Midtsemesterprøve fredag 10. mars kl
|
|
- Ina Dahlen
- 7 år siden
- Visninger:
Transkript
1 Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 006 Midtsemestepøve fedag 10. mas kl Svatabellen stå på et eget ak. Sett tydelige kyss. Husk å skive på studentnumme. LV INN Å OPPGVTKSTN OG SVTLLN Tillatte hjelpemidle: K. ottmann: Matematisk fomelsamling. (lle tilsvaende.) O. Øgim og.. Lian: Støelse og enhete i fysikk og teknikk elle.. Lian og. ngell: Fysiske støelse og enhete. Typegodkjent kalkulato, med tomt minne, i henhold til liste utabeidet av NTNU. (HP30S elle lignende.) Fomelsamling lektostatikk e inkludet på baksiden av dette aket. Opplysninge: Pøven bestå av 40 oppgave. Hve oppgave ha ett iktig og te gale svaaltenativ. u skal kysse av fo ett svaaltenativ på hve oppgave. vkyssing fo me enn ett altenativ elle ingen altenativ betaktes som feil sva og gi i begge tilfelle null poeng. esom ikke annet e oppgitt, antas det at systemet e i elektostatisk likevekt. esom ikke annet e oppgitt, e potensial undefostått elektostatisk potensial, og tilsvaende fo potensiell enegi. esom ikke annet e oppgitt, e nullpunkt fo potensial og potensiell enegi valgt uendelig langt bote. Metall e synonymt med elektisk lede. Isolato e synonymt med dielektikum. Noen natukonstante: ε 0 = /Nm, 1/4πε 0 = Nm /, e = , m e = kg, m p = kg, g = 9.8 m/s, c = m/s. Symbole angis i kusiv (f.eks V fo potensial) mens enhete angis uten kusiv (f.eks V fo volt). SI-pefikse: M (mega) = 10 6, k (kilo) = 10 3, c (centi) = 10, m (milli) = 10 3, µ (miko) = 10 6, n (nano) = 10 9, p (piko) = Omkets av sikel: π. eal av kuleflate: 4π. Volum av kule: 4π 3 /3. Gadient i katesiske koodinate: f = ( f/ ) ˆ ( f/ y) ŷ ( f/ z) ẑ Gadient av kulesymmetisk funksjon f(): f = ( f/ ) ˆ 1
2 Fomelsamling lektostatikk d angi flateintegal og dl angi linjeintegal. angi integal ove lukket flate elle undt lukket kuve. Fete symbole angi vektoe. Symbole med hatt ove angi enhetsvektoe. Fomlenes gyldighetsomåde og de ulike symbolenes betydning antas foøvig å væe kjent. oulombs lov: lektisk felt og potensial: lektisk potensial fa punktladning: lektisk fluks: F = qq 4πε 0 ˆ = V V = V V = V = q 4πε 0 φ = d dl lektostatisk kaft e konsevativ: dl = 0 Gauss lov fo elektisk felt og elektisk foskyvning: ε 0 d = q lektisk foskyvning: d = q fi ε 0 P = ε ε 0 = ε lektisk dipolmoment; geneelt, fo omåde Ω med fodeling av ladning: p = dq lektisk dipolmoment; fo punktladninge ±q i avstand d: Ω p = qd lektisk polaiseing = elektisk dipolmoment p volumenhet: Lineæ espons: Kapasitans: P = p V P = ε 0 χ e = q V negitetthet (enegi p volumenhet) i elektisk felt: u = 1 ε 0
3 Oppgave 1) Vi ha som kjent sammenhengene F = q og = V mellom elektostatisk kaft F, felt og potensial V. Supeposisjonspinsippet gjelde fo alle disse te støelsene. bae fo F og. bae fo V. bae fo F. ) t poton med hastighet v = v 0 ŷ komme inn i et omåde de det elektiske feltet e unifomt, og ettet langs positiv z-akse. Potonet vil da fotsette med uendet hastighet v. bevege seg langs en bane i yz-planet. ette hvet komme ut av omådet med unifomt felt, og da med hastighet v 0 ŷ. bevege seg langs en spialfomet bane omking z-aksen. 3) Mellom et elekton og et poton i innbydes avstand 4 nm vike det en elektisk kaft på 14.4 pn 14.4 nn 14.4 µn 14.4 mn 4) Potensialet V () = V 0 fo <, V () = V 0 / fo tilsvae en jevnt fodelt ladning på et ledende kuleskall med adius, foutsatt at det e vakuum inni. foutsatt at det e metall inni. foutsatt at det e et dielektisk medium inni. med et vilkålig elektisk nøytalt medium inni. 3
4 5) Hvilken figu vise potensialet V () fa to uendelig stoe paallelle plan med ladning henholdsvis σ og σ p flateenhet? 1 V V V 4 V 6) I et omåde e det elektiske feltet = 0 (ˆ 3ŷ ẑ) Hva e da potensialfoskjellen mellom punktene (0, 0, 0) og (a, a, a)? 6 0 a 0 a 0 a 0 7) I et omåde e potensialet V (, y) = 50 V 10 V m 4 y et elektiske feltet i dette omådet e da (50 V/m)ˆ (10 V/m)(ˆ ŷ) 0 (0 V/m 4 )y(yˆ ŷ) 8) Med samme V (, y) som i oppgave 7, hva e potensialfoskjellen mellom oigo og posisjonen (, y) = ( m, 3 m)? 60 V 110 V 360 V 410 V 4
5 9) Hvis potensialet V () e som vist i gaf 1, hvilken gaf vise da det elektiske feltet ()? (slik at () = ()ˆ) V ) Potensialet på et uendelig stot positivt ladet plan velges lik 1 kv. kvipotensialplanene de V = 0 ligge i avstand 1 m fa det ladede planet. Hvo sto e da planets ladning p flateenhet? 18 /m 18 m/m 18 µ/m 18 n/m 11) To positivt ladede metallkule e fobundet med en lang metalltåd. Kule 1 e minde enn kule. Vi anta at avstanden mellom de to kulene e så lang at netto ladning e kulesymmetisk fodelt på de to kulene. Hvilken av følgende påstande e da koekt? Potensialet på kule 1 e støe enn på kule. Netto ladning på kule 1 e støe enn på kule. en elektiske feltstyken e støe på oveflaten av kule 1 enn på oveflaten av kule. en potensielle enegien til ladningen på kule 1 e støe enn den potensielle enegien til ladningen på kule. 1) n paallellplatekondensato bestå av to like stoe metallplate, hve med aeal, med innbydes avstand d. Med ladning henholdsvis Q og Q på de to platene e potensialfoskjellen mellom dem V. Kondensatoens kapasitans e definet som = Q/ V. nta at platenes lineæe utstekning ( ) e mye støe enn avstanden mellom dem, og at ommet mellom platene e fylt med luft ( vakuum). esom = 0.1 m og d = 0. mm, bli kondensatoens kapasitans 4.4 mf 4.4 µf 4.4 nf 4.4 pf 5
6 13) Hvilken av pilene angi koekt etning fo total kaft på ladningen q i øve høye hjøne av kvadatet? q 1 q q 3q 14) i kule med adius ha unifom ladningstetthet (dvs: ladning p volumenhet) ρ() = ρ 0. Fastslå, ved hjelp av Gauss lov, hvilken gaf i figuen til høye som epesentee støelsen av den esulteende elektiske feltstyken som funksjon av avstanden fa kulas sentum ) To positive punktladninge q 1 og q ligge på -aksen som vist i figuen. I hvilke av de te angitte posisjonene, og kan det da tenkes at = 0? (e to ladningene e ikke nødvendigvis like stoe.) ae i. I elle. I, elle. Veken i, elle. q q 1 6
7 16) Hvilket utsagn e ikke iktig? n elektisk dipol kan bli utsatt fo en nettokaft F 0 i et unifomt elektisk felt. n elektisk dipol kan bli utsatt fo en nettokaft F 0 i et ikke-unifomt elektisk felt. n elektisk dipol kan bli utsatt fo et deiemoment τ 0 i et unifomt elektisk felt. n elektisk dipol kan bli utsatt fo et deiemoment τ 0 i et ikke-unifomt elektisk felt. 17) i metallkule ha adius og positiv ladning Q. Kula e omgitt av et lag elektisk nøytal plast (dvs: dielektikum) med tykkelse og elativ pemittivitet 4. Hvilken gaf illustee polaiseingen P som funksjon av avstanden fa metallkulas sentum? P 1 P ε =4 Q metall P 3 P 4 plast 18) Fo samme plastbelagte metallkule som i oppgave 17: Hvilken gaf illustee støelsen av den elektiske feltstyken som funksjon av avstanden fa metallkulas sentum?
8 19) To tilnæmet uendelig stoe paallelle metallplate ha ladning henholdsvis σ og σ p flateenhet. Volumet mellom platene bestå av, fa venste mot høye, et lag med dielektikum med elativ pemittivitet 5, et lag med luft, et lag med metall og et lag med dielektikum med elativ pemittivitet (se figuen). ange den elektiske feltstyken i de fie angitte posisjonene midt inne i hvet av de fie lagene. 1 = = 3 = 4 1 > 4 > > 3 > 4 > 1 > 3 1 > > 3 > 4 ε ε =5 luft metall = σ σ 0) Fo samme system som i oppgave 19: ange potensialet i de fie angitte posisjonene midt inne i hvet av de fie lagene. V 1 = V = V 3 = V 4 V 1 > V 4 > V > V 3 V > V 4 > V 1 > V 3 V 1 > V > V 3 > V 4 1) Vannmolekylet kan betaktes som te punktladninge q, q og q, med innbydes avstande a og vinkel ϕ som vist i figuen. esom q = 0.30e, a = nm og ϕ = 105, hvo stot e da vannmolekylets elektiske dipolmoment, målt i enheten e nm? null O = q H H q q a ϕ a ) n paallellplatekondensato bestå av to tilnæmet uendelig stoe paallelle metallplate i innbydes avstand d. Med vakuum i hele ommet mellom platene e kapasitansen 0. n dielektisk skive med tykkelse d/3, elativ pemittivitet ε, og samme aeal som de to oppinnelige metallplatene, settes inn mellom platene som vist i figuen. Hva bli da kondensatoens kapasitans 1? 1 = 0 3ε /(1 ε ) 1 = 0 3ε 1 = 0 (1 ε ) 1 = 0 ε /(3 ε ) d/3 ε d 8
9 3) To positive og to negative punktladninge, alle fie like stoe i absoluttvedi (q > 0), e plasset i hvet sitt hjøne av et kvadat med sidekant a, se figuen til høye. Potensialet midt mellom de to positive ladningene, dvs i punkt, e V, og potensialet midt mellom de to negative ladningene, dvs i punkt 1, e V 1. Hvo sto e potensialfoskjellen mellom disse to punktene, V = V V 1? (V 0 q/πε 0 a) V = V 0 ( 1 5 1/ ) V = 4V 0 ( 1 3 1/ ) V = 4V 0 ( 1 3 1/ ) V = V 0 ( 5 1/ 1 ) a q q a 1 3 q q 4) Fo systemet i oppgave 3: Hvo sto e den potensielle enegien U, i fohold til om de fie ladningene va uendelig langt fa hveande? (U 0 q /πε 0 a) U = 0 U = U 0 ( 1 1/ ) U = 3/ U 0 U = 1/ U 0 5) Fo systemet i oppgave 3: I hvilken etning peke det elektiske feltet i punkt 3, dvs midt på fobindelseslinjen mellom de to nedeste ladningene? Mot høye. Nedove. Mot venste. Oppove. 9
10 6) Figuen vise den elektiske feltstyken som funksjon av en vaiabel. Hva slags fysisk system vil esultee i en slik ()? i tilnæmet uendelig sto skive med tykkelse 0 og unifom ladning p volumenhet, de angi avstanden fa planet midt i skiva. i tilnæmet uendelig sto metallisk skive med tykkelse 0, de angi avstanden fa planet midt i skiva. i kule med adius 0 og unifom ladning p volumenhet, de angi avstanden fa kulas sentum. i metallkule med adius 0, de angi avstanden fa kulas sentum. 0 7) To tilnæmet uendelig stoe paallelle metallplate og e plasset i henholdsvis =.0 m og =.0 m som vist i figuen nedenfo. t unifomt elektisk felt mellom platene på.0 kv/m (i positiv -etning) e geneet av ladning på metallplatene. Vi velge V = 0 på midtplanet ved = 0. t poton state i = 0 med hastighet v 0 = m/s i negativ -etning. Hva bli dette potonets skjebne? et teffe venste plate med hastighet m/s. et teffe venste plate med hastighet m/s. et teffe høye plate med hastighet m/s. et teffe høye plate med hastighet m/s. v 0 e =.0m =0 =.0m ( V =0) 8) Potensialfoskjellen mellom de to metallplatene i oppgave 7 e 500 V 000 V 4000 V 8000 V 10
11 9) Figuen vise to hule konsentiske metallkule med netto ladning Q (på inneste kule) og Q (på ytteste kule). egge kuleskallene ha en viss tykkelse. Yte adius til inde kuleskall e, mens inde adius til yte kuleskall e. (Sjiktet med vakuum mellom de to kuleskallene ha med ande od tykkelse. Hvo mye ladning e fodelt på yte oveflate av det ytteste kuleskallet? Q Q 0 Q P 4 Q metall vakuum Q 30) Fo systemet i oppgave 9: Hva e den elektiske feltstyken i punktet P (i avstand 4 fa sentum av de to kulene)? Null Q/16πε 0 Q/8πε 0 Q/4πε 0 31) Fo systemet i oppgave 9: Hva e potensialfoskjellen mellom sentum av de to kulene og punktet P? Null Q/16πε 0 Q/8πε 0 Q/4πε 0 11
12 3) To punktladninge Q og Q ligge (fast) på -aksen med innbydes avstand a, henholdsvis i posisjonene = a og = 0 som vist i figuen. n tedje patikkel (også punktfomet) ha ladning Q, masse M, e fi til å bevege seg, og slippes med null stathastighet i posisjonen = a. Hvo sto e akseleasjonen til denne patikkelen umiddelbat ette at den slippes? 3Q /16πε 0 Ma Q /4πε 0 Ma Q Q Q,M 3Q /8πε 0 Ma Q /4πε 0 a =0 =a =a 33) Fo patikkelen med ladning Q og masse M i oppgave 3: Hvilken hastighet vil den ha oppnådd nå den ha kommet langt ut på -aksen ( )? (3Q /16πε 0 Ma) 1/ (3Q /16πε 0 Ma ) 1/ (Q /4πε 0 Ma) 1/ (Q /8πε 0 a) 1/ 34) Figuen vise et system de y-planet epesentee ekvipotensialflaten V = 0. Hva kan du da si om det elektiske feltet = ˆ y ŷ z ẑ i de fie angitte punktene 1,, 3 og 4 (som alle ligge i y-planet)? z = 0 i alle de fie punktene. = e like sto i alle de fie punktene. = y = 0 i alle de fie punktene. z = 0 i alle de fie punktene yplanet 35) To stoe paallelle metallplate ha aeal og ligge i innbydes avstand d. ( d) en øveste platen ha ladning Q, den nedeste platen ha ladning Q. Hvo sto e den innbydes kaften F som vike mellom de to platene? Q /ε 0 Q /ε 0 Q /4πε 0 d Q /4πε 0 Q, Q, F d 1
13 36) Hvo sto potensiell enegi U ha en elektisk dipol med dipolmoment p i et elektisk felt? U = p U = p U = p U = p 37) Ved omtempeatu og nomalt tykk ha en O-gass en elektisk susceptibilitet χ e = tt mol (dvs molekyle) av en slik gass okkupee et volum v m = 0.04 m 3. esom O-gass plassees i et unifomt yte felt 0 = 10 kv/m, vil vi få en polaiseing i gassen, gitt ved P = χ e ε 0, de e totalt elektisk felt. Hvo sto andel utgjø da polaiseingen P av maksimal teoetisk polaiseing P ma, de P ma tilsvae en tenkt situasjon med samtlige O-molekyle oientet i samme etning? Hvet O-molekyl ha et pemanent elektisk dipolmoment p = m. P/P ma = P/P ma = P/P ma = P/P ma = ) Figuen vise ei metallkule med adius og netto ladning Q, omgitt av et luftlag med tykkelse, ettefulgt av et metallisk kuleskall med tykkelse og null netto ladning. Hvo sto e den totale potensielle enegien til dette systemet? (Tips: estem () ved hjelp av Gauss lov, og beegn deette enegien laget i det elektiske feltet.) luft metall 3 Q /16πε 0 5Q /48πε 0 Q /4πε 0 5Q /4πε 0 luft metall Q 13
14 39) Figuen vise en tynn sikulæ ing med adius, og med unifom ladning λ p lengdeenhet på øveste halvdel og unifom ladning λ p lengdeenhet på nedeste halvdel. Hvilken pil angi da iktig etning på det elektiske feltet i punktet P (som ligge i samme plan som ingen, og på linja som halvee ingen)? P 3 _ 40) Hva e det elektiske dipolmomentet til ingen i oppgave 39? p = πλ /4 p = 4λ p = πλ p = 8λ 14
Midtsemesterprøve onsdag 7. mars 2007 kl
Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 2007 Midtsemestepøve onsdag 7. mas 2007 kl 1300 1500. Svatabellen stå på side 11. Sett tydelige kyss. Husk å skive
DetaljerØving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
Institutt fo fysikk, NTNU TFY455/FY003: lektisitet og magnetisme Vå 2008 Øving 8 Veiledning: 04.03 i R2 25-400, 05.03 i R2 25-400 Innleveingsfist: Fedag 7. mas kl. 200 (Svatabell på siste side.) Opplysninge:
DetaljerMandag E = V. y ŷ + V ẑ (kartesiske koordinater) r sin θ φ ˆφ (kulekoordinater)
Institutt fo fysikk, NTNU TFY4155/FY13: Elektisitet og magnetisme Vå 26, uke 6 Mandag 6.2.6 Beegning av E fa V [FGT 24.4; YF 23.5; TM 23.3; F 21.1; LHL 19.9; DJG 2.3.1, 1.2.2] Gadientopeatoen : V = V V
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 10. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
TFY0 Fysikk. Institutt fo fysikk, NTNU. Høsten 06. Øving 0. Opplysninge: esom ikke nnet e oppgitt, nts det t systemet e i elektosttisk likevekt. esom ikke nnet e oppgitt, e potensil undefostått elektosttisk
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. ving 10.
TFY0 Fysikk. Institutt fo fysikk, NTNU. ving 0. Opplysninge: esom ikke nnet e oppgitt, nts det t systemet e i elektosttisk likevekt. esom ikke nnet e oppgitt, e potensil"undefosttt elektosttisk potensil",
DetaljerMidtsemesterprøve fredag 10. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2006 Midtsemesterprøve fredag 10. mars kl 0830 1130. Løsningsforslag 1) A. (Andel som svarte riktig: 83%) Det
DetaljerMidtsemesterprøve onsdag 7. mars 2007 kl Versjon A
Institutt fo fysikk, NTNU FY1003 lektisitet og mgnetisme I TFY4155 lektomgnetisme Vå 2007 Midtsemestepøve onsdg 7. ms 2007 kl 1300 1500. Løsningsfoslg. Vesjon 1) Hvilken påstnd om elektisk potensil e feil?
DetaljerMidtsemesterprøve torsdag 7. mai 2009 kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Våren 2009 Tillatte hjelpemidler: Midtsemesterprøve torsdag 7. mai 2009 kl 09.15 11.15. Oppgaver på side 5 10. Svartabell
DetaljerSammendrag, uke 14 (5. og 6. april)
Institutt fo fysikk, NTNU TFY4155/FY1003: Elektisitet og magnetisme Vå 2005 Sammendag, uke 14 (5. og 6. apil) Magnetisk vekselvikning [FGT 28, 29; YF 27, 28; TM 26, 27; AF 22, 24B; H 23; DJG 5] Magnetisme
DetaljerEKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002/MNFFY101 GENERELL FYSIKK II Lørdag 6. desember 2003 kl Bokmål
ide av 0 NORGE TEKNIK- NATURVITENKAPELIGE UNIVERITET INTITUTT FOR FYIKK Faglig kontakt unde eksamen: Føsteamanuensis Knut Ane tand Telefon: 73 59 34 6 EKAMEN FAG TFY460 ØLGEFYIKK OG FAG FY00/MNFFY0 GENERELL
DetaljerKONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk natuvitenskapelige univesitet Institutt fo elektonikk og telekommunikasjon ide 1 av 8 Bokmål/Nynosk Faglig/fagleg kontakt unde eksamen: Jon Olav Gepstad 41044764) Hjelpemidle: C - pesifisete
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 9. Veiledning: 18. oktober. Innleveringsfrist: 23. oktober kl 14.
TFY404 Fysikk. Institutt fo fysikk, NTNU. Høsten 203. Øving 9. Veiledning: 8. oktobe. Innleveingsfist: 23. oktobe kl 4. Oppgve ) Figuen vise et unifomt elektisk felt (heltukne linje). Lngs hvilken stiplet
DetaljerFysikk-OL Norsk finale 2005
Univesitetet i Oslo Nosk Fysikklæefoening Fysikk-OL Nosk finale 005 3. uttakingsunde Tid: Fedag 5. apil kl 09.00.00 Hjelpemidle: Tabell/fomelsamling, gafisk lommeegne Oppgavesettet bestå av 7 oppgave på
DetaljerKONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 KONTNUASJONSEKSAMEN TFY4155 ELEKTOMAGNETSME Fredag 11.
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 4. desember
DetaljerLadning og kapasitans
FY13 Elektisitet og magnetisme Vå 9 Faglæe: Tho Bent Melø Institutt fo fysikk, NTNU Laboatoieøvelse 3 Ladning og kapasitans I denne laboatoieoppgaven vil vi studee sammenhengen mellom kapasitans, ladning
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl K. Rottmann: Matematisk formelsamling (eller tilsvarende).
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 17. desember
DetaljerFrivillig test 5. april Flervalgsoppgaver.
Inst for fysikk 2013 TFY4155/FY1003 Elektr & magnetisme Frivillig test 5 april 2013 Flervalgsoppgaver Kun ett av svarene rett Du skal altså svare A, B, C, D eller E (stor bokstav) eller du kan svare blankt
DetaljerLøsningsforslag for eksamen i FY101 Elektromagnetisme torsdag 12. desember 2002
Løsningsfoslag fo eksamen i FY Elektomagnetisme tosdag. desembe Ved sensueing vil alle delspøsmål i utgangspunktet bli gitt samme vekt (uavhengig av oppgavenumme), men vi fobeholde oss etten til justeinge.
DetaljerKONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME
DetaljerEksamen TFY 4240: Elektromagnetisk teori
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Ola Hundei, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektomagnetisk teoi 8 desembe 2007 kl. 09.00-13.00
DetaljerKONTINUASJONSEKSAMEN I FAG SIF4028 FYSIKK MED ELEKTROMAGNETISME Mandag 7. august 2000 Tid:
Sie 1 av 9 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt une eksamen: Navn: Ragnval Mathiesen Tlf. 93584 KONTINUASJONSEKSAMEN I FAG SIF48 FYSIKK MED ELEKTROMAGNETISME
DetaljerEKSAMEN I FAG SIF 4008 FYSIKK Mandag 7. mai 2001 kl Bokmål. K. Rottmann: Matematisk formelsamling
Side 1 av 1 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Føsteamanuensis Knut Ane Stand Telefon: 73 59 34 61 EKSAMEN I FAG SIF 48 FYSIKK Mandag 7. mai
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTISITET OG MAGNETISME I TFY4155
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.
TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =
DetaljerLøsningsforslag til ukeoppgave 11
Oppgave FYS1001 Vå 2018 1 Løsningsfoslag til ukeoppgave 11 Oppgave 23.04 B F m qv = F m 2eV = 6, 3 10 3 T Kaft, magnetfelt og fat stå vinkelett på hveande. Se læebok s. 690. Oppgave 23.09 a) F = qvb =
DetaljerMidtsemesterprøve torsdag 6. mars 2008 kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2008 Midtsemesterprøve torsdg 6. mrs 2008 kl 1000 1200. Oppgver på side 3 10. Svrtbell på side 11. Sett tydelige
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
Detaljerb) C Det elektriske feltet går radielt ut fra en positivt ladd partikkel.
Løsningsfoslag Fysikk 2 Høst 203 Løsningsfoslag Fysikk 2 Høst 203 Opp Sva Foklaing gave a) B Fomelen fo bevegelsesmengde p = mv gi enheten kg m. s Dette kan igjen skives som: kg m = kg m s s2 s = Ns b)
DetaljerKONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk natuitenskapelige uniesitet Institutt fo elektonikk og telekommunikasjon ide 1 a 7 Faglæe: Johannes kaa KONTINUAJONEKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Tosdag 15. august 2013 Oppgae 1
DetaljerFagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. kap21 18.01.2016. mg mg. Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk
kap1 18.01.016 TFY4155/FY1003 lektisitet og magnetisme Fagovesyn: lektostatikk, inkl. elektisk støm Magnetostatikk lektodynamikk l.mag. e gunnlag fo: Ketselemente (motstand, kondensato, spole, diode, tansisto)
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 10.
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 015. Løsningsforslag til øving 10. Oppgave A B C D 1 x x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 1 x 13 x 14 x 15 x 16 x 17 x 18 x 9 x 0 x 1) Glass-staven
DetaljerBetinget bevegelse
Betinget bevegelse 1.0.013 innleveing på fonte FYS-MEK 1110 1.0.013 1 Innleveinge aksenavn! enhete! kommente esultatene utegninge: skitt fo skitt, ikke bae esultatet vi tenge å fostå hva du ha gjot sett
DetaljerFysikkolympiaden 1. runde 25. oktober 5. november 2004
Nosk Fysikklæefoening Nosk Fysisk Selskaps fagguppe fo undevisning Fysikkolympiaden 1. unde 5. oktobe 5. novembe 004 Hjelpemidle: abell og fomelsamlinge i fysikk og matematikk Lommeegne id: 100 minutte
Detaljera) C Det elektriske feltet går radielt ut fra en positivt ladet partikkel og radielt innover mot en negativt ladd partikkel.
Løsningsfoslag Fysikk 2 Vå 2015 Løsningsfoslag Fysikk 2 Vå 2015 Oppgav e Sva Foklaing a) C Det elektiske feltet gå adielt ut fa en positivt ladet patikkel og adielt innove mot en negativt ladd patikkel.
DetaljerLøsningsforslag Fysikk 2 Høst 2014
Løsningsfoslag Fysikk Høst 014 Løsningsfoslag Fysikk Høst 014 Opp Sva Foklaing gave a) D Det elektiske feltet gå adielt ut fa en positivt ladet patikkel. Til høye fo elektonet lage elektonet en feltstyke
DetaljerFAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVERITETET I AGDER Gimstad E K A M E N O P P G A V E : FAG: MA-9 Matematikk ÆRER: Pe enik ogstad Klasse: Dato:.6. Eksamenstid fa-til: 9.. Eksamensoppgaven bestå av følgende Antall side: 5 inkl. foside
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. ving 11.
TFY0 Fysikk. Institutt for fysikk, NTNU. ving. Opplysninger: Noe av dette kan du fa bruk for: =" 0 = 9 0 9 Nm /, e = :6 0 9, m e = 9: 0 kg, m p = :67 0 7 kg, g = 9:8 m/s Symboler angis i kursiv (f.eks
DetaljerKap 28: Magnetiske kilder. Kap 28: Magnetiske kilder. Kap 28. Rottmann integraltabell (s. 137) μ r. μ r. μ r. μ r
Kap 8 Kap 8: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft
DetaljerNewtons lover i én dimensjon
Newtons love i én dimensjon 4.01.013 kaft akseleasjon hastighet posisjon YS-MEK 1110 4.01.013 1 Hva e kaft? Vi ha en intuitivt idé om hva kaft e. Vi kan kvantifisee en kaft med elongasjon av en fjæ. Hva
DetaljerFYSIKK-OLYMPIADEN Andre runde: 4/2 2010
Nosk Fysikklæefoening Nosk Fysisk Selskaps fagguppe fo undevisning FYSIKK-OLYMPIADEN 009 010 Ande unde: / 010 Skiv øvest: Navn, fødselsdato, e-postadesse og skolens navn Vaighet:3 klokketime Hjelpemidle:abell
DetaljerEKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
DetaljerMandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 6 Mandag 05.02.07 Oppsummering til nå, og møte med Maxwell-ligning nr 1 Coulombs lov (empirisk lov for kraft mellom to
DetaljerNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK
Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK Faglig/fagleg kontakt unde eksamen: Navn: Helge E. Engan Tlf.: 944 EKSAMEN I EMNE SIE415 BØLGEFORPLANTNING
DetaljerKap. 22. Gauss lov. Gauss lov skjematisk. Eks.1: Homogent ladd kule =Y&F Ex = LHL Vi skal se på: Fluksen til elektrisk felt E Gauss lov
Kap.. Gauss lov Vi skal se på: Fluksen til elektisk felt E Gauss lov Integalfom og diffeensialfom Elektisk ledee. Efelt fa Coulombs lov: q E = k E = k å n q n n n dq E= k ò tot. ladn. Punktladn Flee punktladn.
DetaljerØving 6. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme. Veiledning: Uke 7 Innleveringsfrist: Mandag 19. februar.
Institutt fo fsikk, NTNU TFY4155/FY1003: Elektisitet og mgnetisme Vå 2007 Veiledning: Uke 7 Innleveingsfist: Mndg 19. febu Øving 6 Oppgve 1 z Figuen ove vise en gussflte (dvs lukket flte) S fomet som en
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: MEK3220/MEK4220 Kontinuumsmekanikk Eksamensdag: Onsdag 2. desembe 2015. Tid fo eksamen: 09.00 13.00. Oppgavesettet e på 7 side.
DetaljerEKSAMEN I FAG SIF 4012 ELEKTROMAGNETISME (SIF 4012 FYSIKK 2) Onsdag 11. desember kl Bokmål
Side av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 4 43 39 3 EKSAMEN I FAG SIF 42 ELEKTROMAGNETISME
DetaljerEKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG Tisdag 18. desembe 01 kl. 0900-100 Oppgave 1. Ti flevalgsspøsmål. (Telle
DetaljerKap 28: Magnetiske kilder
: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft qv x B Definisjon
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. ving 9.
TFY404 Fsikk. Institutt fo fsikk, NTNU. ving 9. Oppgve ) Figuen vise et unifomt elektisk felt (heltukne linje). Lngs hvilken stiplet linje ende potensilet seg ikke? 2 C 3 D 4 2 3 4 b) Den potensielle enegien
DetaljerNewtons lover i to og tre dimensjoner
Newtons love i to og te dimensjone 7..13 innleveing: buk iktige boks! FYS-MEK 111 7..13 1 Skått kast kontaktkaft: luftmotstand langtekkende kaft: gavitasjon initialbetingelse: () v() v v cos( α ) iˆ +
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl
NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 EEKTISITET OG MAGNETISME TFY4155
DetaljerKonstanter og formelsamling for kurset finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side enn selve oppgaven
UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Avsluttende eksamen i AST2000, 17. desembe 2018, 09.00 13.00 Oppgavesettet inkludet fomelsamling e på 8 side Tillatte hjelpemidle: 1) Angel/Øgim
DetaljerKap 28: Magnetiske kilder
: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft qv x B Definisjon
DetaljerBetraktninger rundt det klassiske elektronet.
Betaktninge undt det klassiske elektonet. Kistian Beland Matteus Häge - 1 - - - Innholdsfotegnelse: 1. Sammendag - 5 -. Innledning - 6 -. Innledende betaktninge - 7-4. Vå elektonmodell - 8-5. Enegi i feltene
Detaljerb) 3 MATEMATISKE METODER I 1 ( ) ( ) ( ) ( ) ( ) ( ) Repetisjonsoppgaver Bruk av regneregler: 1 Regn ut: e) 0 x ) 4 3 d) 4 x f) 5y
MATEMATISKE METODER I Buk av egneegle: Regn ut: a ( ( b 7 c ( 7 y 8 d 8 e f 5y y Regn ut og tekk sammen: a 5a b a b a + b b y + y + + y c t t + 6 ( 6t t + 8 d s+ s + s ( s + s Multiplise ut og odne a (
DetaljerFysikkolympiaden Norsk finale 2010
Uniesitetet i Oslo Nosk Fysikklæefoening Fysikkolympiaden Nosk finale. ttakingsnde Fedag 6. mas kl 9. til. Hjelpemidle: abell/fomelsamling, lommeegne og tdelt fomelak Oppgaesettet bestå a 6 oppgae på side
Detaljer( 6z + 3z 2 ) dz = = 4. (xi + zj) 3 i + 2 ) 3 x x 4 9 y. 3 (6 2y) (6 2y)2 4 y(6 2y)
TMA415 Matematikk 2 Vå 215 Noges teknisk natuvitenskapelige univesitet Institutt fo matematiske fag Løsningsfoslag Øving 11 Alle oppgavenumme efeee til 8. utgave av Adams & Essex Calculus: A Complete Couse.
DetaljerFASIT FRAMSKUTT EKSAMEN VÅREN Oppg. 1
FASIT FRAMSKUTT EKSAMEN VÅREN 00 SENSORTEORI Oppg. Ein elastisk pendel ha eit lodd ed asse 0,0 kg og ei fjø ed fjøkonstant 0,0 N/. Pendelen svinga ed aplitude 0. a) Finn svingetida (peioden) til pendelen.
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPEIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 ØSNINGSFORSAG TI EKSAMEN I TFY4155 EEKTROMAGNETISME
DetaljerNORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 8 Faglig kontakt unde eksamen: Navn: jøn Toge Stokke Tl: 93434 EKSAMEN I FAG SIF45 FYSIKK Mandag 7. desembe 1998 Tid: kl.
DetaljerEKSAMEN I EMNE SIF4005 FYSIKK For kjemi og materialteknologi Onsdag 11. desember 2002 kl
Sie 1av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt une eksamen: Institutt fo fysikk, Realfagbygget Pofesso Cathaina Davies Tel: 73593688 Bokmål EKSAMEN I EMNE
DetaljerTirsdag r r
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 6 Tirsdag 05.02.08 Gauss lov [FGT 23.2; YF 22.3; TM 22.2, 22.6; AF 25.4; LHL 19.7; DJG 2.2.1] Fra forrige uke; Gauss
DetaljerForelesning 9/ ved Karsten Trulsen
Foelesning 9/2 218 ved Kasten Tulsen Husk fa sist våe to spøsmål om kuveintegale: Desom vi skal beegne et kuveintegal som state i et punkt og ende opp i et annet punkt 1, så kan det væe mange veie fo å
Detaljer1 Virtuelt arbeid for stive legemer
1 Vituelt abeid fo stive legeme Innhold: Abeidsbegepet i mekanikk Pinsippet om vituelt abeid fo stive legeme Litteatu: Igens, Statikk, kap. 10.1 10.2 Hibbele, Statics, kap. 11.1 11.3 Bell, Konstuksjonsmekanikk
DetaljerMidtsemesterprøve fredag 11. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2005 Midtsemesterprøve fredag 11. mars kl 1030 1330. Løsningsforslag 1) B. Newtons 3. lov: Kraft = motkraft. (Andel
DetaljerØving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)
Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen
DetaljerOppsummering Fysikkprosjekt
Tekno-/Realstat høsten 011 MTFYMA, BFY, LUR Oppsummeing Fysikkposjekt m? F? v m p a F v? a? p? Lineæ bevegelse Rotasjonsbevegelse Navn: Symbol: Navn: Symbol: distanse masse hastighet akseleasjon kaft bevegelsesmengde,
DetaljerMagnetisk hysterese. 1. Beregn magnetfeltet fra en strømførende spole med kjent vindingstall.
FY33 Elektisitet og magnetisme II Institutt fo fysikk, TU FY33 Elektisitet og magnetisme II, høst 7 Laboatoieøvelse Magnetisk hysteese Hensikt Hensikten med oppgave å gjøe seg kjent med opphavet til magnetiske
DetaljerMandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4 Mandag 22.01.07 Elektriske feltlinjer [FGT 22.2; YF 21.6; TM 21.5; F 21.6; LHL 19.6; DJG 2.2.1] gir en visuell framstilling
Detaljer1. En tynn stav med lengde L har uniform ladning λ per lengdeenhet. Hvor mye ladning dq er det på en liten lengde dx av staven?
Ladet stav 1 En tynn stav med lengde L har uniform ladning per lengdeenhet Hvor mye ladning d er det på en liten lengde d av staven? A /d B d C 2 d D d/ E L d Løsning: Med linjeladning (dvs ladning per
DetaljerNewtons lover i én dimensjon (2)
Newtons love i én dimensjon () 9.1.13 husk: data lab fedag 1-16 FYS-MEK 111 9.1.13 1 Identifikasjon av keftene: 1. Del poblemet inn i system og omgivelse.. Tegn figu av objektet og alt som beøe det. 3.
DetaljerTre klasser kollisjoner (eksempel: kast mot vegg)
kap8 2.09.204 Kap. 8 Bevegelsesmengde. Kollisjone. assesente. Vi skal se på: ewtons 2. lov på ny: Definisjon bevegelsesmengde Kaftstøt, impuls. Impulsloven Kollisjone: Elastisk, uelastisk, fullstendig
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: 10. oktober 2016 Tid for eksamen: 10.00 13.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte
DetaljerLaboratorieøvelse i MNFFY1303-Elektromagnetisme Institutt for Fysikk, NTNU MAGNETISK HYSTERESE
Laboatoieøvelse i MNFFY33-Elektomagnetisme Institutt fo Fysikk, NTNU Hensikten med oppgave å gjøe seg kjent med opphavet til magnetiske felte og målinge av slike. Det innebæe måling av magnetfelt fa enkle
DetaljerOnsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 7 Onsdag 11.02.09 og fredag 13.02.09 Gauss lov [FGT 23.2; YF 22.3; TM 22.2, 22.6; AF 25.4; LHL 19.7; DJG 2.2.1] Gauss
DetaljerLøsningsforslag Fysikk 2 Høst 2015
Løsningsfoslag Fysikk Høst 015 Oppgave Sva Foklaing a) A Vi pøve oss fa ed noen kjente fole: ε vbl B ε Φ vl t vl Nå vi nå egne ed enhete på denne foelen få vi Wb B s s Wb Magnetfeltet kan altså åles i
DetaljerUNIVERSITETET I OSLO
Side av 5 UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Mandag 9. juni 28 Tid fo eksamen: Kl. 9-2 Oppgavesettet e på 5 side inkludet fomelaket. Tillatte
DetaljerLØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155
DetaljerEKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
DetaljerMidtsemesterprøve fredag 13. mars 2009 kl (Versjon B)
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Midtsemesterprøve fredg 13. mrs 2009 kl 1415 1615. (Versjon ) Oppgver på side 3 9. Svrtbell på side 11. Sett
DetaljerNewtons lover i to og tre dimensjoner
Newtons love i to og te dimensjone 9..17 Oblig e lagt ut. Innleveing: Mandag,.. FYS-MEK 111 9..17 1 Skått kast med luftmotstand F net F D G D v v mg ˆj hoisontal og vetikal bevegelse ikke lenge uavhengig:
DetaljerEKSAMEN i. MA-132 Geometri. Torsdag 3. desember 2009 kl Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.
Institutt fo matematiske fag EKSAMEN i MA-1 Geometi Tosdag. desembe 009 kl. 9.00-14.00 Tillatte hjelpemidle: Alle tykte og skevne hjelpemidle. Kalkulato. Bokmål Oppgave 1 I oppgaven nedenfo skal du oppgi
DetaljerTirsdag E = F q. q 4πε 0 r 2 ˆr E = E j = 1 4πε 0. 2 j. r 1. r n
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 3 Tirsdag 15.01.07 Elektrisk felt [FGT 22.1; YF 21.4; TM 21.4; AF 21.5; LHL 19.4; DJG 2.1.3] = kraft pr ladningsenhet
DetaljerNORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Ola Hunderi, tlf (mobil: )
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Ola Hunderi, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektromagnetisk teori Torsdag 1 desember
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: Eksamensdag: Tid fo eksamen: 14.30 18.30 Oppgavesettet e på 5 side. Vedlegg: Tillatte hjelpemidle: MEK3230 Fluidmekanikk 6. Juni,
DetaljerOnsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 4 Onsdag 21.01.09 og fredag 23.01.09 Elektrisk felt fra punktladning [FGT 22.1; YF 21.4; TM 21.4; AF 21.6; LHL 19.5;
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 otasjon av stive legeme Vi skal se på: Vinkelhastighet, vinkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) otasjonsenegi E k Teghetsmoment I Kaftmoment τ ulling Spinn (deieimpuls):
DetaljerElektrisk potensial/potensiell energi
Elektrisk potensial/potensiell energi. Figuren viser et uniformt elektrisk felt E heltrukne linjer. Langs hvilken stiplet linje endrer potensialet seg ikke? A. B. C. 3 D. 4 E. Det endrer seg langs alle
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET
DetaljerLøsningsforslag Fysikk 2 V2016
Løsningsfoslag Fysikk V016 Oppgave Sva Foklaing a) B Faadays induksjonslov: ε = Φ, so gi at Φ = ε t t Det bety at Φ åles i V s b) D L in = 0,99 10 = 9,9 L aks = 1,04 10 = 10,4 L snitt = (L in + L aks )
DetaljerFysikkk. Støvneng Tlf.: 45. Andreas Eksamensdato: Rottmann, boksen 1 12) Dato. Sign
Instituttt for fysikk Eksamensoppgave i TFY4104 Fysikkk Faglig kontakt under eksamen: Jon Andreas Støvneng Tlf.: 45 45 55 33 Eksamensdato: 18. desember 2013 Eksamenstid (fra-til): 0900-1300 Hjelpemiddelkode/Tillattee
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET
DetaljerLøsningsforslag Fysikk 2 Vår 2014
Løsninsfosla Fysikk Vå 014 Løsninsfosla Fysikk Vå 014 Opp Sva Foklain ave a) B Det elektiske feltet å adielt ut fa en positivt ladet patikkel. Fo å få et elektisk felt som på fiuen må demed X væe positivt
DetaljerEksamen i MA-104 Geometri Løsningsforslag
Eksamen i M-04 Geometi 4.0.007 Løsningsfoslag Oppgave Et kvadat ha side lik s, som du velge selv. E e midtpunktet på og F e midtpunktet på. iagonalen skjæe F i H. E skjæe F i G. I oppgaven skal du buke
DetaljerLøsningsforslag eksamen 2. august 2003 SIF 4005 Fysikk for kjemi og materialteknologi
Løsningsfslag eksamen. august SF 5 Fysikk f kjemi g mateialteknlgi Oppgave lektstatikk a) Sylineens ttale laning pe lengeenhet finnes ve å integee laningsfelingen ( ) ve aealelementet A= e sylineens aius
DetaljerOverflateladningstetthet på metalloverflate
0.0.08: Rettet opp feil i oppgave 4 og løsningsforslag til oppgave 8b. Overflateladningstetthet på metalloverflate. Ei metallkule med diameter 0.0 m har ei netto ladning på 0.50 nc. Hvor stort er det elektriske
DetaljerLøsningsforslag TEP 4110 FLUIDMEKANIKK 18.desember ρ = = = m / s m / s 0.1
Løsningsfoslag TEP 40 FLUIDMEKNIKK 8.desembe 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d
Detaljer