mai 2016 Oppgae 1 En koaksialkabel
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk naturitenskapelige uniersitet Institutt for elektronikk og telekommunikasjon ide 1 a 7 Faglærer: Johannes kaar EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Mandag 3. august 2015 Oppgae 1 a Gitt
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk naturitenskapelige uniersitet Institutt for elektroniske systemer ide 1 a 8 Faglærer: Johannes kaar EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Mandag 29. mai 2017 Alle anlige deloppgaer teller
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisknaturitenskapelige uniersitet Institutt for elektronikk og telekommunikasjon ide 1 a 7 Faglærer: Johannes kaar EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Fredag 15. august 2014 Oppgae 1 a Anta
DetaljerTFE4120 Elektromagnetisme
NTNU IET, IME-fkultetet, Noge teknisk-ntuvitenskpelige univesitet TFE4120 Elektomgnetisme Løsningsfoslg øving 5 Oppgve 1 ) Pg. symmeti h vi E = E()ˆ gjennom hele oppgven. i) Vi l Gussflten S væe oveflten
DetaljerOBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME
ide 1 av 5 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon OBLIGATORIK MIDTEMETERØVING I EMNE TFE
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon ide 1 av 7 Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen: Guro vendsen (73592773) Hjelpemidler: C - pesifiserte
DetaljerKONTIUNASJONSEKSAMEN I EMNE TFE 4130 BØLGEFORPLANTNING
Norges teknisk naturitenskapelige uniersitet Institutt for elektronikk og telekommunikasjon ide 1 a 7 Faglærere: Johannes kaar og Ulf Österberg KONTIUNAJONEKAMEN I EMNE TFE 4130 BØLGEFORPLANTNING August
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 10. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
TFY0 Fysikk. Institutt fo fysikk, NTNU. Høsten 06. Øving 0. Opplysninge: esom ikke nnet e oppgitt, nts det t systemet e i elektosttisk likevekt. esom ikke nnet e oppgitt, e potensil undefostått elektosttisk
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt
DetaljerEKSAMEN I EMNE TFE 4130 BØLGEFORPLANTNING
Norges teknisk naturitenskapelige uniersitet Institutt for elektronikk og telekommunikasjon ide 1 a 8 Faglærere: Johannes kaar og Ulf Österberg EKAMEN I EMNE TFE 4130 BØLGEFORPLANTNING Onsdag 21. desember
DetaljerKONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt
DetaljerOBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME
ide 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon OBLIGATORIK MIDTEMETERØVING I EMNE TFE
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. ving 10.
TFY0 Fysikk. Institutt fo fysikk, NTNU. ving 0. Opplysninge: esom ikke nnet e oppgitt, nts det t systemet e i elektosttisk likevekt. esom ikke nnet e oppgitt, e potensil"undefosttt elektosttisk potensil",
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNVERTETET OLO Det matematisk-naturitenskapelige fakultet Eksamen i: Fys1120 Eksamensdag: Onsdag 12. desember 2018 Tid for eksamen: 0900 1300 Oppgaesettet er på: 5 sider Vedlegg: Formelark Tilatte hjelpemidler
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon ide 1 av 8 Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen: Guro vendsen 73592773) Hjelpemidler: C - pesifiserte
DetaljerØving 6. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme. Veiledning: Uke 7 Innleveringsfrist: Mandag 19. februar.
Institutt fo fsikk, NTNU TFY4155/FY1003: Elektisitet og mgnetisme Vå 2007 Veiledning: Uke 7 Innleveingsfist: Mndg 19. febu Øving 6 Oppgve 1 z Figuen ove vise en gussflte (dvs lukket flte) S fomet som en
DetaljerMidtsemesterprøve onsdag 7. mars 2007 kl Versjon A
Institutt fo fysikk, NTNU FY1003 lektisitet og mgnetisme I TFY4155 lektomgnetisme Vå 2007 Midtsemestepøve onsdg 7. ms 2007 kl 1300 1500. Løsningsfoslg. Vesjon 1) Hvilken påstnd om elektisk potensil e feil?
DetaljerKONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt
DetaljerKONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk naturitenskapelige uniersitet Institutt for elektronikk og telekommunikasjon ide 1 a 8 Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen: Robert Marskar (48222091) Hjelpemidler: C - pesifiserte
DetaljerLøsningsforslag SIE4010 Elektromagnetisme 5. mai 2003
Oppgve 1 Løsningsforslg SIE4010 Elektromgnetisme 5. mi 2003 ) Av symmetrigrunner må det elektriske feltet være rdielt rettet og uvhengig v φ, E = E(r)u r.vilrs være overflten til en sylinder med rdius
DetaljerMidtsemesterprøve torsdag 6. mars 2008 kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2008 Midtsemesterprøve torsdg 6. mrs 2008 kl 1000 1200. Oppgver på side 3 10. Svrtbell på side 11. Sett tydelige
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 9. Veiledning: 18. oktober. Innleveringsfrist: 23. oktober kl 14.
TFY404 Fysikk. Institutt fo fysikk, NTNU. Høsten 203. Øving 9. Veiledning: 8. oktobe. Innleveingsfist: 23. oktobe kl 4. Oppgve ) Figuen vise et unifomt elektisk felt (heltukne linje). Lngs hvilken stiplet
DetaljerLøsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S =
Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekommuniksjon Side 1 v 5 Løsningsforslg TFE4120 Elektromgnetisme 24. mi 2011 Oppgve 1 ) Av symmetrigrunner må det elektriske
DetaljerOBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME
ide 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon OBLIGATORIK MIDTEMETERØVING I EMNE TFE
DetaljerMidtsemesterprøve fredag 13. mars 2009 kl (Versjon B)
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Midtsemesterprøve fredg 13. mrs 2009 kl 1415 1615. (Versjon ) Oppgver på side 3 9. Svrtbell på side 11. Sett
DetaljerNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK
Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK Faglig/fagleg kontakt unde eksamen: Navn: Helge E. Engan Tlf.: 944 EKSAMEN I EMNE SIE415 BØLGEFORPLANTNING
DetaljerØving 9. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
Institutt for fysikk, NTNU TFY4155/FY1003: Elektromgnetisme år 2009 Øving 9 eiledning: Mndg 09. og fredg 13. (evt 06.) mrs Innleveringsfrist: Fredg 13. mrs kl. 1200 (Svrtbell på siste side.) Opplysninger:
DetaljerMandag E = V. y ŷ + V ẑ (kartesiske koordinater) r sin θ φ ˆφ (kulekoordinater)
Institutt fo fysikk, NTNU TFY4155/FY13: Elektisitet og magnetisme Vå 26, uke 6 Mandag 6.2.6 Beegning av E fa V [FGT 24.4; YF 23.5; TM 23.3; F 21.1; LHL 19.9; DJG 2.3.1, 1.2.2] Gadientopeatoen : V = V V
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for fysikalsk elektronikk Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen:
DetaljerMidtsemesterprøve onsdag 7. mars 2007 kl
Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 2007 Midtsemestepøve onsdag 7. mas 2007 kl 1300 1500. Svatabellen stå på side 11. Sett tydelige kyss. Husk å skive
DetaljerLøsningsforslag, Midtsemesterprøve torsdag 6. mars 2008 kl Oppgavene med kort løsningsskisse
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2008 Løsningsforslg, Midtsemesterprøve torsdg 6. mrs 2008 kl 1000 1200. Fsit side 12. Oppgvene med kort løsningsskisse
DetaljerLøsning øving 12 N L. Fra Faradays induksjonslov får vi da en indusert elektromotorisk spenning:
nstitutt fo fysikk, NTNU Fg SF 4 Elektognetise og MNFFY 3 Elektisitet og gnetise Høst øsning øving Oppgve Mgnetfeltet inne i solenoiden e : ( H( (N/) ( (dvs fo < R). Utenfo solenoiden: ( > R) Fo å eegne
DetaljerLøsning øving 9 ( ) ( ) sin ( )
nsttutt fo fskk, NTNU Fg SF 4 Elektomgnetsme og MNFFY Elektstet og mgnetsme Høst Løsnng øvng 9 Oppgve Ktesske koodnte: Enhetsvektoen stå nomlt på, som dnne en vnkel med -ksen. Det et t dnne en vnkel med
DetaljerA. forbli konstant B. øke med tida C. avta med tida D. øke først for så å avta E. ikke nok informasjon til å avgjøre
Flervlgsoppgver 1. En induktor L og en motstnd R er forbundet til en spenningskilde E som vist i figuren. Bryteren S 1 lukkes og forblir lukket slik t konstnt strøm går gjennom L og R. Så åpnes bryter
Detaljer1b) Beregn den elektriske ladningstettheten inni kjernen og finn hvor stor den totale ladningen er.
FYS112 H-211: Løsningsforslg for vsluttende eksmen Oppgve 1 I en modell for en kuleformet tomkjerne med rdius R vrierer det elektriske feltet inne i kjernen som E(r) = Cr(xe x + ye y + ze z ). Her er C
DetaljerOppgave 8.12 Gitt en potensialhvirvel med styrke K i origo. Bestem sirkulasjonen ' langs kurven C. Sirkulasjonen er definert som: ' /
Løsning øving 3 Oppgve 8. Gitt en potensilhvivel med styke i oigo. Bestem sikulsjonen ' lngs kuven C. C y (I oppgven stå det t vi skl gå med klokk, men he h vi gått mot klokk i oveensstemmelse med definisjonen
DetaljerMidtsemesterprøve fredag 23. mars 2007 kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme I TFY4155 Elektromgnetisme Vår 2007 Midtsemesterprøve fredg 23. mrs 2007 kl 1415 1615. Løsningsforslg 1) I et område er det elektriske feltet
DetaljerKap 28: Magnetiske kilder. Kap 28: Magnetiske kilder. Kap 28. Rottmann integraltabell (s. 137) μ r. μ r. μ r. μ r
Kap 8 Kap 8: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft
DetaljerKap. 23 Elektrisk potensial
Kp. 3 Elektisk potensil Skl definee p gunnlg v elektisk felt E: Elektisk potensiell enegi, U Elektisk potensil, V (Ketsteknikk: El. potensilfoskjell spenning) Aeid keves fo føe smmen ldninge Pføt eid gi
DetaljerLøsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A)
Institutt for fysikk, NTNU FY100 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Løsningsforslg, Midtsemesterprøve fredg 1. mrs 2009 kl 1415 1615. Fsit side 10. Oppgvene med kort løsningsforslg
DetaljerKap. 23 Elektrisk potensial
Kp. 23 Elektisk potensil Skl definee på gunnlg v elektisk felt E: Elektisk potensiell enegi, U Elektisk potensil, V (Ketsteknikk: El. potensilfoskjell = spenning) Potensilgdient og elektisk felt. Ekvipotensilflte
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. ving 9.
TFY404 Fsikk. Institutt fo fsikk, NTNU. ving 9. Oppgve ) Figuen vise et unifomt elektisk felt (heltukne linje). Lngs hvilken stiplet linje ende potensilet seg ikke? 2 C 3 D 4 2 3 4 b) Den potensielle enegien
DetaljerFysikkolympiaden Norsk finale 2010
Uniesitetet i Oslo Nosk Fysikklæefoening Fysikkolympiaden Nosk finale. ttakingsnde Fedag 6. mas kl 9. til. Hjelpemidle: abell/fomelsamling, lommeegne og tdelt fomelak Oppgaesettet bestå a 6 oppgae på side
DetaljerLøsningsforslag TFE4120 Elektromagnetisme 13. mai 2004
Løsningsforslag TFE4120 Elektromagnetisme 13. mai 2004 Oppgae 1 a) Speilladningsmetoden gir at potensialet for z > 0 er summen a potensialet pga ladningen Q i posisjon z = h og potensialet pga en speillanding
DetaljerLøsningsforslag til ukeoppgave 11
Oppgave FYS1001 Vå 2018 1 Løsningsfoslag til ukeoppgave 11 Oppgave 23.04 B F m qv = F m 2eV = 6, 3 10 3 T Kaft, magnetfelt og fat stå vinkelett på hveande. Se læebok s. 690. Oppgave 23.09 a) F = qvb =
DetaljerKONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt
DetaljerKONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME
DetaljerEksamen TFY 4240: Elektromagnetisk teori
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Ola Hundei, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektomagnetisk teoi 8 desembe 2007 kl. 09.00-13.00
DetaljerKap 28: Magnetiske kilder
: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft qv x B Definisjon
DetaljerØving 1. Institutt for fysikk, NTNU Fag SIF 4012 Elektromagnetisme og MNFFY 103 Elektrisitet og magnetisme Høst 2002
Institutt fo fysikk, NTNU Fg SIF 4 Elektomgnetisme og MNFFY Elektisitet og mgnetisme Høst Øving Veiledning: Tosdg 9. ugust Innleveingsfist: Tisdg. septembe kl. Oppgve En ldning q e plsset i (,y)(,) og
DetaljerKap 28: Magnetiske kilder
: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft qv x B Definisjon
DetaljerLøsning eksamen TFY desember 2014
Løsning esmen TFY404 8. desembe 04 Oppgve ) Kftdigmmene e vist nedenf f begge lssene g f tins. Ved stm sn h begge lssene smme selesjn. Kefte sm vie på lss med msse m : S m g m Kefte sm vie på lss med msse
DetaljerMidtsemesterprøve fredag 23. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme I TFY4155 Elektromgnetisme år 2007 Midtsemesterprøve fredg 23. mrs kl 1415 1615. Svrtbellen står på et eget rk. Sett tydelige kryss. Husk å skrive
DetaljerEKSAMEN I EMNE SIE 4010 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 8 Fakultet for informatikk, matematikk og elektroteknikk Institutt for fysikalsk elektronikk Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen:
DetaljerOppgave 1 Svar KORT på disse oppgavene:
Løsningsfoslag til Eksamen i FYS000. juni 0 Oppgae Sa KORT på disse oppgaene: a) En kontinuelig stålingskilde il gi et Planckspektum. Desom den kontinuelige stålingskilden passee gjennom en gass, il stålingen
DetaljerNORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME
NORGES LANDBRUKSHØGSKOLE nstitutt for mtemtiske relfg og teknologi EKSAMEN FYS135 - ELEKTROMAGNETSME Eksmensdg: 12. desember 2003 Tid for eksmen: Kl. 14:00-17:00 (3 timer) Tilltte hjelpemidler: B2 - Enkel
Detaljerb) C Det elektriske feltet går radielt ut fra en positivt ladd partikkel.
Løsningsfoslag Fysikk 2 Høst 203 Løsningsfoslag Fysikk 2 Høst 203 Opp Sva Foklaing gave a) B Fomelen fo bevegelsesmengde p = mv gi enheten kg m. s Dette kan igjen skives som: kg m = kg m s s2 s = Ns b)
DetaljerInst. for fysikk 2015 TFY4155/FY1003 Elektr. & magnetisme. Øving 13. Induksjon. Forskyvningsstrøm. Vekselstrømskretser.
Inst for fysikk 2015 TFY4155/FY1003 Elektr & mgnetisme Øving 13 Induksjon Forskyvningsstrøm Vekselstrømskretser Veiledning: Fredg 10 pril ifølge nettsider Innlevering: Mndg 13 pril kl 14:00 SISTE ØVING!
Detaljern_angle_min.htm
Kp 9 Rotjon 9.1 En ptikkel beege eg i en ikelbne ed kontnt inkelhtighet lik 1. -1. Siule, ål og beegn ho to inkel diuekto h beeget eg i løpet.. Mek: Mek i checkboken D lik t du ende iuleingen f 3D til
DetaljerMidtsemesterprøve fredag 10. mars kl
Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 006 Midtsemestepøve fedag 10. mas kl 0830 1130. Svatabellen stå på et eget ak. Sett tydelige kyss. Husk å skive på
DetaljerKlikk (ctrl + klikk for nytt vindu) for å starte simuleringen i SimReal.
Kp 9 Rotjon 9. En ptikkel beege eg i en ikelbne ed kontnt inkelhtighet lik. -. Siule, ål og beegn ho to inkel diuekto h beeget eg i løpet.. Mek: Mek i checkboken D lik t du ende iuleingen f 3D til D. Fjen
DetaljerSammendrag, uke 14 (5. og 6. april)
Institutt fo fysikk, NTNU TFY4155/FY1003: Elektisitet og magnetisme Vå 2005 Sammendag, uke 14 (5. og 6. apil) Magnetisk vekselvikning [FGT 28, 29; YF 27, 28; TM 26, 27; AF 22, 24B; H 23; DJG 5] Magnetisme
DetaljerUNIVERSITETET I OSLO
UNIVESITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: FYS1120 Elektromgnetisme Eksmensdg: 5. oktober 2015 Tid for eksmen: 10.00 13.00 Oppgvesettet er på 8 sider. Vedlegg: Tilltte hjelpemidler:
Detaljera) Z =ˆν/ˆp b) Z =ˆp/ˆν c) Z =ˆν ˆp ν = 1 p
Noregs teknisk naturvitskaplege universitet Institutt for elektronikk og telekommunikasjon Side 1 av 9 Faglig kontakt under eksamen: Name: Ulf Österberg Tel: 46836143 Eksamen i emne TFE4130 B lgeforplantning
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
DetaljerLøsning, eksamen 3FY juni 1999
Løsning, eksamen 3FY juni 1999 Oppgae 1 km/s a) Hubbles lo sie at H, de H. 10 lyså Faten til galaksen e: 3 10 m/s H 5,0 10 7 lyså 1,10 10 m/s 10 lyså b) Dopplefomelen gi oss λ, de c e lysfaten og λ 0 e
DetaljerBASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12.
BASISÅR I IDRETTSVITENSKAP 1/11 Us indiiduell skiflig eksmen i 1BA 111- Beegelseslæe Mndg. ugus 11 kl. 1.-1. Hjelpemidle: klkulo og elle i fysikk Eksmensoppgen eså 3 side inklude fosiden Sensufis: 1. sepeme
DetaljerKONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 KONTNUASJONSEKSAMEN TFY4155 ELEKTOMAGNETSME Fredag 11.
DetaljerØving 13, løsningsskisse.
FY3 Elektr & mgnetisme Øving 3, løsningsskisse nduksjon Forskyvningsstrøm Vekselstrømskretser nst for fysikk 7 Oppgve nduktns for koksilkbel ) Med strømmen jmt fordelt over tverrsnittet på lederne blir
DetaljerLøsningsforslag Fysikk 2 Høst 2014
Løsningsfoslag Fysikk Høst 014 Løsningsfoslag Fysikk Høst 014 Opp Sva Foklaing gave a) D Det elektiske feltet gå adielt ut fa en positivt ladet patikkel. Til høye fo elektonet lage elektonet en feltstyke
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: MEK3220/MEK4220 Kontinuumsmekanikk Eksamensdag: Onsdag 2. desembe 2015. Tid fo eksamen: 09.00 13.00. Oppgavesettet e på 7 side.
DetaljerKONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for fysikalsk elektronikk Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen:
DetaljerFysikk 2 Eksamen høsten Løsningsforslag
Fysikk - Løsningsfoslag Oppgae a) B Beegelsesmengde e gitt som p m og enheten bli defo kgm/s. Samtidig et i at N = kgm/s. Da kan i skie b) C kgm/s kgm/s s N s Vi gi patiklene numme fa til 3, se figuen.
DetaljerTFE4120 Elektromagnetisme
NTNU IET, IME-fakultetet, Norge teknisk-naturitenskapelige uniersitet TFE412 Elektromagnetisme Løsningsforslag repetisjonsøing Oppgae 1 a) i) Her er alternati 1) riktig. His massetettheten er F, il et
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: Eksamensdag: Tid fo eksamen: 14.30 18.30 Oppgavesettet e på 5 side. Vedlegg: Tillatte hjelpemidle: MEK3230 Fluidmekanikk 6. Juni,
DetaljerEKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002/MNFFY101 GENERELL FYSIKK II Lørdag 6. desember 2003 kl Bokmål
ide av 0 NORGE TEKNIK- NATURVITENKAPELIGE UNIVERITET INTITUTT FOR FYIKK Faglig kontakt unde eksamen: Føsteamanuensis Knut Ane tand Telefon: 73 59 34 6 EKAMEN FAG TFY460 ØLGEFYIKK OG FAG FY00/MNFFY0 GENERELL
DetaljerØving 4: Coulombs lov. Elektrisk felt. Magnetfelt.
Lørdgsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 007. Veiledning: 9. september kl 1:15 15:00. Øving 4: oulombs lov. Elektrisk felt. Mgnetfelt. Oppgve 1 (Flervlgsoppgver) ) Et proton med hstighet
DetaljerKap. 22. Gauss lov. Gauss lov skjematisk. Eks.1: Homogent ladd kule =Y&F Ex = LHL Vi skal se på: Fluksen til elektrisk felt E Gauss lov
Kap.. Gauss lov Vi skal se på: Fluksen til elektisk felt E Gauss lov Integalfom og diffeensialfom Elektisk ledee. Efelt fa Coulombs lov: q E = k E = k å n q n n n dq E= k ò tot. ladn. Punktladn Flee punktladn.
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 4. desember
DetaljerFAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann
UNISITTT I AGD Gid K S A M N S O P P G A : FAG: FYS Fyikk/Kjei LÆ: Fyikk : Pe Henik Hogd Gehe Lehnn Kle: Do:.. kenid, f-il: 9.. kenoppgen eå følgende Anll ide: 6 inkl. foide / edlegg Anll oppge: 5 Anll
DetaljerEKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
DetaljerLøsningsforslag TEP 4110 FLUIDMEKANIKK 18.desember ρ = = = m / s m / s 0.1
Løsningsfoslag TEP 40 FLUIDMEKNIKK 8.desembe 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d
DetaljerLøsningsforslag til eksempeloppgave 2 i fysikk 2, 2009
Fysikk Eksempeloppgae Løsningsfoslag il eksempeloppgae i fysikk, 9 Del Oppgae Rikige sa på flealgsoppgaene a x e: a) C b) D c) B d) C e) C f) D g) C h) D i) B j) C k) A l) B m) A n) D o) B p) D q) D )
DetaljerØving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)
Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen
DetaljerFysikk 2 Eksamen høsten Løsningsforslag
Fysikk - Løsninsfosla Oae a) C De elektiske keftene e tiltekkende fodi atiklene ha ulike ladnine. q q F ke k q e b) B Abeidet e lik intealet oe kaften som må bukes fo å flytte leemet mellom ensene o. Kaften
DetaljerKonstanter og formelsamling for kurset finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side enn selve oppgaven
UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Avsluttende eksamen i AST2000, 17. desembe 2018, 09.00 13.00 Oppgavesettet inkludet fomelsamling e på 8 side Tillatte hjelpemidle: 1) Angel/Øgim
Detaljerρ = = = m / s m / s Ok! 0.1
Løsningsfoslag TEP 00 FLUIDMEKNIKK.juni 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d g 6
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTISITET OG MAGNETISME I TFY4155
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E
TFY414 Fysikk. Institutt for fysikk, NTNU. Høsten 16. Løsningsforslg til øving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, så elektronets kselersjon blir = e m E ltså mot venstre. b) C Totlt elektrisk
DetaljerEKSAMEN i TFY4155/FY1003 ELEKTRISITET OG MAGNETISME
Side 1 av 7 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL EKSAMEN i TFY4155/FY1003 ELEKTRISITET OG MAGNETISME Eksamensdato: Tirsdag 24 mai 2011 Eksamenstid: 09:00-13:00 Faglig
DetaljerEksamen i TFE4130 Bølgeforplantning
Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon Side 1 av 5 Faglig kontakt under eksamen Navn: Ulf Österberg Tlf: 46 83 61 43 Eksamen i TFE4130 Bølgeforplantning
Detaljer