1 Virtuelt arbeid for stive legemer

Størrelse: px
Begynne med side:

Download "1 Virtuelt arbeid for stive legemer"

Transkript

1 1 Vituelt abeid fo stive legeme Innhold: Abeidsbegepet i mekanikk Pinsippet om vituelt abeid fo stive legeme Litteatu: Igens, Statikk, kap Hibbele, Statics, kap Bell, Konstuksjonsmekanikk Del I Likevektslæe, kap Cook & Young, Advanced Mechanics of Mateials, kap. 4.1 Babe, Intemediate Mechanics of Mateials, kap. 3.1 Tiple & Mosca, Physics fo Scientists and Enginees, kap. 6-1 og 6-2 TKT4124 Mekanikk 3, høst Vituelt abeid fo stive legeme

2 Abeid En kaft F gjø abeid W nå den vike ove en foskyvning F W = F (Kaft foskyvning) Noe me geneelt: Kaft og foskyvning e vektoe W = F = F cos F (Skalapodukt) Geneelt: Foskyvningen e ikke nødvendigvis ettlinjet W F d s (Integee langs kuve s) s d F Abeid pga moment M M W = M (Moment gange vinkel) Kaakteistisk fo abeid: Enhet J = Nm Skala støelse (ikke vekto!) W kan væe positiv elle negativ TKT4124 Mekanikk 3, høst Vituelt abeid fo stive legeme

3 Vituelt abeid fo patikkel Anta at en patikkel e påkjent av et sett med kefte, og at patikkelen e i likevekt: F = 0 (Newtons 1. lov; vektosum) F 2 F 1 F3 Patikkelen gis nå en vituell (tenkt) foskyvning i j k. x y z Keftene vike stadig på patikkelen. Abeidet som keftene utføe ove foskyvningen kalles vituelt abeid W Utegning av vituelt abeid: W F ifx jfy kfz xi y j zk Fx x Fy y Fz z 0 (Newtons 1. lov; vektosum) F 2 F3 F 1 F 1 Det totale vituelle abeidet e lik null fodi patikkelen e foutsatt å væe i likevekt. Vituell foskyvning: Vituell vil si en hypotetisk, vilkålig foskyvning Notasjon vaiee: Tilde-symbolet ( ), diffeensial (d) elle -symbol (). I TKT4124 bukes stot sett tilde-symbolet Velges fitt, men må ikke ende keftenes etning TKT4124 Mekanikk 3, høst Vituelt abeid fo stive legeme

4 Pinsippet om vituelt abeid Genealiseing: Ha legeme med endelig utstekning Foutsette likevekt, dvs. F = 0 og M = 0 Et vilkålig vituelt foskyvningsfelt ( x, y, z) av et legeme bestå av to komponente: tanslasjon u og otasjon. Kan vise at vituelt abeid elatet til u e lik null hvis F = 0, og at det vituelle abeidet pga e lik null hvis M = 0. = + u Stadig: PRINSIPPET OM VIRTUELT ARBEID FOR STIVE LEGEMER: Fo et system i likevekt e det totale vituelle abeidet på gunn av et vilkålig vituelt foskyvningsfelt lik null: W 0 Veldig nyttig pinsipp i analytisk mekanikk. Altenativ metode (i stedet fo likevektsligninge) til å finne kefte i stive (ikke-defomebae) konstuksjone. Nå! Mest elevant fo defomebae systeme, men må da inkludee inde defomasjonsabeid. Senee! Utgangspunkt fo tilnæmede løsningsmetode, f.eks elementmetoden. Noe i TKT4124, og mye i senee kus! TKT4124 Mekanikk 3, høst Vituelt abeid fo stive legeme

5 Eksempel 1.1: Bjelke q A B L F = ql Bestem innspenningsmomentet M A ved å velge et hensiktsmessig vituelt foskyvningsfelt, og buke pinsippet om vituelt abeid. TKT4124 Mekanikk 3, høst Vituelt abeid fo stive legeme

6 4a Eksempel 1.2: Fagvek A B C D E F P 3a 3a 3a 3a Bestem stavkaften N BC ved å velge et hensiktsmessig vituelt foskyvningsfelt, og buke pinsippet om vituelt abeid. TKT4124 Mekanikk 3, høst Vituelt abeid fo stive legeme

7 Eksempel 1.3: Ramme F = qa A C q B 3a a 2a a Bestem eaksjonskaften B x ved å velge et hensiktsmessig vituelt foskyvningsfelt, og buke pinsippet om vituelt abeid. TKT4124 Mekanikk 3, høst Vituelt abeid fo stive legeme

8 Eksempel 1.4: Mekanisme Hve av komponentene AB, BC og CD i mekanismen ha masse 8 kg og lengde a = 300 mm. Bestem vinkelen nå momentet M = 50 Nm og fjæstivheten k = 2500 N/m. Fjæen e alltid hoisontal, og ubelastet nå = 0. Sett g = 10 m/s 2. TKT4124 Mekanikk 3, høst Vituelt abeid fo stive legeme

9 Pinsippet om vituelt abeid fo stive legeme løsningsstategi Begepet stive legeme indikee at selve legemet ikke defomees (tøyes) nå det belastes. Dette tilsvae at E- modulen e uendelig sto. Beegning av ukjente kefte (elle momente) med pinsippet fo vituelt abeid: 1. Ta utgangspunkt i systemets posisjon (konfiguasjon) nå det e i likevekt. 2. Velg et vituelt foskyvningsfelt som e slik at kun én ukjent kaft (elle moment) gjø abeid. 3. Regn ut det vituelle abeidet som samtlige kefte gjø ove det valgte, vituelle foskyvningsfeltet. Det e vanligvis enklest å uttykke abeidsbidagene som funksjon av vituell vinkel (deining). Pass på fotegn på bidagene. Ofte vil en elle flee av keftene gjøe null abeid fodi det vituelle foskyvningsfeltet e valgt slik at det ikke e noen foskyvning de kaften angipe. 4. Pinsippet om vituelt abeid ( som foutsette at systemet e i likevekt i statkonfiguasjonen): W Fa ligningen W 0 kan den ukjente støelsen (kaft elle moment) egnes ut. TKT4124 Mekanikk 3, høst Vituelt abeid fo stive legeme

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons love i én dimensjon () 9.1.13 husk: data lab fedag 1-16 FYS-MEK 111 9.1.13 1 Identifikasjon av keftene: 1. Del poblemet inn i system og omgivelse.. Tegn figu av objektet og alt som beøe det. 3.

Detaljer

Forelesning 9/ ved Karsten Trulsen

Forelesning 9/ ved Karsten Trulsen Foelesning 9/2 218 ved Kasten Tulsen Husk fa sist våe to spøsmål om kuveintegale: Desom vi skal beegne et kuveintegal som state i et punkt og ende opp i et annet punkt 1, så kan det væe mange veie fo å

Detaljer

Sammendrag, uke 14 (5. og 6. april)

Sammendrag, uke 14 (5. og 6. april) Institutt fo fysikk, NTNU TFY4155/FY1003: Elektisitet og magnetisme Vå 2005 Sammendag, uke 14 (5. og 6. apil) Magnetisk vekselvikning [FGT 28, 29; YF 27, 28; TM 26, 27; AF 22, 24B; H 23; DJG 5] Magnetisme

Detaljer

Løsningsforslag for eksamen i FY101 Elektromagnetisme torsdag 12. desember 2002

Løsningsforslag for eksamen i FY101 Elektromagnetisme torsdag 12. desember 2002 Løsningsfoslag fo eksamen i FY Elektomagnetisme tosdag. desembe Ved sensueing vil alle delspøsmål i utgangspunktet bli gitt samme vekt (uavhengig av oppgavenumme), men vi fobeholde oss etten til justeinge.

Detaljer

6 Prinsippet om stasjonær potensiell energi

6 Prinsippet om stasjonær potensiell energi 6 Prinsippet om stasjonær potensiell energi Innhold: Konservative krefter Potensiell energi Prinsippet om stasjonær potensiell energi Stabil og ustabil likevekt rihetsgrader Litteratur: Irgens, Statikk,

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG Tisdag 18. desembe 01 kl. 0900-100 Oppgave 1. Ti flevalgsspøsmål. (Telle

Detaljer

b) C Det elektriske feltet går radielt ut fra en positivt ladd partikkel.

b) C Det elektriske feltet går radielt ut fra en positivt ladd partikkel. Løsningsfoslag Fysikk 2 Høst 203 Løsningsfoslag Fysikk 2 Høst 203 Opp Sva Foklaing gave a) B Fomelen fo bevegelsesmengde p = mv gi enheten kg m. s Dette kan igjen skives som: kg m = kg m s s2 s = Ns b)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: MEK3220/MEK4220 Kontinuumsmekanikk Eksamensdag: Onsdag 2. desembe 2015. Tid fo eksamen: 09.00 13.00. Oppgavesettet e på 7 side.

Detaljer

Mandag E = V. y ŷ + V ẑ (kartesiske koordinater) r sin θ φ ˆφ (kulekoordinater)

Mandag E = V. y ŷ + V ẑ (kartesiske koordinater) r sin θ φ ˆφ (kulekoordinater) Institutt fo fysikk, NTNU TFY4155/FY13: Elektisitet og magnetisme Vå 26, uke 6 Mandag 6.2.6 Beegning av E fa V [FGT 24.4; YF 23.5; TM 23.3; F 21.1; LHL 19.9; DJG 2.3.1, 1.2.2] Gadientopeatoen : V = V V

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons love i én dimensjon 4.01.013 kaft akseleasjon hastighet posisjon YS-MEK 1110 4.01.013 1 Hva e kaft? Vi ha en intuitivt idé om hva kaft e. Vi kan kvantifisee en kaft med elongasjon av en fjæ. Hva

Detaljer

FYSIKK-OLYMPIADEN Andre runde: 4/2 2010

FYSIKK-OLYMPIADEN Andre runde: 4/2 2010 Nosk Fysikklæefoening Nosk Fysisk Selskaps fagguppe fo undevisning FYSIKK-OLYMPIADEN 009 010 Ande unde: / 010 Skiv øvest: Navn, fødselsdato, e-postadesse og skolens navn Vaighet:3 klokketime Hjelpemidle:abell

Detaljer

Øving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.

Øving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt. Institutt fo fysikk, NTNU TFY455/FY003: lektisitet og magnetisme Vå 2008 Øving 8 Veiledning: 04.03 i R2 25-400, 05.03 i R2 25-400 Innleveingsfist: Fedag 7. mas kl. 200 (Svatabell på siste side.) Opplysninge:

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newtons love i to og te dimensjone 7..13 innleveing: buk iktige boks! FYS-MEK 111 7..13 1 Skått kast kontaktkaft: luftmotstand langtekkende kaft: gavitasjon initialbetingelse: () v() v v cos( α ) iˆ +

Detaljer

Løsningsforslag til ukeoppgave 11

Løsningsforslag til ukeoppgave 11 Oppgave FYS1001 Vå 2018 1 Løsningsfoslag til ukeoppgave 11 Oppgave 23.04 B F m qv = F m 2eV = 6, 3 10 3 T Kaft, magnetfelt og fat stå vinkelett på hveande. Se læebok s. 690. Oppgave 23.09 a) F = qvb =

Detaljer

EKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002/MNFFY101 GENERELL FYSIKK II Lørdag 6. desember 2003 kl Bokmål

EKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002/MNFFY101 GENERELL FYSIKK II Lørdag 6. desember 2003 kl Bokmål ide av 0 NORGE TEKNIK- NATURVITENKAPELIGE UNIVERITET INTITUTT FOR FYIKK Faglig kontakt unde eksamen: Føsteamanuensis Knut Ane tand Telefon: 73 59 34 6 EKAMEN FAG TFY460 ØLGEFYIKK OG FAG FY00/MNFFY0 GENERELL

Detaljer

Betinget bevegelse

Betinget bevegelse Betinget bevegelse 1.0.013 innleveing på fonte FYS-MEK 1110 1.0.013 1 Innleveinge aksenavn! enhete! kommente esultatene utegninge: skitt fo skitt, ikke bae esultatet vi tenge å fostå hva du ha gjot sett

Detaljer

Oppgave 8.12 Gitt en potensialhvirvel med styrke K i origo. Bestem sirkulasjonen ' langs kurven C. Sirkulasjonen er definert som: ' /

Oppgave 8.12 Gitt en potensialhvirvel med styrke K i origo. Bestem sirkulasjonen ' langs kurven C. Sirkulasjonen er definert som: ' / Løsning øving 3 Oppgve 8. Gitt en potensilhvivel med styke i oigo. Bestem sikulsjonen ' lngs kuven C. C y (I oppgven stå det t vi skl gå med klokk, men he h vi gått mot klokk i oveensstemmelse med definisjonen

Detaljer

Fysikk-OL Norsk finale 2005

Fysikk-OL Norsk finale 2005 Univesitetet i Oslo Nosk Fysikklæefoening Fysikk-OL Nosk finale 005 3. uttakingsunde Tid: Fedag 5. apil kl 09.00.00 Hjelpemidle: Tabell/fomelsamling, gafisk lommeegne Oppgavesettet bestå av 7 oppgave på

Detaljer

Midtsemesterprøve onsdag 7. mars 2007 kl

Midtsemesterprøve onsdag 7. mars 2007 kl Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 2007 Midtsemestepøve onsdag 7. mas 2007 kl 1300 1500. Svatabellen stå på side 11. Sett tydelige kyss. Husk å skive

Detaljer

Eksamen TFY 4240: Elektromagnetisk teori

Eksamen TFY 4240: Elektromagnetisk teori NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Ola Hundei, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektomagnetisk teoi 8 desembe 2007 kl. 09.00-13.00

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ask ekap) Sentipetalakseleasjon, baneakseleasjon (ask ekap) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn

Detaljer

10 Tøyninger og kinematisk kompatibilitet

10 Tøyninger og kinematisk kompatibilitet 10 Tøninger og kinematisk kompatibilitet Innhold: Deformasjon kontra stivlegemebevegelse Normaltøning Skjærtøning Kinematikkligningene Plan tøningstilstand Kompatibilitetsbetingelsen Litteratur: Cook &

Detaljer

a) C Det elektriske feltet går radielt ut fra en positivt ladet partikkel og radielt innover mot en negativt ladd partikkel.

a) C Det elektriske feltet går radielt ut fra en positivt ladet partikkel og radielt innover mot en negativt ladd partikkel. Løsningsfoslag Fysikk 2 Vå 2015 Løsningsfoslag Fysikk 2 Vå 2015 Oppgav e Sva Foklaing a) C Det elektiske feltet gå adielt ut fa en positivt ladet patikkel og adielt innove mot en negativt ladd patikkel.

Detaljer

Om bevegelsesligningene

Om bevegelsesligningene Inst. fo Mekanikk, Temo- og Fluiddynamikk Om bevegelsesligningene (Repetisjon av utledninge fa IO 1008 Fluidmekanikk) P.-Å. Kogstad I det ettefølgende epetees kot utledningene av de fundamentale bevegelsesligninge,

Detaljer

EKSAMEN i. MA-132 Geometri. Torsdag 3. desember 2009 kl Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

EKSAMEN i. MA-132 Geometri. Torsdag 3. desember 2009 kl Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator. Institutt fo matematiske fag EKSAMEN i MA-1 Geometi Tosdag. desembe 009 kl. 9.00-14.00 Tillatte hjelpemidle: Alle tykte og skevne hjelpemidle. Kalkulato. Bokmål Oppgave 1 I oppgaven nedenfo skal du oppgi

Detaljer

8 Kontinuumsmekanikk og elastisitetsteori

8 Kontinuumsmekanikk og elastisitetsteori 8 Kontinuumsmekanikk og elastisitetsteori Innhold: Kontinuumsmekanikk Elastisitetsteori kontra klassisk fasthetslære Litteratur: Cook & Young, Advanced Mechanics of Materials, kap. 1.1 og 7.3 Irgens, Statikk,

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newtons love i to og te dimensjone 9..17 Oblig e lagt ut. Innleveing: Mandag,.. FYS-MEK 111 9..17 1 Skått kast med luftmotstand F net F D G D v v mg ˆj hoisontal og vetikal bevegelse ikke lenge uavhengig:

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 otasjon av stive legeme Vi skal se på: Vinkelhastighet, vinkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) otasjonsenegi E k Teghetsmoment I Kaftmoment τ ulling Spinn (deieimpuls):

Detaljer

c) etingelsen fo at det elektiske feltet E e otasjonsinvaiant om x-aksen e, med E og ee som denet ovenfo, at e E = E. Dette skal gjelde fo en vilkalig

c) etingelsen fo at det elektiske feltet E e otasjonsinvaiant om x-aksen e, med E og ee som denet ovenfo, at e E = E. Dette skal gjelde fo en vilkalig Eksamen i klassisk feltteoi, fag 74 5, 4. august 995 Lsninge a) Koodinatene x; y; z tansfomees slik x 7 bx = x; y 7 by = y cos, z sin ; z 7 by = y sin + z cos Den invese tansfomasjonen e en otasjon en

Detaljer

Fysikkolympiaden 1. runde 25. oktober 5. november 2004

Fysikkolympiaden 1. runde 25. oktober 5. november 2004 Nosk Fysikklæefoening Nosk Fysisk Selskaps fagguppe fo undevisning Fysikkolympiaden 1. unde 5. oktobe 5. novembe 004 Hjelpemidle: abell og fomelsamlinge i fysikk og matematikk Lommeegne id: 100 minutte

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stvt legemes dnamkk 03.04.017 snubleguppen må avlses mogen, 4.apl. v plane flee snubleguppe / eksamensvekstede ette Påske YS-MEK 1110 03.04.017 1 tanslasjon otasjon tanslasjon otasjon possjon (t) (t) vnkel

Detaljer

7 Rayleigh-Ritz metode

7 Rayleigh-Ritz metode 7 Rayleigh-Ritz metode Innhold: Diskretisering Rayleigh-Ritz metode Essensielle og naturlige randbetingelser Nøyaktighet Hermittiske polynomer Litteratur: Cook & Young, Advanced Mechanics of Materials,

Detaljer

At energi ikke kan gå tapt, må bety at den er bevart. Derav betegnelsen bevaringslov.

At energi ikke kan gå tapt, må bety at den er bevart. Derav betegnelsen bevaringslov. Side av 8 LØSNINGSFORSLAG KONINUASJONSEKSAMEN 006 SMN694 VARMELÆRE DAO: 04. Mai 007 ID: KL. 09.00 -.00 OPPGAVE (Vekt: 40%) a) emodynamikkens. hovedsats:. hovedsetning: Enegi kan hveken oppstå elle fosvinne,

Detaljer

Kap. 4+5 Rotasjon av stive legemer

Kap. 4+5 Rotasjon av stive legemer Kap. 4+5 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ask ekap) Sentipetalakseleasjon, baneakseleasjon (ask ekap) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERITETET I AGDER Gimstad E K A M E N O P P G A V E : FAG: MA-9 Matematikk ÆRER: Pe enik ogstad Klasse: Dato:.6. Eksamenstid fa-til: 9.. Eksamensoppgaven bestå av følgende Antall side: 5 inkl. foside

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stvt legemes dnamkk 1.04.016 YS-MEK 1110 1.04.016 1 tanslasjon otasjon tanslasjon otasjon possjon (t) (t) vnkel hastghet v( t) d ( t) d vnkelhastghet akseleasjon a( t) dv d ( t) d d vnkelakseleasjon 1

Detaljer

Pytagoreiske tripler og Fibonacci-tall

Pytagoreiske tripler og Fibonacci-tall Johan F. Aanes Pytagoeiske tiple og Fibonai-tall Pytagoas og Fibonai siamesiske tvillinge? Me enn 700 å skille dem i tid, men matematisk e de på en måte uadskillelige. Pytagoas (a. 585 500 f.k.) og Leonado

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side av 5 UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Mandag 9. juni 28 Tid fo eksamen: Kl. 9-2 Oppgavesettet e på 5 side inkludet fomelaket. Tillatte

Detaljer

Eksamen i MA-104 Geometri Løsningsforslag

Eksamen i MA-104 Geometri Løsningsforslag Eksamen i M-04 Geometi 4.0.007 Løsningsfoslag Oppgave Et kvadat ha side lik s, som du velge selv. E e midtpunktet på og F e midtpunktet på. iagonalen skjæe F i H. E skjæe F i G. I oppgaven skal du buke

Detaljer

Notat i FYS-MEK/F 1110 våren 2006

Notat i FYS-MEK/F 1110 våren 2006 1 Notat i FYS-MEK/F 1110 våen 2006 Rulling og skliing av kule og sylinde Foelest 24. mai 2006 av Ant Inge Vistnes Geneelt Rotasjonsdynamikk e en svæt viktig del av mekanikkuset våt. Dette e nytt stoff

Detaljer

Problemet. Datamaskinbaserte doseberegninger. Usikkerheter i dose konsekvenser 1 Usikkerheter i dose konsekvenser 2

Problemet. Datamaskinbaserte doseberegninger. Usikkerheter i dose konsekvenser 1 Usikkerheter i dose konsekvenser 2 Poblemet Datamaskinbasete dosebeegninge Beegne dosefodeling i en pasient helst med gunnlag i CT-bilde Eiik Malinen Sentale kilde: T. Knöös (http://www.clin.adfys.lu.se/downloads.htm) A. Ahnesjö (div. publikasjone)

Detaljer

Fag TKP4100 STRØMNING OG VARMETRANSPORT GRUNNLEGGENDE DEL

Fag TKP4100 STRØMNING OG VARMETRANSPORT GRUNNLEGGENDE DEL Fag TKP41 STRØMNING OG VARMETRANSPORT GRUNNLEGGENDE DEL av Reida Kistoffesen 6 FORORD Dette kompendiet e et esultat av foelesninge i fag 61145 Kjemiteknisk Fluidmekanikk og fag TKP41 Stømning og Tanspotposesse

Detaljer

Kap. 4+5 Rotasjon av stive legemer. L = r m v. L = mr 2 ω = I ω. ri 2 ω = I ω. L = r m v sin Φ = r 0 mv. L = r m v = 0

Kap. 4+5 Rotasjon av stive legemer. L = r m v. L = mr 2 ω = I ω. ri 2 ω = I ω. L = r m v sin Φ = r 0 mv. L = r m v = 0 Kap. 4+5 Rotasjon av stive legeme Vi skal se på: Vinkelhastighet, vinkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Kaftmoment τ (N2-ot) stive legeme:

Detaljer

Oppgave 1 a)1 b)3 c)2 d)3 e)3 f)2 g)3 h)2 i)1 j)2 k)1 l)2

Oppgave 1 a)1 b)3 c)2 d)3 e)3 f)2 g)3 h)2 i)1 j)2 k)1 l)2 1 Løsningsfoslag EMC-eksamen 24.5. Oppgave 1 a)1 b)3 c)2 d)3 e)3 f)2 g)3 h)2 i)1 j)2 k)1 l)2 Oppgave 2 a) En geneisk standad e en geneell standad som bukes nå det ikke foeligge en poduktstandad. EN581

Detaljer

Stivt legemers dynamikk. Spinn

Stivt legemers dynamikk. Spinn Stvt legemes dnamkk Spnn.4.5 FYS-MEK.4.5 Poblemløsnng dentfse sstem og omgvelse defne et koodnatsstem fnn massesente, otasjonsakse og teghetsmoment f N cm G fnn ntalbetngelse: possjon, hastghet, vnkel,

Detaljer

Fysikk 2 Eksamen høsten Løsningsforslag

Fysikk 2 Eksamen høsten Løsningsforslag Fysikk - Løsninsfosla Oppave a) D Tesla b) B Tyndeakseleasonen e det samme som feltstyken til avitasonsfeltet, som e itt ved m m Siden e en konstant (avitasonskonstanten), vil oså bee planetene. væe likt

Detaljer

Løsning midtveiseksamen H12 AST1100

Løsning midtveiseksamen H12 AST1100 Løsning midtveiseksamen H AST00 Aleksande Seland Setembe 5, 04 Ogave Vi se at kuven fo adiell hastighet e eiodisk og minne om en hamonisk funksjon. Vi kan defo anta at denne stjenen gå i bane undt et felles

Detaljer

Eksamen 16. des Løsningsforslag

Eksamen 16. des Løsningsforslag Institutt fo fysikk TFY44/FY Mekanisk fysikk Eksamen 6. des.. Løsningsfoslag Dette løsningsfoslaget e spesielt fyldig med flee altenative løsninge, som ukt av flee studente i eksamensesvaelsen. Det e også

Detaljer

Løsningsforslag Fysikk 2 Høst 2014

Løsningsforslag Fysikk 2 Høst 2014 Løsningsfoslag Fysikk Høst 014 Løsningsfoslag Fysikk Høst 014 Opp Sva Foklaing gave a) D Det elektiske feltet gå adielt ut fa en positivt ladet patikkel. Til høye fo elektonet lage elektonet en feltstyke

Detaljer

Stivt legemers dynamikk. Spinn

Stivt legemers dynamikk. Spinn Stvt legemes dnamkk Spnn 5.4.6 FYS-MEK 5.4.6 kaftmoment: F F sn F T F F R F T F sn NL fo otasjone:, I fo et stvt legeme med teghetsmoment I tanslasjon og otasjon: F et MA cm Icm ullebetngelse: ksk eneg:

Detaljer

Kap 21 Elektrisk ladning / Elektrisk felt

Kap 21 Elektrisk ladning / Elektrisk felt Kp lektisk lning / lektisk felt. To like elektiske lninge e plsset i vstn.. Kften so hve v lningene vike på en ne e e.5. Beste støelsen på hve v lningene. b Se so i, en enne gng e en ene lningen obbelt

Detaljer

Løsningsforslag TEP 4110 FLUIDMEKANIKK 18.desember ρ = = = m / s m / s 0.1

Løsningsforslag TEP 4110 FLUIDMEKANIKK 18.desember ρ = = = m / s m / s 0.1 Løsningsfoslag TEP 40 FLUIDMEKNIKK 8.desembe 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d

Detaljer

Løsning, eksamen 3FY juni 1999

Løsning, eksamen 3FY juni 1999 Løsning, eksamen 3FY juni 1999 Oppgae 1 km/s a) Hubbles lo sie at H, de H. 10 lyså Faten til galaksen e: 3 10 m/s H 5,0 10 7 lyså 1,10 10 m/s 10 lyså b) Dopplefomelen gi oss λ, de c e lysfaten og λ 0 e

Detaljer

Løsningsforslag Fysikk 2 Vår 2013 Oppgav e

Løsningsforslag Fysikk 2 Vår 2013 Oppgav e Løsningsfoslag Fysikk 2 Vå 203 Løsningsfoslag Fysikk 2 Vå 203 Oppgav e Sva Foklaing a) B Feltet E gå adielt ut fa en positivt ladning. Siden ladning og 2 e like stoe, og ligge like langt unna P vil E væe

Detaljer

Fysikk 2 Eksamen våren Løsningsforslag

Fysikk 2 Eksamen våren Løsningsforslag Fysikk - Løsningsfoslag Oppgae a) A Q Det elektiske feltet fa en punktladning e gitt ed E ke. Siden alle de fie ladningene e like stoe og astanden fa alle ladningene til O e den sae, il E æe like sto fa

Detaljer

Midtsemesterprøve fredag 10. mars kl

Midtsemesterprøve fredag 10. mars kl Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 006 Midtsemestepøve fedag 10. mas kl 0830 1130. Svatabellen stå på et eget ak. Sett tydelige kyss. Husk å skive på

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Kaftmoment τ Rulling Spinn (deieimpuls):

Detaljer

Løsningsforslag Fysikk 2 Vår 2014

Løsningsforslag Fysikk 2 Vår 2014 Løsninsfosla Fysikk Vå 014 Løsninsfosla Fysikk Vå 014 Opp Sva Foklain ave a) B Det elektiske feltet å adielt ut fa en positivt ladet patikkel. Fo å få et elektisk felt som på fiuen må demed X væe positivt

Detaljer

Oppsummering Fysikkprosjekt

Oppsummering Fysikkprosjekt Tekno-/Realstat høsten 011 MTFYMA, BFY, LUR Oppsummeing Fysikkposjekt m? F? v m p a F v? a? p? Lineæ bevegelse Rotasjonsbevegelse Navn: Symbol: Navn: Symbol: distanse masse hastighet akseleasjon kaft bevegelsesmengde,

Detaljer

9 Spenninger og likevekt

9 Spenninger og likevekt 9 Spenninger og likevekt Innhold: Volumkrefter og flatekrefter Traksjonsvektoren Spenningsmatrisen Retningscosinuser Cauchs ligning Hovedspenninger og hovedspenningsretninger Spenningsinvarianter Hdrostatisk

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 9. Veiledning: 18. oktober. Innleveringsfrist: 23. oktober kl 14.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 9. Veiledning: 18. oktober. Innleveringsfrist: 23. oktober kl 14. TFY404 Fysikk. Institutt fo fysikk, NTNU. Høsten 203. Øving 9. Veiledning: 8. oktobe. Innleveingsfist: 23. oktobe kl 4. Oppgve ) Figuen vise et unifomt elektisk felt (heltukne linje). Lngs hvilken stiplet

Detaljer

Betraktninger rundt det klassiske elektronet.

Betraktninger rundt det klassiske elektronet. Betaktninge undt det klassiske elektonet. Kistian Beland Matteus Häge - 1 - - - Innholdsfotegnelse: 1. Sammendag - 5 -. Innledning - 6 -. Innledende betaktninge - 7-4. Vå elektonmodell - 8-5. Enegi i feltene

Detaljer

Fagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. kap21 18.01.2016. mg mg. Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk

Fagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. kap21 18.01.2016. mg mg. Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk kap1 18.01.016 TFY4155/FY1003 lektisitet og magnetisme Fagovesyn: lektostatikk, inkl. elektisk støm Magnetostatikk lektodynamikk l.mag. e gunnlag fo: Ketselemente (motstand, kondensato, spole, diode, tansisto)

Detaljer

ρ = = = m / s m / s Ok! 0.1

ρ = = = m / s m / s Ok! 0.1 Løsningsfoslag TEP 00 FLUIDMEKNIKK.juni 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d g 6

Detaljer

3. Termodynamikk. Energi og systemer. Total energi og indre energi. Systemer. 3 Termodynamikk

3. Termodynamikk. Energi og systemer. Total energi og indre energi. Systemer. 3 Termodynamikk 3. Temodynamikk 3 Temodynamikk I mange mekaniske og fysiske osesse (som de vi behandlet i foige kaittel) og i kjemiske eaksjone ha vi utveksling av enegi, og ofte ovaming elle avkjøling. Vi kan gjene si

Detaljer

Matematikk 3MX AA6524 / AA6526 Elever / privatister Oktober 2002

Matematikk 3MX AA6524 / AA6526 Elever / privatister Oktober 2002 E K S A M E N LÆRINGSSENTERET Matematikk 3MX AA6524 / AA6526 Eleve / pivatiste Bokmål Eksempeloppgave ette læeplan godkjent juli 2000 Videegående kus II Studieetning fo allmenne, økonomiske og administative

Detaljer

Stivt legemers dynamikk. Spinn

Stivt legemers dynamikk. Spinn Stvt legees nakk Spnn 9.4.14 ngen ata-vekste enne uke FYS-MEK 111 9.4.14 1 Eksepel R Et legee av asse M, aus R, og teghetsoent ulle ne et skåplan. koonatsste e aksen langs planet ogo assesenteet otasjon

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stvt legemes namkk 07.04.014 spnntu 6.-7. apl YS-MEK 1110 07.04.014 1 tanslasjon otasjon tanslasjon otasjon possjon (t) (t) vnkel hastghet v( t) t ( t) t vnkelhastghet akseleasjon a( t) v t t t t ( t)

Detaljer

Måling av gravitasjonskonstanten

Måling av gravitasjonskonstanten Måling av gavitasjonskonstanten Aeea Aka, Jako Gehad Matinussen & Ingeog Ullaland Oktoe 014 Sammendag Gavitasjonskonstantens vedi, som anvendes i Newtons univeselle gavitasjonslov, kan eegnes ved å foeta

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: Eksamensdag: Tid fo eksamen: 14.30 18.30 Oppgavesettet e på 5 side. Vedlegg: Tillatte hjelpemidle: MEK3230 Fluidmekanikk 6. Juni,

Detaljer

Diffraksjon og interferens med laser

Diffraksjon og interferens med laser Diffaksjon og intefeens med lase Hensikt Oppsettet pa bildet bukes til a undesøke diffaksjonsmønste fa ulike spalte og gittee. Na laselys teffe et diffaksjonsobjekt, vil intensitetsmønsteet i obsevasjonsplanet

Detaljer

Løsningsforslag eksamen 2. august 2003 SIF 4005 Fysikk for kjemi og materialteknologi

Løsningsforslag eksamen 2. august 2003 SIF 4005 Fysikk for kjemi og materialteknologi Løsningsfslag eksamen. august SF 5 Fysikk f kjemi g mateialteknlgi Oppgave lektstatikk a) Sylineens ttale laning pe lengeenhet finnes ve å integee laningsfelingen ( ) ve aealelementet A= e sylineens aius

Detaljer

Hesteveddeløp i 8. klasse

Hesteveddeløp i 8. klasse Andeas Loange Hesteveddeløp i 8. klasse Spillbettet. Gå det an å ha det gøy, utfoske algebaens mysteie og samtidig læe noe? Vi befinne oss i 8. klasse på Kykjekinsen skole i Begen. Jeg ha nettopp blitt

Detaljer

MEK 4520 BRUDDMEKANIKK Løsningsforslag til obligatorisk øving 1.

MEK 4520 BRUDDMEKANIKK Løsningsforslag til obligatorisk øving 1. - - ME 45 RDDMEAN Løsningsfoslg til obligtoisk øving. Oppgve () Vis t spekkbeiet ( enegy elese te ) fo et lineæ-elstisk mteile e knyttet til ening i komplinsen. Definisjon v : A, F hvo e lget tøyningsenegi

Detaljer

Løsningsforslag Fysikk 2 V2016

Løsningsforslag Fysikk 2 V2016 Løsningsfoslag Fysikk V016 Oppgave Sva Foklaing a) B Faadays induksjonslov: ε = Φ, so gi at Φ = ε t t Det bety at Φ åles i V s b) D L in = 0,99 10 = 9,9 L aks = 1,04 10 = 10,4 L snitt = (L in + L aks )

Detaljer

Tre klasser kollisjoner (eksempel: kast mot vegg)

Tre klasser kollisjoner (eksempel: kast mot vegg) kap8 2.09.204 Kap. 8 Bevegelsesmengde. Kollisjone. assesente. Vi skal se på: ewtons 2. lov på ny: Definisjon bevegelsesmengde Kaftstøt, impuls. Impulsloven Kollisjone: Elastisk, uelastisk, fullstendig

Detaljer

Utvalg med tilbakelegging

Utvalg med tilbakelegging Utvalg med tilbakelegging Gitt n foskjellige objekte. Vi skal velge objekte på en slik måte at fo hvet objekt vi velge, notee vi hvilket det e og legge det tilbake. Det bety at vi kan velge det samme objektet

Detaljer

b) 3 MATEMATISKE METODER I 1 ( ) ( ) ( ) ( ) ( ) ( ) Repetisjonsoppgaver Bruk av regneregler: 1 Regn ut: e) 0 x ) 4 3 d) 4 x f) 5y

b) 3 MATEMATISKE METODER I 1 ( ) ( ) ( ) ( ) ( ) ( ) Repetisjonsoppgaver Bruk av regneregler: 1 Regn ut: e) 0 x ) 4 3 d) 4 x f) 5y MATEMATISKE METODER I Buk av egneegle: Regn ut: a ( ( b 7 c ( 7 y 8 d 8 e f 5y y Regn ut og tekk sammen: a 5a b a b a + b b y + y + + y c t t + 6 ( 6t t + 8 d s+ s + s ( s + s Multiplise ut og odne a (

Detaljer

Magnetisk hysterese. 1. Beregn magnetfeltet fra en strømførende spole med kjent vindingstall.

Magnetisk hysterese. 1. Beregn magnetfeltet fra en strømførende spole med kjent vindingstall. FY33 Elektisitet og magnetisme II Institutt fo fysikk, TU FY33 Elektisitet og magnetisme II, høst 7 Laboatoieøvelse Magnetisk hysteese Hensikt Hensikten med oppgave å gjøe seg kjent med opphavet til magnetiske

Detaljer

Utvalg med tilbakelegging

Utvalg med tilbakelegging Utvalg med tilbakelegging Gitt n foskjellige objekte. Vi skal velge objekte på en slik måte at fo hvet objekt vi velge, notee vi hvilket det e og legge det tilbake. Det bety at vi kan velge det samme objektet

Detaljer

Løsningsforslag Eksamen i fag TEP4110 Fluidmekanikk

Løsningsforslag Eksamen i fag TEP4110 Fluidmekanikk Oppgave Løsningsfoslag Eksamen i fag TEP40 Fluidmekanikk Onsdag 8 desembe 00 kl 500 900 Hastighetspotensialet fo en todimensjonal potensialstømning av en inkompessibel fluid e gitt som: (, ) Acos ln ()

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ask ekap) Sentipetalakseleasjon, baneakseleasjon (ask ekap) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn

Detaljer

Fysikkolympiaden Norsk finale 2010

Fysikkolympiaden Norsk finale 2010 Uniesitetet i Oslo Nosk Fysikklæefoening Fysikkolympiaden Nosk finale. ttakingsnde Fedag 6. mas kl 9. til. Hjelpemidle: abell/fomelsamling, lommeegne og tdelt fomelak Oppgaesettet bestå a 6 oppgae på side

Detaljer

Mot 5: Støy i bipolare transistorer

Mot 5: Støy i bipolare transistorer 1/34 Mot 5: Støy i bipolae tansistoe Vi ha tidligee unnet Eni, En, og n o en osteke. Vi vil nå gjøe dette o en bipola tansisto. Vi vil se at støyen e både avhengig av opeasjonspunktet (støm og spenning)

Detaljer

"Kapittel 5 i et nøtteskall"

Kapittel 5 i et nøtteskall Ulve "Kapittel 5 i et øtteskall" (Vesjo 9.01.0 ) Jeg gå he i gjeom alle tekikke/fomle som e elevate i dette kapitlet ved å buke et eksempel side 198 som utgagspukt fo alle tekikkee. Ovesikt ove fomle og

Detaljer

Gravitasjon og planetenes bevegelser. Statikk og likevekt

Gravitasjon og planetenes bevegelser. Statikk og likevekt Gavtasjon og planetenes bevegelse Statkk og lkevekt.5.3 YS-MEK.5.3 otensell eneg tl tyngdekaften en masse m bevege seg tyngdefeltet tl massen M fa punkt tl B Newtons gavtasjonslov abed: W B G d mm G ˆ

Detaljer

Spørretime TEP Våren Spørretime TEP Våren 2008

Spørretime TEP Våren Spørretime TEP Våren 2008 Søetime EP 4115 - Våen 28 Fotegnskonvensjonen og Ka.9 (& OB s slides) Q: ilsynelatende uoveensstemmelse mellom det Olav Bolland esentete fo Otto/Diesel og det som stå i læeboka nå det gjelde fotegn i likninge.

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon av stive legeme Vi skal se på: Vinkelhastighet, vinkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn (deieimpuls):

Detaljer

Kap 28: Magnetiske kilder. Kap 28: Magnetiske kilder. Kap 28. Rottmann integraltabell (s. 137) μ r. μ r. μ r. μ r

Kap 28: Magnetiske kilder. Kap 28: Magnetiske kilder. Kap 28. Rottmann integraltabell (s. 137) μ r. μ r. μ r. μ r Kap 8 Kap 8: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft

Detaljer

Gravitasjon og planetenes bevegelser. Statikk og likevekt

Gravitasjon og planetenes bevegelser. Statikk og likevekt Gavtasjon og planetenes bevegelse Statkk og lkevekt 06.05.05 FYS-MEK 0 06.05.05 Ekvvalenspnsppet gavtasjonskaft: gavtasjonell masse m m F G G m G F g G FG R Gm J J Newtons ande lov: netalmasse m a F ma

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERITETET I GDER Gimstad E K M E N O P P G V E : G: M-9 Matematikk LÆRER: Pe Henik Hogstad Klasse: Dato: 8..8 Eksamenstid fa-til: 9.. Eksamensoppgaven bestå av følgende ntall side: 6 inkl. foside vedlegg

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 10. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 10. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt. TFY0 Fysikk. Institutt fo fysikk, NTNU. Høsten 06. Øving 0. Opplysninge: esom ikke nnet e oppgitt, nts det t systemet e i elektosttisk likevekt. esom ikke nnet e oppgitt, e potensil undefostått elektosttisk

Detaljer

( 6z + 3z 2 ) dz = = 4. (xi + zj) 3 i + 2 ) 3 x x 4 9 y. 3 (6 2y) (6 2y)2 4 y(6 2y)

( 6z + 3z 2 ) dz = = 4. (xi + zj) 3 i + 2 ) 3 x x 4 9 y. 3 (6 2y) (6 2y)2 4 y(6 2y) TMA415 Matematikk 2 Vå 215 Noges teknisk natuvitenskapelige univesitet Institutt fo matematiske fag Løsningsfoslag Øving 11 Alle oppgavenumme efeee til 8. utgave av Adams & Essex Calculus: A Complete Couse.

Detaljer

Fysikkolympiaden Norsk finale 2016

Fysikkolympiaden Norsk finale 2016 Nosk fysikklæefoening Fysikkolypiaden Nosk finale 16 Fedag 8. apil kl. 9. til 11.3 Hjelpeidle: abell/foelsaling, loeegne og utdelt foelak Oppgaesettet bestå a 6 oppgae på side Lykke til! Oppgae 1 En patikkel

Detaljer

11 Elastisk materiallov

11 Elastisk materiallov lastisk materiallov Innhold: lastisk materialoppførsel Isotrope og anisotrope materialer Generalisert Hookes lov Initialtøninger Hookes lov i plan spenning og plan tøning Volumtøning og kompresjonsmodul

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn (deieimpuls):

Detaljer

Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Sentralt elastisk støt. Generell løsning: kap8.

Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Sentralt elastisk støt. Generell løsning: kap8. Kap. 8 evegelsesmengde. Flepatkkelsystem. V skal se på: ewtons 2. lov på ny. Defnsjon evegelsesmengde. Kaftstøt, mpuls. Impulsloven. Flepatkkelsysteme: Kollsjone: Elastsk, uelastsk, fullstendg uelastsk

Detaljer

Oppgave 1 Svar KORT på disse oppgavene:

Oppgave 1 Svar KORT på disse oppgavene: Løsningsfoslag til Eksamen i FYS000. juni 0 Oppgae Sa KORT på disse oppgaene: a) En kontinuelig stålingskilde il gi et Planckspektum. Desom den kontinuelige stålingskilden passee gjennom en gass, il stålingen

Detaljer

Løsningsforslag til eksempeloppgave 1 i fysikk 2, 2008

Løsningsforslag til eksempeloppgave 1 i fysikk 2, 2008 Fysikk Eksempeloppgae Løsningsfoslag til eksempeloppgae 1 i fysikk, 008 Del 1 Oppgae 1 Riktige sa på flealgsoppgaene a j e: a) B b) D c) D d) D e) B f) D g) B h) B i) C j) B Sa på kotsasoppgaene k n: k)

Detaljer

Klossen beveger seg med konstant fart, så Newtons 1.lov gir at friksjonskraften R er like stor som parallellkomponenten til tyngden G 2

Klossen beveger seg med konstant fart, så Newtons 1.lov gir at friksjonskraften R er like stor som parallellkomponenten til tyngden G 2 Løsningsfoslag Fysikk 2 H2017 Oppgave 1 Oppgave Sva Foklaing a) B Magnetisk fluks måles i Webe (Wb), som foøvig e det samme som Teslakvadatmete (T m & ). b) B Klossen bevege seg ikke nomalt på bakkeplanet,

Detaljer