Løsning midtveiseksamen H12 AST1100
|
|
- Cecilie Nesse
- 5 år siden
- Visninger:
Transkript
1 Løsning midtveiseksamen H AST00 Aleksande Seland Setembe 5, 04 Ogave Vi se at kuven fo adiell hastighet e eiodisk og minne om en hamonisk funksjon. Vi kan defo anta at denne stjenen gå i bane undt et felles massesente med en stjene (vesentlig minde enn modestjena vel og meke) elle en lanet. Videe kan vi se stjenen bli fomøket idet denne laneten elle stjena gå foan modestjena. Det som gjø at vi kan fjene mistanken om en stjene e at vi samtidig som fomøkelsen ågå få en absobsjon av en lysfekvens som e sesifik fo vann. En stjene kan ikke ha vann ga temeatu, og demed e det en lanet. Vi se også at kuven fo vannfekvense e bedee enn kuven fo ande fekvense, noe som bety at selv om laneten ha asset, så e det fotsatt litt vannholdig atmosfæe igjen som absobee lys. Ogave Hvis vi øve å kansellee støyen i figu og se å likevektslinja til kuven, få vi at massesenteet bevege seg med ca -4000m/s, noe som gi en adiell hastighet i fohold til massesenteet å ca ±0.5m/s (hvis vi øve å fjene støyen). Vi kan også lese av eioden ved å se å tidsdiffeansen mellom toene, og den e time. Det stå altså mellom to fomle fo øyeblikket: m sin i m/3 v P /3 ( G) /3 m v m v Ettesom vi ikke vet noe bedden til stjenen kan vi ikke egne ut hastigheten til laneten, og ligning e ubukelig. Så da stå vi igjen med den føste ligningen, og de ha vi ikke inklinasjonen. Men vi vet at vi faktisk ha en fomøkelse he, noe som bety at inklinasjonen må væe 90.Vikanaltsåbukeligning
2 ogdeledenåjodmassen(m j kg) fo å få svaet diekte ut: m m/3 v P /3 m j ( G) / kg /3 0.5m/s (400h 60s 60s) /3.73m j kg Nm /kg /3 Offisielle fasiten sie at m m j,mendetteefodieiodeneegnetfeili fasiten. Ogave 3 Vi buke Wiens foskyvningslov til å anta en høyee temeatu fo stjena (Wiens foskyvningslov gi oss fagetemeatuen). T max Vi få ogitt at stjena lyse gulhvitt altså ha vi at gulfagen e eget av høyee fekvense og demed kotee bølgelengde. I folengelsen bety dette en høyee temeatu enn Sola som egnes som helt gul med T 6000K. Hvisvi da anta f. eks T 8000K, såkanvibukefølgendefomelfoavstandentil stjena: d m M 5 log 0 0c Vi kan gå inn i HR-diagammet og lese av en absolutt magnitude å M desom vi ta utgangsunkt i midten av bedden å hovedsekvensen av stjene. Den elative magnituden få vi fa at vi huske hvodan magnitudesystemet føst ble etablet. Hiachus ga de stjenene som såvidt va synlig fo øyet en magnitude å m 6.Sådaedetbaeåsnuåligningenåfå: Ogave 4 d 0 m M 5 0c ly 37ly Vi vet altså at vi ha e 0.5 og at i eihel ha vi m. Videe state obemsingen ved mogmassentilsatelittenem g. Vi skal finne hastighetene i adiell og tangentiell etning utifa dette. Vi ha 3
3 fomle som inneholde støelse vi ønske å buke: +e cos f h m a( e ) Vi vet ingenting om vinkelen til omsonden ved inngangen til banen, og demed yke føste fomelen. h e sinn me masse, og det kan vi egne ut fo satelliten siden sinnet e alltid bevat. ~ h ~ ~ m ~ m~v m m (~ ~v ) m ~ ~v ~e (v ~e + v ~e )~e v ~e + ~e v ~e 0+v v Da ha vi h fo omsonden, vi sette de to siste ligningene lik hveande og få (husk at nå e m G(m + m ): v G(m + m ) h m a( e ) v a( e ) a( e )G(m + m ) Det eneste som mangle nå e å finne a. Vi se fa figu 5 at avstanden fa sentum i ellisen og ut til laneten e ae, videehaviat a ae + eihelion eihelion a( e) eihelion 0.5a a eihelion m Da e det bae å sette inn i fomelen : a( e )G(m + m ) v ( 0.5 ) ( ) km/s m/s 5.4km/s 3
4 Da gjenstå det bae å egne ut adiell hastighet. Fo å gjøe det, så må vi buke en annen bevat støelse, nemlig enegi. Fa fomelsamlingen bakest ha vi følgende fomle fo enegien: E ˆµv Gm m E Gm m (e ) Vi e ute ette hastigheten he, så vi sette uttykkene lik hveande og løse fo hastigheten: Gm m ˆµv Gm m (e ) ˆµv Gm m (e ) + Gm m v Gm m e + ˆµ v + v Gm m e + ˆµ s Gm m e v + ˆµ v Sette så inn a( e ) a(e ) og ˆµ m m og få: m + m s Gm m e v m m m +m a(e ) + v s G (m + m ) a + v s ( ) m/s 3km/s
5 Ogave 5 v_s(0)[0,v_0] FOR t,n _[t-]-_s[t-] nom_ sqt(.dot.) F_G G*m*ms*/nom_^3 IF nom_ < R ENDFOR ENDIF IF nom_ < 0 F_F -k0/nom_*v_s[t-] ELSE F_F 0 ENDIF a (F_G+F_F)/ms v_s[t] v_s[t-]+a*deltat _s[t] _s[t-]+v_s[t-]*deltat a -F_G/m v_[t] v_[t-]+a*deltat _[t] _[t-]+v_[t-]*deltat ENDFOR %Vekto fa sonde til lanet %Avstanden fa sonde til lanet %Gavitasjonskaft å sonde %Teste om sonden ha landet %Fiksjonskaft hvis <0 %Ingen fiksjon hvis >0 %Akselleasjon sonde %Fat sonde %Posisjon sonde %Akselleasjon lanet %Faten til lanet %Posisjonen til lanet Ogave 6 Vi ha følgende fluksuttykk å utte med: Hvis vi stable om litt, så få vi at ˆ 4 R 0 F de dtda F T 4 FdA de dt T 4 da FdA T 4 ˆ 4 R F 4 R T 4 4 R Nå som vi ha det i oden, så e det bae å egne ut fluksen i avstand til stjena. Jeg definee F som fluksen i avstand og F R som fluksen i avstand 0 da 5
6 R: L L F 4 F R 4 R F 4 T 4 4 R F T 4 4 R 4 F T 4 R Da e vi nesten i mål, bae iveien.viseifomelsamlingenat +e cos f Vi ha at f og a( e ).Visetteinnogfå a e +ecos! F T 4 R a( e ) +e cos T 4 R ( + e cos ) a( e ) Ogave 7 Fo å finne den beste vedien av e må vi ta å sammenligne dataene o mot funksjonen. Vi ønske defo å ta å egne ut diffeansen mellom funksjonen og måleunktene fo alle t og summee dette o. Slik få vi den totale diffeansen som vi kan buke fo å sammenligne foskjellige vedie av e. Samtidig ha vi også en annen ukjent, F 0. Vi må defo skive en FOR-løkke inne i en FORløkke slik at fo hve F 0 vi sjekke, så løe vi igjennom alle e-vediene. Fo hve kombinasjon av F 0 og eegne vi ut den totale diffeansen og sammenligne med diffeansen gitt av kombinasjonen fø. Ha vi fått en minde diffeanse, så lage vi vediene av F 0 og e, oghavifåttenstøediffeanse,fokastevi kombinasjonen fø vi begynne å en ny kombinasjon. Ogave 8 Vi huske at vi definee et efeansesystem som e i o, og et som e i bevegelse. Vi velge å se å omskiet fa den fjene laneten som det mekede systemet i fat, og joden som i o og umeket. 6
7 A: Romskiene skytes o. Sett fa joden e omskiet i avstand d og inne i skiet ha de ikke obsevet at de ha beveget seg ennå. x A d t A 0 x 0 A 0 t 0 A 0 B: Romskiene møte hveande. He se vi at skiet ha beveget seg med en distanse v t B sett fa joda, mens inne i skiet ha de ikke beveget seg idetheletatt(jodahabevegetsegmotdem). x B d v t B t B? x 0 B 0 t 0 B? Vi kan finne t B ved å sette o ligningen fo det øyeblikket de assee hveande sett fa joda: Vi få defo hendelse B slik: Inesteogaveskalvifinnet 0 B. x x v t B d v t B v t B + v t B d t B d v + v x B d v t B d t B v + v x 0 B 0 t 0 B t 0 B 7
8 Ogave 9 ( s) ( s 0 ) ( t) ( x) ( t 0 ) ( x 0 ) (t B t A ) (x B x A ) (t 0 B t 0 A) (x 0 B x 0 A) d d d v d (t 0 v + v v + v B) 0 d d v (t 0 v + v v + v B) 0 (t 0 B) d v v + v q t 0 d B v v + v 00å å 9å Ogave 0 Sett fa jodomskiet state det femmede skiet i en distanse x d (jodskiet e i bevegelse og obsevee avstande anneledes enn om de hadde væt io). Jodskietobseveesegselvio,defogåsteken a ettoove tidsaksen. Joda bevege seg vekk fa skiet ifølge mannskaet ombod, og vi vet at jodskiet ikke ekke å obsevee joda i en distanse x d fø det femmede skiet komme fem. Vi vet også at det femmede skiet eise vesentlig fotee sett fa jodskiet enn joda defo e linjen til det femmede skiet me skå enn linjen til joda. 8
9 aelinjatiljodomskiet,belinjatiljodaogcelinjatildetfemmede omskiet. 9
b) C Det elektriske feltet går radielt ut fra en positivt ladd partikkel.
Løsningsfoslag Fysikk 2 Høst 203 Løsningsfoslag Fysikk 2 Høst 203 Opp Sva Foklaing gave a) B Fomelen fo bevegelsesmengde p = mv gi enheten kg m. s Dette kan igjen skives som: kg m = kg m s s2 s = Ns b)
DetaljerNewtons lover i to og tre dimensjoner
Newtons love i to og te dimensjone 7..13 innleveing: buk iktige boks! FYS-MEK 111 7..13 1 Skått kast kontaktkaft: luftmotstand langtekkende kaft: gavitasjon initialbetingelse: () v() v v cos( α ) iˆ +
DetaljerEKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002/MNFFY101 GENERELL FYSIKK II Lørdag 6. desember 2003 kl Bokmål
ide av 0 NORGE TEKNIK- NATURVITENKAPELIGE UNIVERITET INTITUTT FOR FYIKK Faglig kontakt unde eksamen: Føsteamanuensis Knut Ane tand Telefon: 73 59 34 6 EKAMEN FAG TFY460 ØLGEFYIKK OG FAG FY00/MNFFY0 GENERELL
DetaljerEKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG Tisdag 18. desembe 01 kl. 0900-100 Oppgave 1. Ti flevalgsspøsmål. (Telle
DetaljerKonstanter og formelsamling for kurset finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side enn selve oppgaven
UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Avsluttende eksamen i AST2000, 17. desembe 2018, 09.00 13.00 Oppgavesettet inkludet fomelsamling e på 8 side Tillatte hjelpemidle: 1) Angel/Øgim
DetaljerForelesning 9/ ved Karsten Trulsen
Foelesning 9/2 218 ved Kasten Tulsen Husk fa sist våe to spøsmål om kuveintegale: Desom vi skal beegne et kuveintegal som state i et punkt og ende opp i et annet punkt 1, så kan det væe mange veie fo å
DetaljerNewtons lover i én dimensjon (2)
Newtons love i én dimensjon () 9.1.13 husk: data lab fedag 1-16 FYS-MEK 111 9.1.13 1 Identifikasjon av keftene: 1. Del poblemet inn i system og omgivelse.. Tegn figu av objektet og alt som beøe det. 3.
DetaljerFysikk 2 Eksamen høsten Løsningsforslag
Fysikk - Løsninsfosla Oppave a) D Tesla b) B Tyndeakseleasonen e det samme som feltstyken til avitasonsfeltet, som e itt ved m m Siden e en konstant (avitasonskonstanten), vil oså bee planetene. væe likt
DetaljerMandag E = V. y ŷ + V ẑ (kartesiske koordinater) r sin θ φ ˆφ (kulekoordinater)
Institutt fo fysikk, NTNU TFY4155/FY13: Elektisitet og magnetisme Vå 26, uke 6 Mandag 6.2.6 Beegning av E fa V [FGT 24.4; YF 23.5; TM 23.3; F 21.1; LHL 19.9; DJG 2.3.1, 1.2.2] Gadientopeatoen : V = V V
DetaljerUtvalg med tilbakelegging
Utvalg med tilbakelegging Gitt n foskjellige objekte. Vi skal velge objekte på en slik måte at fo hvet objekt vi velge, notee vi hvilket det e og legge det tilbake. Det bety at vi kan velge det samme objektet
DetaljerKonstanter og formelsamling for kurset finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side enn selve oppgaven
UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Avsluttende eksamen i AST1100, 13. desembe 2016, 9.00 13.00 Oppgavesettet inkludet fomelsamling e på 7 side Tillatte hjelpemidle: 1) Angel/Øgim
DetaljerLøsningsforslag til ukeoppgave 11
Oppgave FYS1001 Vå 2018 1 Løsningsfoslag til ukeoppgave 11 Oppgave 23.04 B F m qv = F m 2eV = 6, 3 10 3 T Kaft, magnetfelt og fat stå vinkelett på hveande. Se læebok s. 690. Oppgave 23.09 a) F = qvb =
DetaljerUtvalg med tilbakelegging
Utvalg med tilbakelegging Gitt n foskjellige objekte. Vi skal velge objekte på en slik måte at fo hvet objekt vi velge, notee vi hvilket det e og legge det tilbake. Det bety at vi kan velge det samme objektet
DetaljerLøsningsforslag Fysikk 2 Høst 2014
Løsningsfoslag Fysikk Høst 014 Løsningsfoslag Fysikk Høst 014 Opp Sva Foklaing gave a) D Det elektiske feltet gå adielt ut fa en positivt ladet patikkel. Til høye fo elektonet lage elektonet en feltstyke
DetaljerNewtons lover i to og tre dimensjoner
Newtons love i to og te dimensjone 9..17 Oblig e lagt ut. Innleveing: Mandag,.. FYS-MEK 111 9..17 1 Skått kast med luftmotstand F net F D G D v v mg ˆj hoisontal og vetikal bevegelse ikke lenge uavhengig:
DetaljerBetinget bevegelse
Betinget bevegelse 1.0.013 innleveing på fonte FYS-MEK 1110 1.0.013 1 Innleveinge aksenavn! enhete! kommente esultatene utegninge: skitt fo skitt, ikke bae esultatet vi tenge å fostå hva du ha gjot sett
DetaljerNewtons lover i én dimensjon
Newtons love i én dimensjon 4.01.013 kaft akseleasjon hastighet posisjon YS-MEK 1110 4.01.013 1 Hva e kaft? Vi ha en intuitivt idé om hva kaft e. Vi kan kvantifisee en kaft med elongasjon av en fjæ. Hva
DetaljerLøsningsforslag eksamen H12 AST1100
øsningsfoslag eksamen H AST00 Aleksande Seland Decembe 6, 04 Oppgave Anta at en fjen stjene ha blitt obsevet ove et lengee tidsom (flee tusen å) og adien til stjena vise seg å væe konstant med tiden. Fokla
DetaljerFiktive krefter. Gravitasjon og planetenes bevegelser
iktive kefte Gavitasjon og planetenes bevegelse 30.04.013 YS-MEK 1110 30.04.013 1 Sentifugalkaft inetialsstem S f N G fiksjon mellom passasje og sete sentipetalkaft passasje bevege seg i en sikelbane f
DetaljerEksamen TFY 4240: Elektromagnetisk teori
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Ola Hundei, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektomagnetisk teoi 8 desembe 2007 kl. 09.00-13.00
DetaljerFysikkolympiaden 1. runde 25. oktober 5. november 2004
Nosk Fysikklæefoening Nosk Fysisk Selskaps fagguppe fo undevisning Fysikkolympiaden 1. unde 5. oktobe 5. novembe 004 Hjelpemidle: abell og fomelsamlinge i fysikk og matematikk Lommeegne id: 100 minutte
Detaljer( 6z + 3z 2 ) dz = = 4. (xi + zj) 3 i + 2 ) 3 x x 4 9 y. 3 (6 2y) (6 2y)2 4 y(6 2y)
TMA415 Matematikk 2 Vå 215 Noges teknisk natuvitenskapelige univesitet Institutt fo matematiske fag Løsningsfoslag Øving 11 Alle oppgavenumme efeee til 8. utgave av Adams & Essex Calculus: A Complete Couse.
Detaljera) C Det elektriske feltet går radielt ut fra en positivt ladet partikkel og radielt innover mot en negativt ladd partikkel.
Løsningsfoslag Fysikk 2 Vå 2015 Løsningsfoslag Fysikk 2 Vå 2015 Oppgav e Sva Foklaing a) C Det elektiske feltet gå adielt ut fa en positivt ladet patikkel og adielt innove mot en negativt ladd patikkel.
DetaljerOppgave 1 a)1 b)3 c)2 d)3 e)3 f)2 g)3 h)2 i)1 j)2 k)1 l)2
1 Løsningsfoslag EMC-eksamen 24.5. Oppgave 1 a)1 b)3 c)2 d)3 e)3 f)2 g)3 h)2 i)1 j)2 k)1 l)2 Oppgave 2 a) En geneisk standad e en geneell standad som bukes nå det ikke foeligge en poduktstandad. EN581
DetaljerLøsningsforslag Fysikk 2 Vår 2013 Oppgav e
Løsningsfoslag Fysikk 2 Vå 203 Løsningsfoslag Fysikk 2 Vå 203 Oppgav e Sva Foklaing a) B Feltet E gå adielt ut fa en positivt ladning. Siden ladning og 2 e like stoe, og ligge like langt unna P vil E væe
DetaljerLøsning, eksamen 3FY juni 1999
Løsning, eksamen 3FY juni 1999 Oppgae 1 km/s a) Hubbles lo sie at H, de H. 10 lyså Faten til galaksen e: 3 10 m/s H 5,0 10 7 lyså 1,10 10 m/s 10 lyså b) Dopplefomelen gi oss λ, de c e lysfaten og λ 0 e
DetaljerHesteveddeløp i 8. klasse
Andeas Loange Hesteveddeløp i 8. klasse Spillbettet. Gå det an å ha det gøy, utfoske algebaens mysteie og samtidig læe noe? Vi befinne oss i 8. klasse på Kykjekinsen skole i Begen. Jeg ha nettopp blitt
DetaljerLøsning øving 12 N L. Fra Faradays induksjonslov får vi da en indusert elektromotorisk spenning:
nstitutt fo fysikk, NTNU Fg SF 4 Elektognetise og MNFFY 3 Elektisitet og gnetise Høst øsning øving Oppgve Mgnetfeltet inne i solenoiden e : ( H( (N/) ( (dvs fo < R). Utenfo solenoiden: ( > R) Fo å eegne
DetaljerMatematikk 3MX AA6524 / AA6526 Elever / privatister Oktober 2002
E K S A M E N LÆRINGSSENTERET Matematikk 3MX AA6524 / AA6526 Eleve / pivatiste Bokmål Eksempeloppgave ette læeplan godkjent juli 2000 Videegående kus II Studieetning fo allmenne, økonomiske og administative
DetaljerLøsningsforslag Eksamen i fag TEP4110 Fluidmekanikk
Oppgave Løsningsfoslag Eksamen i fag TEP40 Fluidmekanikk Onsdag 8 desembe 00 kl 500 900 Hastighetspotensialet fo en todimensjonal potensialstømning av en inkompessibel fluid e gitt som: (, ) Acos ln ()
Detaljersosiale behov FASE 2: Haug barnehage 2011-2012
: Hva kjennetegne bana i denne fasen? De voksnes olle Banemøte Påkledning Samlinge Måltid Posjekte Uteleik Konfliktløsning Vudeing Haug banehage 2011-2012 «Omsog, oppdagelse og læing i banehagen skal femme
DetaljerLøsningsforslag Fysikk 2 V2016
Løsningsfoslag Fysikk V016 Oppgave Sva Foklaing a) B Faadays induksjonslov: ε = Φ, so gi at Φ = ε t t Det bety at Φ åles i V s b) D L in = 0,99 10 = 9,9 L aks = 1,04 10 = 10,4 L snitt = (L in + L aks )
DetaljerKapittel 2: Krumlinjet bevegelse
Kapittel : Kumlinjet bevegelse Vannett kast v = v v = gt x 0 1 x = vt 0 y= gt y Skått kast v = v v = v gt x 0x y 0y 1 x = v0 t y = v x 0 t gt y Sving uten dosseing U+ G = ma N = G v R = m R = μn = μmg
DetaljerEksamen i MA-104 Geometri Løsningsforslag
Eksamen i M-04 Geometi 4.0.007 Løsningsfoslag Oppgave Et kvadat ha side lik s, som du velge selv. E e midtpunktet på og F e midtpunktet på. iagonalen skjæe F i H. E skjæe F i G. I oppgaven skal du buke
DetaljerLøsningsforslag for eksamen i FY101 Elektromagnetisme torsdag 12. desember 2002
Løsningsfoslag fo eksamen i FY Elektomagnetisme tosdag. desembe Ved sensueing vil alle delspøsmål i utgangspunktet bli gitt samme vekt (uavhengig av oppgavenumme), men vi fobeholde oss etten til justeinge.
DetaljerLøsningsforslag. FY-ME100 eksamen 13. juni 2003
1 Løsningsfoslag FY-ME100 eksamen 13. juni 003 Oppgaveteksten e gjengitt fo at løsningsfoslaget skal kunne leses uten at den oiginale oppgaveteksten e tilgjengelig samtidig. I en nomal studentbesvaelse
DetaljerTips for prosjektoppgaven i FYS-MEK/F 1110 V2006
1 Tips fo posjektoppgaven i FYS-MEK/F 1110 V2006 Utfosking av et telegeme-system Ant Inge Vistnes, vesjon 0605141330 Det e ikke nødvendig å lese dette skivet fo å løse posjektoppgaven, men de fleste vil
DetaljerØving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
Institutt fo fysikk, NTNU TFY455/FY003: lektisitet og magnetisme Vå 2008 Øving 8 Veiledning: 04.03 i R2 25-400, 05.03 i R2 25-400 Innleveingsfist: Fedag 7. mas kl. 200 (Svatabell på siste side.) Opplysninge:
DetaljerOppgave 1 Svar KORT på disse oppgavene:
Løsningsfoslag til Eksamen i FYS000. juni 0 Oppgae Sa KORT på disse oppgaene: a) En kontinuelig stålingskilde il gi et Planckspektum. Desom den kontinuelige stålingskilden passee gjennom en gass, il stålingen
DetaljerNotat i FYS-MEK/F 1110 våren 2006
1 Notat i FYS-MEK/F 1110 våen 2006 Rulling og skliing av kule og sylinde Foelest 24. mai 2006 av Ant Inge Vistnes Geneelt Rotasjonsdynamikk e en svæt viktig del av mekanikkuset våt. Dette e nytt stoff
DetaljerUNIVERSITETET I OSLO
Side av 5 UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Mandag 9. juni 28 Tid fo eksamen: Kl. 9-2 Oppgavesettet e på 5 side inkludet fomelaket. Tillatte
DetaljerEKSAMEN I FAG SIF 4008 FYSIKK Mandag 7. mai 2001 kl Bokmål. K. Rottmann: Matematisk formelsamling
Side 1 av 1 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Føsteamanuensis Knut Ane Stand Telefon: 73 59 34 61 EKSAMEN I FAG SIF 48 FYSIKK Mandag 7. mai
DetaljerGravitasjon og planetenes bevegelser. Statikk og likevekt
Gavtasjon og planetenes bevegelse Statkk og lkevekt 06.05.05 FYS-MEK 0 06.05.05 Ekvvalenspnsppet gavtasjonskaft: gavtasjonell masse m m F G G m G F g G FG R Gm J J Newtons ande lov: netalmasse m a F ma
Detaljerc) etingelsen fo at det elektiske feltet E e otasjonsinvaiant om x-aksen e, med E og ee som denet ovenfo, at e E = E. Dette skal gjelde fo en vilkalig
Eksamen i klassisk feltteoi, fag 74 5, 4. august 995 Lsninge a) Koodinatene x; y; z tansfomees slik x 7 bx = x; y 7 by = y cos, z sin ; z 7 by = y sin + z cos Den invese tansfomasjonen e en otasjon en
Detaljertrygghet FASE 1: barnehage
tygghet banehage De voksnes olle Banemøte Leikeguppe Guppeaktivitet Hjemmebesøk Samlinge Måltid Påkledning Uteleik Konfliktløsning Vudeing Haug banehage 2011-2012 tygghet tygghet «Banehagen skal bistå
DetaljerFAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVERITETET I AGDER Gimstad E K A M E N O P P G A V E : FAG: MA-9 Matematikk ÆRER: Pe enik ogstad Klasse: Dato:.6. Eksamenstid fa-til: 9.. Eksamensoppgaven bestå av følgende Antall side: 5 inkl. foside
DetaljerPytagoreiske tripler og Fibonacci-tall
Johan F. Aanes Pytagoeiske tiple og Fibonai-tall Pytagoas og Fibonai siamesiske tvillinge? Me enn 700 å skille dem i tid, men matematisk e de på en måte uadskillelige. Pytagoas (a. 585 500 f.k.) og Leonado
DetaljerEksamen i TFY4205 Kvantemekanikk Mandag 8. august :00 13:00
NTNU Side 1 av 9 Institutt fo fysikk Faglig kontakt unde eksamen: Pofesso Ane Bataas Telefon: 73593647 Eksamen i TFY405 Kvantemekanikk Mandag 8. august 005 9:00 13:00 Tillatte hjelpemidle: Altenativ C
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 9. Veiledning: 18. oktober. Innleveringsfrist: 23. oktober kl 14.
TFY404 Fysikk. Institutt fo fysikk, NTNU. Høsten 203. Øving 9. Veiledning: 8. oktobe. Innleveingsfist: 23. oktobe kl 4. Oppgve ) Figuen vise et unifomt elektisk felt (heltukne linje). Lngs hvilken stiplet
DetaljerEKSAMEN I EMNE SIE 4015 BØLGEFORPLANTNING
NTNU Noges teknisk-natuvitenskapelige univesitet Side 1 av 8 Fakultet fo infomatikk, matematikk og elektoteknikk Institutt fo fysikalsk elektonikk Bokmål/Nynosk Faglig/fagleg kontakt unde eksamen: Navn:
DetaljerFysikk-OL Norsk finale 2005
Univesitetet i Oslo Nosk Fysikklæefoening Fysikk-OL Nosk finale 005 3. uttakingsunde Tid: Fedag 5. apil kl 09.00.00 Hjelpemidle: Tabell/fomelsamling, gafisk lommeegne Oppgavesettet bestå av 7 oppgave på
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: MEK3220/MEK4220 Kontinuumsmekanikk Eksamensdag: Onsdag 2. desembe 2015. Tid fo eksamen: 09.00 13.00. Oppgavesettet e på 7 side.
DetaljerMagnetisk hysterese. 1. Beregn magnetfeltet fra en strømførende spole med kjent vindingstall.
FY33 Elektisitet og magnetisme II Institutt fo fysikk, TU FY33 Elektisitet og magnetisme II, høst 7 Laboatoieøvelse Magnetisk hysteese Hensikt Hensikten med oppgave å gjøe seg kjent med opphavet til magnetiske
DetaljerFysikk 2 Eksamen våren Løsningsforslag
Fysikk - Løsningsfoslag Ogae a) B Q Den elektiske feltstyken fa en unktladning e gitt ed E ke. Feltet E gå adielt ut fa en ositi ladning. Siden ladning og e like langt fa unktet P, il E æe like sto fa
DetaljerOppsummering Fysikkprosjekt
Tekno-/Realstat høsten 011 MTFYMA, BFY, LUR Oppsummeing Fysikkposjekt m? F? v m p a F v? a? p? Lineæ bevegelse Rotasjonsbevegelse Navn: Symbol: Navn: Symbol: distanse masse hastighet akseleasjon kaft bevegelsesmengde,
Detaljerb) 3 MATEMATISKE METODER I 1 ( ) ( ) ( ) ( ) ( ) ( ) Repetisjonsoppgaver Bruk av regneregler: 1 Regn ut: e) 0 x ) 4 3 d) 4 x f) 5y
MATEMATISKE METODER I Buk av egneegle: Regn ut: a ( ( b 7 c ( 7 y 8 d 8 e f 5y y Regn ut og tekk sammen: a 5a b a b a + b b y + y + + y c t t + 6 ( 6t t + 8 d s+ s + s ( s + s Multiplise ut og odne a (
DetaljerEksamen 16. des Løsningsforslag
Institutt fo fysikk TFY44/FY Mekanisk fysikk Eksamen 6. des.. Løsningsfoslag Dette løsningsfoslaget e spesielt fyldig med flee altenative løsninge, som ukt av flee studente i eksamensesvaelsen. Det e også
DetaljerKap. 12. Gravitasjon. Kap. 12. Gravitasjonen. Gravitasjon/solsystemet. Litt historie: Kap 12-grav. Naturens fire fundamentale krefter (fra kap 4):
Ka 1-gav Ka. 1. Gavitasjon Keles love fo lanetbane Newtons gavitasjonslov Gavitasjonens otensielle enegi. Unnslishastighet Ka. 1. Gavitasjonen Natuens fie fundamentale kefte (fa ka 4): Gavitasjonskaft
DetaljerStivt legemers dynamikk. Spinn
Stvt legemes dnamkk Spnn.4.5 FYS-MEK.4.5 Poblemløsnng dentfse sstem og omgvelse defne et koodnatsstem fnn massesente, otasjonsakse og teghetsmoment f N cm G fnn ntalbetngelse: possjon, hastghet, vnkel,
DetaljerBillige arboresenser og matchinger
Billige aboesense og matchinge Magnus Lie Hetland 16. jan 009 Dette e foelesningsnotate til føste foelesning i faget Algoitmekonstuksjon, videegående kus, ved Institutt fo datateknikk og infomasjonsvitenskap,
DetaljerKonstanter og formelsamling finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side en selve oppgaven
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveis -eksamen i AST1100, 9. oktober 2012, 15.00 18.00 Oppgavesettet inkludert formelsamling er på 12 sider Tillatte hjelpemidler: 1)
DetaljerKJM Radiokjemidelen
Patikke i boks - en dimensjon KJM 1060 - Radiokjemideen Foeesning : Skamodeen d ψ m + E ψ 0 dx h n π h En V0 + m ψ n nπ( x + ) sin n 45 de n 1,,,... Sannsynigheten fo å finne patikkeen meom x og x+dx e:
DetaljerKombinatorikk. MAT0100V Sannsynlighetsregning og kombinatorikk. Multiplikasjonssetningen
MAT0100V Sasylighetsegig og kombiatoikk Kombiatoikk Odede utvalg med og ute tilbakeleggig Uodede utvalg ute tilbakeleggig Pascals talltekat og biomialkoeffisietee Øulf Boga Matematisk istitutt Uivesitetet
DetaljerFYSIKK-OLYMPIADEN Andre runde: 4/2 2010
Nosk Fysikklæefoening Nosk Fysisk Selskaps fagguppe fo undevisning FYSIKK-OLYMPIADEN 009 010 Ande unde: / 010 Skiv øvest: Navn, fødselsdato, e-postadesse og skolens navn Vaighet:3 klokketime Hjelpemidle:abell
Detaljer8 Eksamens trening. E2 (Kapittel 1) På figuren er det tegnet grafene til funksjonene f og g gitt ved
84 8 Eksamenstening 8 Eksamens tening Uten hjelpemidle E1 (Kapittel 1) Polynomfunksjonen P e gitt ved P ( ) = 7 + 14 8, DP = R. a Det kan vises at alle heltallige løsninge av P() = 0 gå opp i konstantleddet
DetaljerRettelser til. Øistein Bjørnestad Tom Rune Kongelf Terje Myklebust. Alfa. Oppgaveløsninger
Rettelse til Øistein Bjønestad Tom Rune Kongelf Teje Myklebust Alfa Oppgaveløsninge 007 Kapittel S. 7: Fasit til oppgave.9e): Slik oppgaven stå, skal svaet væe 065 (noe ha falt ut i oppgaveteksten). S.
DetaljerGravitasjon og planetenes bevegelser. Statikk og likevekt
Gavtasjon og planetenes bevegelse Statkk og lkevekt 1.05.016 FYS-MEK 1110 1.05.016 1 Ekvvalenspnsppet gavtasjonskaft: gavtasjonell masse m m F G G m G 1 F g G FG R Gm J J Newtons ande lov: netalmasse m
Detaljer1 Virtuelt arbeid for stive legemer
1 Vituelt abeid fo stive legeme Innhold: Abeidsbegepet i mekanikk Pinsippet om vituelt abeid fo stive legeme Litteatu: Igens, Statikk, kap. 10.1 10.2 Hibbele, Statics, kap. 11.1 11.3 Bell, Konstuksjonsmekanikk
DetaljerLøsningsforslag. FY-ME100 eksamen 15. juni 2002
Løsningsfoslag FY-ME00 eksamen 5. juni 00 Ved sensueing vil alle delspøsmål i utgangspunktet bli gitt samme vekt, men vi fobeholde oss etten til justeinge. Feil i løsningsfoslaget kan foekomme!!! (ikke
DetaljerLaboratorieøvelse i MNFFY1303-Elektromagnetisme Institutt for Fysikk, NTNU MAGNETISK HYSTERESE
Laboatoieøvelse i MNFFY33-Elektomagnetisme Institutt fo Fysikk, NTNU Hensikten med oppgave å gjøe seg kjent med opphavet til magnetiske felte og målinge av slike. Det innebæe måling av magnetfelt fa enkle
DetaljerOm bevegelsesligningene
Inst. fo Mekanikk, Temo- og Fluiddynamikk Om bevegelsesligningene (Repetisjon av utledninge fa IO 1008 Fluidmekanikk) P.-Å. Kogstad I det ettefølgende epetees kot utledningene av de fundamentale bevegelsesligninge,
DetaljerLøsningsforslag Fysikk 2 Høst 2015
Løsningsfoslag Fysikk Høst 015 Oppgave Sva Foklaing a) A Vi pøve oss fa ed noen kjente fole: ε vbl B ε Φ vl t vl Nå vi nå egne ed enhete på denne foelen få vi Wb B s s Wb Magnetfeltet kan altså åles i
DetaljerSammendrag, uke 14 (5. og 6. april)
Institutt fo fysikk, NTNU TFY4155/FY1003: Elektisitet og magnetisme Vå 2005 Sammendag, uke 14 (5. og 6. apil) Magnetisk vekselvikning [FGT 28, 29; YF 27, 28; TM 26, 27; AF 22, 24B; H 23; DJG 5] Magnetisme
Detaljerinformasjon GENERELL barnehage
2011 maianne@fuedesign.no «Det e at å ha 5 finge på hve hånd og 5 tæ på hve fot. Jeg kunne like gjene hatt 13 elle 30 sammenlagt. Og så ble det tilfeldigvis 20». Inge Hageup banehage Åpningstid Tilvenning
DetaljerGravitasjon og planetenes bevegelser. Statikk og likevekt
Gavtasjon og planetenes bevegelse Statkk og lkevekt.5.3 YS-MEK.5.3 otensell eneg tl tyngdekaften en masse m bevege seg tyngdefeltet tl massen M fa punkt tl B Newtons gavtasjonslov abed: W B G d mm G ˆ
DetaljerStivt legemers dynamikk. Spinn
Stvt legemes dnamkk Spnn 5.4.6 FYS-MEK 5.4.6 kaftmoment: F F sn F T F F R F T F sn NL fo otasjone:, I fo et stvt legeme med teghetsmoment I tanslasjon og otasjon: F et MA cm Icm ullebetngelse: ksk eneg:
DetaljerLøsningsforslag Fysikk 2 Vår 2014
Løsninsfosla Fysikk Vå 014 Løsninsfosla Fysikk Vå 014 Opp Sva Foklain ave a) B Det elektiske feltet å adielt ut fa en positivt ladet patikkel. Fo å få et elektisk felt som på fiuen må demed X væe positivt
DetaljerKombinatorikk. MAT0100V Sannsynlighetsregning og kombinatorikk. Multiplikasjonssetningen
MAT000V Sasylighetsegig og kombiatoikk Kombiatoikk Odede utvalg med og ute tilbakeleggig Uodede utvalg ute tilbakeleggig Pascals talltekat og biomialkoeffisietee Øulf Boga Matematisk istitutt Uivesitetet
DetaljerEnergi Norge v/ingvar Solberg og Magne Fauli THEMA Consulting Group v/åsmund Jenssen og Jacob Koren Brekke 5. februar 2019
Til: Enegi Noge v/ingva Solbeg og agne Fauli Fa: v/åsmund Jenssen og Jacob Koen Bekke Dato: 5. febua 219 Refeanse: ENO-18-1 Analyse av povenyvikninge av skatteendinge siden 27 Noske vannkaftvek ha siden
DetaljerKlossen beveger seg med konstant fart, så Newtons 1.lov gir at friksjonskraften R er like stor som parallellkomponenten til tyngden G 2
Løsningsfoslag Fysikk 2 H2017 Oppgave 1 Oppgave Sva Foklaing a) B Magnetisk fluks måles i Webe (Wb), som foøvig e det samme som Teslakvadatmete (T m & ). b) B Klossen bevege seg ikke nomalt på bakkeplanet,
DetaljerDiffraksjon og interferens med laser
Diffaksjon og intefeens med lase Hensikt Oppsettet pa bildet bukes til a undesøke diffaksjonsmønste fa ulike spalte og gittee. Na laselys teffe et diffaksjonsobjekt, vil intensitetsmønsteet i obsevasjonsplanet
DetaljerKONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk natuvitenskapelige univesitet Institutt fo elektonikk og telekommunikasjon ide 1 av 8 Bokmål/Nynosk Faglig/fagleg kontakt unde eksamen: Jon Olav Gepstad 41044764) Hjelpemidle: C - pesifisete
DetaljerSpørretime TEP Våren Spørretime TEP Våren 2008
Søetime EP 4115 - Våen 28 Fotegnskonvensjonen og Ka.9 (& OB s slides) Q: ilsynelatende uoveensstemmelse mellom det Olav Bolland esentete fo Otto/Diesel og det som stå i læeboka nå det gjelde fotegn i likninge.
DetaljerØving 1. Institutt for fysikk, NTNU Fag SIF 4012 Elektromagnetisme og MNFFY 103 Elektrisitet og magnetisme Høst 2002
Institutt fo fysikk, NTNU Fg SIF 4 Elektomgnetisme og MNFFY Elektisitet og mgnetisme Høst Øving Veiledning: Tosdg 9. ugust Innleveingsfist: Tisdg. septembe kl. Oppgve En ldning q e plsset i (,y)(,) og
Detaljerinformasjon GENERELL barnehage
maianne@futuia.no «Det e at å ha 5 finge på hve hånd og 5 tæ på hve fot. Jeg kunne like gjene hatt 13 elle 30 sammenlagt. Og så ble det tilfeldigvis 20». Inge Hageup banehage Åpningstid Tilvenning av nye
DetaljerTre klasser kollisjoner (eksempel: kast mot vegg)
kap8 2.09.204 Kap. 8 Bevegelsesmengde. Kollisjone. assesente. Vi skal se på: ewtons 2. lov på ny: Definisjon bevegelsesmengde Kaftstøt, impuls. Impulsloven Kollisjone: Elastisk, uelastisk, fullstendig
DetaljerNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK
Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK Faglig/fagleg kontakt unde eksamen: Navn: Helge E. Engan Tlf.: 944 EKSAMEN I EMNE SIE415 BØLGEFORPLANTNING
DetaljerFFI RAPPORT FORDAMPING FRA OVERFLATER OG DRÅPER. BUSMUNDRUD Odd FFI/RAPPORT-2005/03538
FFI RAPPORT FORDAMPING FRA OVERFLATER OG DRÅPER BUSMUNDRUD Odd FFI/RAPPORT-5/58 FORDAMPING FRA OVERFLATER OG DRÅPER BUSMUNDRUD Odd FFI/RAPPORT-5/58 FORSVARETS FORSKNINGSINSTITUTT Nowegian Defence Reseach
DetaljerLøsningsforslag til eksempeloppgave 2 i fysikk 2, 2009
Fysikk Eksempeloppgae Løsningsfoslag il eksempeloppgae i fysikk, 9 Del Oppgae Rikige sa på flealgsoppgaene a x e: a) C b) D c) B d) C e) C f) D g) C h) D i) B j) C k) A l) B m) A n) D o) B p) D q) D )
DetaljerMidtsemesterprøve onsdag 7. mars 2007 kl
Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 2007 Midtsemestepøve onsdag 7. mas 2007 kl 1300 1500. Svatabellen stå på side 11. Sett tydelige kyss. Husk å skive
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 otasjon av stive legeme Vi skal se på: Vinkelhastighet, vinkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) otasjonsenegi E k Teghetsmoment I Kaftmoment τ ulling Spinn (deieimpuls):
DetaljerFysikk 2 Eksamen høsten Løsningsforslag
Fysikk - Løsningsfoslag Oppgae a) B Beegelsesmengde e gitt som p m og enheten bli defo kgm/s. Samtidig et i at N = kgm/s. Da kan i skie b) C kgm/s kgm/s s N s Vi gi patiklene numme fa til 3, se figuen.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: Eksamensdag: Tid fo eksamen: 14.30 18.30 Oppgavesettet e på 5 side. Vedlegg: Tillatte hjelpemidle: MEK3230 Fluidmekanikk 6. Juni,
DetaljerKap. 13. Gravitasjon. Kap. 13. Gravitasjonen. Gravitasjon/solsystemet. Litt historie: Kap 13grav
Kap. 13. Gavitasjon Keples love fo planetbane Newtons gavitasjonslov Gavitasjonens potensielle enegi. Unnslippshastighet Kap. 13. Gavitasjonen Natuens fie fundamentale kefte (fa kap 4): Gavitasjonskaft
DetaljerMidtsemesterprøve onsdag 7. mars 2007 kl Versjon A
Institutt fo fysikk, NTNU FY1003 lektisitet og mgnetisme I TFY4155 lektomgnetisme Vå 2007 Midtsemestepøve onsdg 7. ms 2007 kl 1300 1500. Løsningsfoslg. Vesjon 1) Hvilken påstnd om elektisk potensil e feil?
DetaljerMidtsemesterprøve fredag 10. mars kl
Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 006 Midtsemestepøve fedag 10. mas kl 0830 1130. Svatabellen stå på et eget ak. Sett tydelige kyss. Husk å skive på
DetaljerR2 2010/11 - Kapittel 3: 26. oktober 24. november 2011
R / - Kapittel :. oktobe. novembe Plan fo koleået /: Kapittel : / /. Kapittel : / /. Kapittel : / /. Kapittel : / /. Pøve på elle koletime ette hvet kapittel. Én heildagpøve i hve temin. En del pøve vil
DetaljerFag TKP4100 STRØMNING OG VARMETRANSPORT GRUNNLEGGENDE DEL
Fag TKP41 STRØMNING OG VARMETRANSPORT GRUNNLEGGENDE DEL av Reida Kistoffesen 6 FORORD Dette kompendiet e et esultat av foelesninge i fag 61145 Kjemiteknisk Fluidmekanikk og fag TKP41 Stømning og Tanspotposesse
DetaljerFysikk 2 Eksamen høsten Løsningsforslag
Fysikk - Løsninsfosla Oae a) C De elektiske keftene e tiltekkende fodi atiklene ha ulike ladnine. q q F ke k q e b) B Abeidet e lik intealet oe kaften som må bukes fo å flytte leemet mellom ensene o. Kaften
DetaljerAt energi ikke kan gå tapt, må bety at den er bevart. Derav betegnelsen bevaringslov.
Side av 8 LØSNINGSFORSLAG KONINUASJONSEKSAMEN 006 SMN694 VARMELÆRE DAO: 04. Mai 007 ID: KL. 09.00 -.00 OPPGAVE (Vekt: 40%) a) emodynamikkens. hovedsats:. hovedsetning: Enegi kan hveken oppstå elle fosvinne,
Detaljer