TFE4120 Elektromagnetisme
|
|
- Britt Nilssen
- 8 år siden
- Visninger:
Transkript
1 NTNU IET, IME-fkultetet, Noge teknisk-ntuvitenskpelige univesitet TFE4120 Elektomgnetisme Løsningsfoslg øving 5 Oppgve 1 ) Pg. symmeti h vi E = E()ˆ gjennom hele oppgven. i) Vi l Gussflten S væe oveflten til en sylinde med dius og lengde l. Ldningen pe lengdeenhet på inneledeen e Q. Buk v Guss lov på integlfom gi d ɛe ds = 2πlɛE() = Q innenfo S = Q l. (1) Dette gi E() = 2πɛˆ. Q (2) Vi finne Q ved buk v definisjonen v potensil (efensepunktet settes på ytteledeen). Det elektiske feltet kn d skives som V () V (b) = V 0 0 = = Q 2πɛ E()d d = Q 2πɛ ln b. (3) E = V 0 1 ln b ˆ. (4) 1
2 Siden C lengdeenhet e Q V () V (b) finne vi f uttykket fo V () V (b) t kpsitnsen pe C = 2πɛ ln b. (5) ii) Siden det ikke finnes noen fie ldninge i det dielektiske mediet h vi Divegensen i sylindekoodinte e D = (ɛe) = 0, fo b. (6) D = 1 [D()] de vi h bukt D = D()ˆ. Løsningene fo D() og E() e d D() = ɛc 1, E() = C 1, = 0, (7) de C 1 e en konstnt som må tilfedstille gensevilkåene på inne- og ytteledeen. C 1 bestemmes ved å beegne potensilfoskjellen kkut som i foige deloppgve: Altså h vi og V () V (b) = V 0 = C 1 = V 0 ln b C 1 d = C 1 ln b. (8) (9) E = V 0 1 ln b ˆ. (10) Siden C = Q V 0 tenge vi et uttykk fo Q. Siden ll ldning på inneledeen befinne seg på oveflten kn vi buke gensebetingelsen Dn dielektikum Dn innelede = ρ s, de ρ s e oveflteldningstettheten. Siden det ikke e noe felt i inneledeen e Dn innelede = 0. F Dn dielektikum = D() = ɛe() finne vi Q = 2πρ s = 2πɛV 0 ln b, (11) som gi C = Q = 2πɛ. (12) V 0 ln b iii) Ettesom ɛ e en konstnt og det ikke finnes noen fie ldninge i det dielektiske mediet kn vi buke Lplce s ligning: 2 V = 0. (13) (Bevis: Vi h D = (ɛe) = ρ. Unde sttiske fohold e E = V som gi ( ɛ V ) = ρ. Siden det e ingen fie ldninge i mediet, og ɛ e en konstnt, edusees Guss lov til ( ɛ V ) = 2 V = 0.) 2
3 Siden symmeti tilsie E = E()ˆ h vi også V = V (). Ved å buke uttykket fo 2 i sylindekoodinte få vi 2 V = 1 ( ) V () = 0. (14) Integee vi én gng få vi V () de C 2 e en konstnt. Integsjon gi så = C 2, (15) V () = C 2 ln + C 3, (16) de C 3 også e en konstnt. Både C 2 og C 3 må tilfedsstille gensevilkåene fo V. Buk v betingelsen V (b) = 0 gi V (b) = 0 = C 2 ln b + C 3, (17) slik t C 3 = C 2 ln b. Gensebetingelsen på = e V () = V 0 som gi Altså h vi C 2 = V 0 / ln b og V () = V 0 = C 2 ln C 2 ln b = C 2 ln b. (18) V () = V 0 ln b ln b. (19) Det elektiske feltet finne vi ved å buke E = V i sylindekoodinte, slik t E = V = V () ˆ = V 0 1 ln b ˆ. (20) Kpsitnsen kn nå finnes ved smme fmgngsmåte som i foige deloppgve. b) Nå ɛ = 3 og b = 7 få vi C = 2πɛ ɛ 0 ln b = 6π ln 7 ɛ 0 = 85.8 pf m. (21) c) i) Den lgede elektosttiske enegien pe lengdeenhet, W e, v kbelen e gitt ved W e = 1 2 C V 2. (22) Ved å sette inn uttykket fo C som ble funnet i ), og buke t V = V 0 få vi W e = πɛ ln b V0 2. (23) 3
4 ii) Enegitettheten w e i et elektisk felt e gitt ved w e = 1 2 ɛe2. (24) Den totle enegien pe lengdeenhet v kondenstoen finnes ved å integee opp uttykket fo enegitettheten ove tvesnittet mellom de to ledene: W e = w e ()da = 1 2 ɛe2 2πd = πɛ Ved å buke uttykket fo E som ble funnet i ) finne vi E 2 d. (25) W e = πɛ V 0 2 πɛ ln 2 b d = 2 ln b V0 2. (26) d) Pg. symmeti vil den totle kften som vike på ytteledeen f inneledeen væe lik 0. Oppgve 2 ) Vi stte med å bestemme det elektiske feltet inne i kondenstoen. Vi plssee en fi ldning Q på inneledeen og en ldning Q på ytteledeen og buke Guss lov S D ds = Q inne i S. Gussflten som vi velge oss e et kuleskll med dius. Gunnet symmeti h vi D = D()ˆ. Guss lov gi d D ds = 4π 2 D() = Q. (27) Buk v D() = ɛe() gi E() = Q 4πɛ 2. (28) Vi velge ytteledeen som efensepunkt fo potensilet slik t V () V (b) = V 0 = Kpsitnsen til kondenstoen e gitt v C = Q V 0 : Vi se t nå b = d kn vi skive E()d = Q d 4πɛ 2 = Q ( 1 4πɛ 1 ). (29) b C = 4πɛb b. (30) C ɛ A d, (31) de A = 4πb e oveflten til kondenstoen og d e vstnden mellom pltene. Dette uttykket e likt det fo en pllellpltekondensto. 4
5 b) Betke vi en enkelt ledende kule som gensetilfellet b i punkt ), og dessuten l ɛ ɛ 0, h vi C = 4πɛ 0, (32) fo kpsitnsen til en kule med dius. Oppgve 3 ) Enegien som må lges: W e = 700W 0.005s 0.90 = 3.89J. (33) b) Enegien på kondenstoen e W e = 1 2 CV 2 som gi t spenningen må væe V = 2We J C = F = 98.6V. (34) (Enhete: J/F = VC C V = V 2 ) 5
Midtsemesterprøve onsdag 7. mars 2007 kl Versjon A
Institutt fo fysikk, NTNU FY1003 lektisitet og mgnetisme I TFY4155 lektomgnetisme Vå 2007 Midtsemestepøve onsdg 7. ms 2007 kl 1300 1500. Løsningsfoslg. Vesjon 1) Hvilken påstnd om elektisk potensil e feil?
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 10. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
TFY0 Fysikk. Institutt fo fysikk, NTNU. Høsten 06. Øving 0. Opplysninge: esom ikke nnet e oppgitt, nts det t systemet e i elektosttisk likevekt. esom ikke nnet e oppgitt, e potensil undefostått elektosttisk
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. ving 10.
TFY0 Fysikk. Institutt fo fysikk, NTNU. ving 0. Opplysninge: esom ikke nnet e oppgitt, nts det t systemet e i elektosttisk likevekt. esom ikke nnet e oppgitt, e potensil"undefosttt elektosttisk potensil",
DetaljerOppgave 8.12 Gitt en potensialhvirvel med styrke K i origo. Bestem sirkulasjonen ' langs kurven C. Sirkulasjonen er definert som: ' /
Løsning øving 3 Oppgve 8. Gitt en potensilhvivel med styke i oigo. Bestem sikulsjonen ' lngs kuven C. C y (I oppgven stå det t vi skl gå med klokk, men he h vi gått mot klokk i oveensstemmelse med definisjonen
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 9. Veiledning: 18. oktober. Innleveringsfrist: 23. oktober kl 14.
TFY404 Fysikk. Institutt fo fysikk, NTNU. Høsten 203. Øving 9. Veiledning: 8. oktobe. Innleveingsfist: 23. oktobe kl 4. Oppgve ) Figuen vise et unifomt elektisk felt (heltukne linje). Lngs hvilken stiplet
DetaljerUNIVERSITETET I OSLO
UNIVESITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: FYS1120 Elektromgnetisme Eksmensdg: 5. oktober 2015 Tid for eksmen: 10.00 13.00 Oppgvesettet er på 8 sider. Vedlegg: Tilltte hjelpemidler:
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk ntuitenskpelige uniesitet Institutt fo elektonikk og telekommuniksjon ide 1 8 Fglæe: Johnnes k EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Lødg 25. mi 2013 Oppge 1 En koksilkbel bestå en innelede
DetaljerØving 6. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme. Veiledning: Uke 7 Innleveringsfrist: Mandag 19. februar.
Institutt fo fsikk, NTNU TFY4155/FY1003: Elektisitet og mgnetisme Vå 2007 Veiledning: Uke 7 Innleveingsfist: Mndg 19. febu Øving 6 Oppgve 1 z Figuen ove vise en gussflte (dvs lukket flte) S fomet som en
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk ntuitenskpelige uniesitet Institutt fo elektonikk og telekommuniksjon ide 1 8 Bokmål/Nynosk Fglig/fgleg kontkt unde eksmen: Johnnes k (48497352) Hjelpemidle: C - pesifisete tykte og håndskene
DetaljerØving 1. Institutt for fysikk, NTNU Fag SIF 4012 Elektromagnetisme og MNFFY 103 Elektrisitet og magnetisme Høst 2002
Institutt fo fysikk, NTNU Fg SIF 4 Elektomgnetisme og MNFFY Elektisitet og mgnetisme Høst Øving Veiledning: Tosdg 9. ugust Innleveingsfist: Tisdg. septembe kl. Oppgve En ldning q e plsset i (,y)(,) og
DetaljerLøsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S =
Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekommuniksjon Side 1 v 5 Løsningsforslg TFE4120 Elektromgnetisme 24. mi 2011 Oppgve 1 ) Av symmetrigrunner må det elektriske
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. ving 9.
TFY404 Fsikk. Institutt fo fsikk, NTNU. ving 9. Oppgve ) Figuen vise et unifomt elektisk felt (heltukne linje). Lngs hvilken stiplet linje ende potensilet seg ikke? 2 C 3 D 4 2 3 4 b) Den potensielle enegien
DetaljerLøsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A)
Institutt for fysikk, NTNU FY100 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Løsningsforslg, Midtsemesterprøve fredg 1. mrs 2009 kl 1415 1615. Fsit side 10. Oppgvene med kort løsningsforslg
DetaljerLøsningsforslag SIE4010 Elektromagnetisme 5. mai 2003
Oppgve 1 Løsningsforslg SIE4010 Elektromgnetisme 5. mi 2003 ) Av symmetrigrunner må det elektriske feltet være rdielt rettet og uvhengig v φ, E = E(r)u r.vilrs være overflten til en sylinder med rdius
DetaljerKap. 23 Elektrisk potensial
Kp. 23 Elektisk potensil Skl definee på gunnlg v elektisk felt E: Elektisk potensiell enegi, U Elektisk potensil, V (Ketsteknikk: El. potensilfoskjell = spenning) Potensilgdient og elektisk felt. Ekvipotensilflte
DetaljerLøsningsforslag, Midtsemesterprøve torsdag 6. mars 2008 kl Oppgavene med kort løsningsskisse
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2008 Løsningsforslg, Midtsemesterprøve torsdg 6. mrs 2008 kl 1000 1200. Fsit side 12. Oppgvene med kort løsningsskisse
DetaljerLøsning øving 12 N L. Fra Faradays induksjonslov får vi da en indusert elektromotorisk spenning:
nstitutt fo fysikk, NTNU Fg SF 4 Elektognetise og MNFFY 3 Elektisitet og gnetise Høst øsning øving Oppgve Mgnetfeltet inne i solenoiden e : ( H( (N/) ( (dvs fo < R). Utenfo solenoiden: ( > R) Fo å eegne
DetaljerKap. 23 Elektrisk potensial
Kp. 3 Elektisk potensil Skl definee p gunnlg v elektisk felt E: Elektisk potensiell enegi, U Elektisk potensil, V (Ketsteknikk: El. potensilfoskjell spenning) Aeid keves fo føe smmen ldninge Pføt eid gi
DetaljerLøsning øving 9 ( ) ( ) sin ( )
nsttutt fo fskk, NTNU Fg SF 4 Elektomgnetsme og MNFFY Elektstet og mgnetsme Høst Løsnng øvng 9 Oppgve Ktesske koodnte: Enhetsvektoen stå nomlt på, som dnne en vnkel med -ksen. Det et t dnne en vnkel med
DetaljerMandag E = V. y ŷ + V ẑ (kartesiske koordinater) r sin θ φ ˆφ (kulekoordinater)
Institutt fo fysikk, NTNU TFY4155/FY13: Elektisitet og magnetisme Vå 26, uke 6 Mandag 6.2.6 Beegning av E fa V [FGT 24.4; YF 23.5; TM 23.3; F 21.1; LHL 19.9; DJG 2.3.1, 1.2.2] Gadientopeatoen : V = V V
DetaljerMidtsemesterprøve fredag 23. mars 2007 kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme I TFY4155 Elektromgnetisme Vår 2007 Midtsemesterprøve fredg 23. mrs 2007 kl 1415 1615. Løsningsforslg 1) I et område er det elektriske feltet
DetaljerØving 9. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
Institutt for fysikk, NTNU TFY4155/FY1003: Elektromgnetisme år 2009 Øving 9 eiledning: Mndg 09. og fredg 13. (evt 06.) mrs Innleveringsfrist: Fredg 13. mrs kl. 1200 (Svrtbell på siste side.) Opplysninger:
Detaljer( 6z + 3z 2 ) dz = = 4. (xi + zj) 3 i + 2 ) 3 x x 4 9 y. 3 (6 2y) (6 2y)2 4 y(6 2y)
TMA415 Matematikk 2 Vå 215 Noges teknisk natuvitenskapelige univesitet Institutt fo matematiske fag Løsningsfoslag Øving 11 Alle oppgavenumme efeee til 8. utgave av Adams & Essex Calculus: A Complete Couse.
DetaljerNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK
Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK Faglig/fagleg kontakt unde eksamen: Navn: Helge E. Engan Tlf.: 944 EKSAMEN I EMNE SIE415 BØLGEFORPLANTNING
DetaljerKap 21 Elektrisk ladning / Elektrisk felt
Kp lektisk lning / lektisk felt. To like elektiske lninge e plsset i vstn.. Kften so hve v lningene vike på en ne e e.5. Beste støelsen på hve v lningene. b Se so i, en enne gng e en ene lningen obbelt
DetaljerØving 13, løsningsskisse.
TFY455/FY3 Elektr & mgnetisme Øving 3, løsningsskisse nduksjon Forskyvningsstrøm Vekselstrømskretser nst for fysikk 5 Oppgve nduktns for koksilkbel ) Med strømmen jmt fordelt over tverrsnittet på lederne
DetaljerLøsningsforslag kapittel 3
Løsningsoslg kpittel 3 3.1 ) Uttykket o (den konigusjonelle) entopien S e gitt ved S k ln W, de W uttykke ntll skillbe mikotilstnde. Siden kystllen inneholde n vknse odelt ove N N! N! tomplsse e W og S
DetaljerKONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk natuitenskapelige uniesitet Institutt fo elektoniske systeme ide 1 a 7 Faglæe: Johannes kaa KONTINUAJONEKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME August 2017 Alle anlige deloppgae telle 4 poeng.
DetaljerKONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk natuvitenskapelige univesitet Institutt fo elektonikk og telekommunikasjon ide 1 av 8 Bokmål/Nynosk Faglig/fagleg kontakt unde eksamen: Jon Olav Gepstad 41044764) Hjelpemidle: C - pesifisete
DetaljerMEK 4520 BRUDDMEKANIKK Løsningsforslag til obligatorisk øving 1.
- - ME 45 RDDMEAN Løsningsfoslg til obligtoisk øving. Oppgve () Vis t spekkbeiet ( enegy elese te ) fo et lineæ-elstisk mteile e knyttet til ening i komplinsen. Definisjon v : A, F hvo e lget tøyningsenegi
Detaljerρ = = = m / s m / s Ok! 0.1
Løsningsfoslag TEP 00 FLUIDMEKNIKK.juni 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d g 6
DetaljerMidtsemesterprøve torsdag 6. mars 2008 kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2008 Midtsemesterprøve torsdg 6. mrs 2008 kl 1000 1200. Oppgver på side 3 10. Svrtbell på side 11. Sett tydelige
DetaljerMidtsemesterprøve fredag 13. mars 2009 kl (Versjon B)
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Midtsemesterprøve fredg 13. mrs 2009 kl 1415 1615. (Versjon ) Oppgver på side 3 9. Svrtbell på side 11. Sett
DetaljerLøsningsforslag TEP 4110 FLUIDMEKANIKK 18.desember ρ = = = m / s m / s 0.1
Løsningsfoslag TEP 40 FLUIDMEKNIKK 8.desembe 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d
Detaljer1b) Beregn den elektriske ladningstettheten inni kjernen og finn hvor stor den totale ladningen er.
FYS112 H-211: Løsningsforslg for vsluttende eksmen Oppgve 1 I en modell for en kuleformet tomkjerne med rdius R vrierer det elektriske feltet inne i kjernen som E(r) = Cr(xe x + ye y + ze z ). Her er C
Detaljerb) 3 MATEMATISKE METODER I 1 ( ) ( ) ( ) ( ) ( ) ( ) Repetisjonsoppgaver Bruk av regneregler: 1 Regn ut: e) 0 x ) 4 3 d) 4 x f) 5y
MATEMATISKE METODER I Buk av egneegle: Regn ut: a ( ( b 7 c ( 7 y 8 d 8 e f 5y y Regn ut og tekk sammen: a 5a b a b a + b b y + y + + y c t t + 6 ( 6t t + 8 d s+ s + s ( s + s Multiplise ut og odne a (
DetaljerØving 13, løsningsskisse.
FY3 Elektr & mgnetisme Øving 3, løsningsskisse nduksjon Forskyvningsstrøm Vekselstrømskretser nst for fysikk 7 Oppgve nduktns for koksilkbel ) Med strømmen jmt fordelt over tverrsnittet på lederne blir
DetaljerKONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk natuitenskapelige uniesitet Institutt fo elektonikk og telekommunikasjon ide 1 a 7 Faglæe: Johannes kaa KONTINUAJONEKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Tosdag 15. august 2013 Oppgae 1
DetaljerMidtsemesterprøve onsdag 7. mars 2007 kl
Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 2007 Midtsemestepøve onsdag 7. mas 2007 kl 1300 1500. Svatabellen stå på side 11. Sett tydelige kyss. Husk å skive
DetaljerFysikk-OL Norsk finale 2005
Univesitetet i Oslo Nosk Fysikklæefoening Fysikk-OL Nosk finale 005 3. uttakingsunde Tid: Fedag 5. apil kl 09.00.00 Hjelpemidle: Tabell/fomelsamling, gafisk lommeegne Oppgavesettet bestå av 7 oppgave på
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk nturitenskpelige uniersitet Institutt for elektronikk og telekommuniksjon ide 1 7 Fglærer: Johnnes kr EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Torsdg 21. mi 2015 Oppge 1 I hele denne oppgen
DetaljerFasit til utvalgte oppgaver MAT1100, uka 20-24/9
Fsit til utvlgte oppgver MAT00, uk 20-24/9 Øyvind Ryn oyvindry@ifi.uio.no September 24, 200 Oppgve 5..5 år vi viser t f er kontinuerlig i ved et ɛ δ-bevis, er det lurt å strte med uttrykket fx f, og finne
DetaljerLøsningsforslag Kollokvium 1
Løsningsforslg Kollokvium 1 30. jnur 015 Her finner dere et løsningsforslg for oppgvene som ble diskutert på Kollokvium 1. Oppgve 1 Regning med enheter ) Energienheten 1 ev (elektronvolt) er definert som
DetaljerAt energi ikke kan gå tapt, må bety at den er bevart. Derav betegnelsen bevaringslov.
Side av 8 LØSNINGSFORSLAG KONINUASJONSEKSAMEN 006 SMN694 VARMELÆRE DAO: 04. Mai 007 ID: KL. 09.00 -.00 OPPGAVE (Vekt: 40%) a) emodynamikkens. hovedsats:. hovedsetning: Enegi kan hveken oppstå elle fosvinne,
DetaljerInst. for fysikk 2015 TFY4155/FY1003 Elektr. & magnetisme. Øving 13. Induksjon. Forskyvningsstrøm. Vekselstrømskretser.
Inst for fysikk 2015 TFY4155/FY1003 Elektr & mgnetisme Øving 13 Induksjon Forskyvningsstrøm Vekselstrømskretser Veiledning: Fredg 10 pril ifølge nettsider Innlevering: Mndg 13 pril kl 14:00 SISTE ØVING!
DetaljerØving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
Institutt fo fysikk, NTNU TFY455/FY003: lektisitet og magnetisme Vå 2008 Øving 8 Veiledning: 04.03 i R2 25-400, 05.03 i R2 25-400 Innleveingsfist: Fedag 7. mas kl. 200 (Svatabell på siste side.) Opplysninge:
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E
TFY414 Fysikk. Institutt for fysikk, NTNU. Høsten 16. Løsningsforslg til øving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, så elektronets kselersjon blir = e m E ltså mot venstre. b) C Totlt elektrisk
Detaljerdy ycos 2 y = dx. Ved å integrere på begge sider av likhetstegnet får man ved å substituere u = y,du = dy dy ycos 2 y = 2du cos 2 u = x.
NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten 2 Løsningsforslg - Øving 7 Avsnitt 6.5 ) En hr t y = e, så 2y +y = 2e +e = e. b) En hr t y = e 2 e (/2), så 2y +y = 2e e (/2) +e +e (/2) = e. c) En hr
DetaljerKap 28: Magnetiske kilder. Kap 28: Magnetiske kilder. Kap 28. Rottmann integraltabell (s. 137) μ r. μ r. μ r. μ r
Kap 8 Kap 8: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft
DetaljerLØSNINGSFORSLAG TIL EKSAMEN MAI 2007
NTNU Noges teknisk-ntuvitenskpelige univesitet Fkultet fo ntuvitenskp og teknologi Institutt fo mteilteknologi TMT40 KJEMI LØSNINGSFORSLAG TIL EKSAMEN MAI 007 OPPGAVE ) - ph definees som den negtive logitmen
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: MEK3220/MEK4220 Kontinuumsmekanikk Eksamensdag: Onsdag 2. desembe 2015. Tid fo eksamen: 09.00 13.00. Oppgavesettet e på 7 side.
DetaljerSammendrag, uke 14 (5. og 6. april)
Institutt fo fysikk, NTNU TFY4155/FY1003: Elektisitet og magnetisme Vå 2005 Sammendag, uke 14 (5. og 6. apil) Magnetisk vekselvikning [FGT 28, 29; YF 27, 28; TM 26, 27; AF 22, 24B; H 23; DJG 5] Magnetisme
DetaljerA. forbli konstant B. øke med tida C. avta med tida D. øke først for så å avta E. ikke nok informasjon til å avgjøre
Flervlgsoppgver 1. En induktor L og en motstnd R er forbundet til en spenningskilde E som vist i figuren. Bryteren S 1 lukkes og forblir lukket slik t konstnt strøm går gjennom L og R. Så åpnes bryter
DetaljerLøsning eksamen TFY desember 2014
Løsning esmen TFY404 8. desembe 04 Oppgve ) Kftdigmmene e vist nedenf f begge lssene g f tins. Ved stm sn h begge lssene smme selesjn. Kefte sm vie på lss med msse m : S m g m Kefte sm vie på lss med msse
DetaljerLØSNINGS FORSLAG EKSAMEN I EMNE SIF4005 FYSIKK Mandag 6. desember 1999 kl. kl for r R/2 ) for R/2 r R for r >R
Sie v 9 NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK NOEGS TEKNSK- NATUVTENSKAPELEGE UNVESTET NSTTUTT FO FYSKK Oppgve. Lningsfoelingen e gitt ve: ) Totllningen e: ρ( ) V LØSNNGS FOSLAG EKSAMEN
Detaljerdx = 1 2y dy = dx/ x 3 y3/2 = 2x 1/2 + C 1
NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten Løsningsforslg - Øving 7 Avsnitt 6.5 ) En hr t y = e, så y + 3y = e + 3e = e. b) En hr t y = e 3 e (3/), så y + 3y = e 3e (3/) + 3e + 3e (3/) = e. c)
Detaljerc) etingelsen fo at det elektiske feltet E e otasjonsinvaiant om x-aksen e, med E og ee som denet ovenfo, at e E = E. Dette skal gjelde fo en vilkalig
Eksamen i klassisk feltteoi, fag 74 5, 4. august 995 Lsninge a) Koodinatene x; y; z tansfomees slik x 7 bx = x; y 7 by = y cos, z sin ; z 7 by = y sin + z cos Den invese tansfomasjonen e en otasjon en
DetaljerKap. 22. Gauss lov. Gauss lov skjematisk. Eks.1: Homogent ladd kule =Y&F Ex = LHL Vi skal se på: Fluksen til elektrisk felt E Gauss lov
Kap.. Gauss lov Vi skal se på: Fluksen til elektisk felt E Gauss lov Integalfom og diffeensialfom Elektisk ledee. Efelt fa Coulombs lov: q E = k E = k å n q n n n dq E= k ò tot. ladn. Punktladn Flee punktladn.
DetaljerMidtsemesterprøve fredag 10. mars kl
Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 006 Midtsemestepøve fedag 10. mas kl 0830 1130. Svatabellen stå på et eget ak. Sett tydelige kyss. Husk å skive på
DetaljerEksamen TFY 4240: Elektromagnetisk teori
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Ola Hundei, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektomagnetisk teoi 8 desembe 2007 kl. 09.00-13.00
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt
DetaljerNORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME
NORGES LANDBRUKSHØGSKOLE nstitutt for mtemtiske relfg og teknologi EKSAMEN FYS135 - ELEKTROMAGNETSME Eksmensdg: 12. desember 2003 Tid for eksmen: Kl. 14:00-17:00 (3 timer) Tilltte hjelpemidler: B2 - Enkel
DetaljerMidtsemesterprøve fredag 23. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme I TFY4155 Elektromgnetisme år 2007 Midtsemesterprøve fredg 23. mrs kl 1415 1615. Svrtbellen står på et eget rk. Sett tydelige kryss. Husk å skrive
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: Eksamensdag: Tid fo eksamen: 14.30 18.30 Oppgavesettet e på 5 side. Vedlegg: Tillatte hjelpemidle: MEK3230 Fluidmekanikk 6. Juni,
DetaljerOBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME
ide 1 av 5 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon OBLIGATORIK MIDTEMETERØVING I EMNE TFE
DetaljerMatematikk 3MX AA6524 / AA6526 Elever / privatister Oktober 2002
E K S A M E N LÆRINGSSENTERET Matematikk 3MX AA6524 / AA6526 Eleve / pivatiste Bokmål Eksempeloppgave ette læeplan godkjent juli 2000 Videegående kus II Studieetning fo allmenne, økonomiske og administative
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk naturitenskapelige uniersitet Institutt for elektronikk og telekommunikasjon ide 1 a 8 Faglærer: Johannes kaar EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Fredag 27. mai 2016 Oppgae 1 En koaksialkabel
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FAG TEP4170 VARME- OG FORBRENNINGSTEKNIKK 18. mai 2007 Tid:
av 4 Noges teknisk-natuvitenskapelige univesitet Initutt fo enegi- og poseseknikk Kontakt unde eksamen: Toleif Weydahl, tlf. 7359634 / 945 ØSNINGSFORSAG TI EKSAMEN I FAG TEP47 VARME- OG FORBRENNINGSTEKNIKK
DetaljerEKSAMEN I FAG SIF 4008 FYSIKK Mandag 7. mai 2001 kl Bokmål. K. Rottmann: Matematisk formelsamling
Side 1 av 1 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Føsteamanuensis Knut Ane Stand Telefon: 73 59 34 61 EKSAMEN I FAG SIF 48 FYSIKK Mandag 7. mai
DetaljerØving 4: Coulombs lov. Elektrisk felt. Magnetfelt.
Lørdgsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 007. Veiledning: 9. september kl 1:15 15:00. Øving 4: oulombs lov. Elektrisk felt. Mgnetfelt. Oppgve 1 (Flervlgsoppgver) ) Et proton med hstighet
DetaljerForelesning 9/ ved Karsten Trulsen
Foelesning 9/2 218 ved Kasten Tulsen Husk fa sist våe to spøsmål om kuveintegale: Desom vi skal beegne et kuveintegal som state i et punkt og ende opp i et annet punkt 1, så kan det væe mange veie fo å
DetaljerEKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG Tisdag 18. desembe 01 kl. 0900-100 Oppgave 1. Ti flevalgsspøsmål. (Telle
DetaljerFysikkolympiaden Norsk finale 2010
Uniesitetet i Oslo Nosk Fysikklæefoening Fysikkolympiaden Nosk finale. ttakingsnde Fedag 6. mas kl 9. til. Hjelpemidle: abell/fomelsamling, lommeegne og tdelt fomelak Oppgaesettet bestå a 6 oppgae på side
DetaljerBESVARELSE EKSAMEN SIF4005 FYSIKK For kjemi og materialteknologi Onsdag 12. desember Q r
SARS KSAMN SF FYSKK F jemi g mteitengi Onsg. eseme Oppgve : etstti Den tte ningen i u e: Guss v å estemme et eetise etet: inne A < inne = vs = A O ρ ρ ρ / /πε Sjee ntinuiteten i = g =
DetaljerKONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt
DetaljerMAT 100A: Mappeeksamen 4
. november, MAT A: Mppeeksmen Løsningsforslg Oppgve ) Vi bruker produktregelen: f (x) x rctn x + x + x Siden x og rctn x hr smme fortegn, og x ldri er negtiv, er f (x) positiv overlt, bortsett fr t f ().
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 8. a =
TFY414 Fysikk. Institutt for fysikk, NTNU. Lsningsforslg til ving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, s elektronets kselersjon blir = e m E lts mot venstre. b) C Totlt elektrisk felt i
DetaljerLøsningsforslag Fysikk 2 V2016
Løsningsfoslag Fysikk V016 Oppgave Sva Foklaing a) B Faadays induksjonslov: ε = Φ, so gi at Φ = ε t t Det bety at Φ åles i V s b) D L in = 0,99 10 = 9,9 L aks = 1,04 10 = 10,4 L snitt = (L in + L aks )
DetaljerLøsningsforslag til Øvingsoppgave 5
Oppgve 5.1 ) Figu 5.1 vise et foenklet tilstndsdigm fo det metstbile system jen-kbon, Fe-C. Skiv på digmmet stuktuelementene og fsene som tilhøe de enkelte flte. Mek v eutektisk og eutektoidisk eksjon
DetaljerKonstanter og formelsamling for kurset finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side enn selve oppgaven
UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Avsluttende eksamen i AST2000, 17. desembe 2018, 09.00 13.00 Oppgavesettet inkludet fomelsamling e på 8 side Tillatte hjelpemidle: 1) Angel/Øgim
DetaljerLøsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 6. august 2003
Noges teknisk natuvitenskapelige univesitet NTNU Side av 9 Institutt fo fysikk Fakultet fo natuvitenskap og teknologi Løsningsfoslag til eksamen i SIF47 KLASSISK FELTTEORI Onsdag 6. august 3 Dette løsningsfoslaget
DetaljerKap. 23 Elektrisk potensial. Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap
Kp23 28.1.211 Kp. 23 Elektsk potensl Skl defnee på gunnlg v elektsk felt E: Elektsk potensell eneg, U Elektsk potensl, V (Ketsteknkk: El. potenslfoskjell spennng) Aed må gjøes fo å føe smmen ldnnge Påføt
DetaljerEKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002/MNFFY101 GENERELL FYSIKK II Lørdag 6. desember 2003 kl Bokmål
ide av 0 NORGE TEKNIK- NATURVITENKAPELIGE UNIVERITET INTITUTT FOR FYIKK Faglig kontakt unde eksamen: Føsteamanuensis Knut Ane tand Telefon: 73 59 34 6 EKAMEN FAG TFY460 ØLGEFYIKK OG FAG FY00/MNFFY0 GENERELL
DetaljerTre klasser kollisjoner (eksempel: kast mot vegg)
kap8 2.09.204 Kap. 8 Bevegelsesmengde. Kollisjone. assesente. Vi skal se på: ewtons 2. lov på ny: Definisjon bevegelsesmengde Kaftstøt, impuls. Impulsloven Kollisjone: Elastisk, uelastisk, fullstendig
DetaljerKap 28: Magnetiske kilder
: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft qv x B Definisjon
DetaljerBetraktninger rundt det klassiske elektronet.
Betaktninge undt det klassiske elektonet. Kistian Beland Matteus Häge - 1 - - - Innholdsfotegnelse: 1. Sammendag - 5 -. Innledning - 6 -. Innledende betaktninge - 7-4. Vå elektonmodell - 8-5. Enegi i feltene
DetaljerFagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. kap21 18.01.2016. mg mg. Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk
kap1 18.01.016 TFY4155/FY1003 lektisitet og magnetisme Fagovesyn: lektostatikk, inkl. elektisk støm Magnetostatikk lektodynamikk l.mag. e gunnlag fo: Ketselemente (motstand, kondensato, spole, diode, tansisto)
Detaljerb) C Det elektriske feltet går radielt ut fra en positivt ladd partikkel.
Løsningsfoslag Fysikk 2 Høst 203 Løsningsfoslag Fysikk 2 Høst 203 Opp Sva Foklaing gave a) B Fomelen fo bevegelsesmengde p = mv gi enheten kg m. s Dette kan igjen skives som: kg m = kg m s s2 s = Ns b)
DetaljerFAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVERITETET I GDER Gimstad E K M E N O P P G V E : G: M-9 Matematikk LÆRER: Pe Henik Hogstad Klasse: Dato: 8..8 Eksamenstid fa-til: 9.. Eksamensoppgaven bestå av følgende ntall side: 6 inkl. foside vedlegg
DetaljerNORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 8 Faglig kontakt unde eksamen: Navn: jøn Toge Stokke Tl: 93434 EKSAMEN I FAG SIF45 FYSIKK Mandag 7. desembe 1998 Tid: kl.
Detaljern_angle_min.htm
Kp 9 Rotjon 9.1 En ptikkel beege eg i en ikelbne ed kontnt inkelhtighet lik 1. -1. Siule, ål og beegn ho to inkel diuekto h beeget eg i løpet.. Mek: Mek i checkboken D lik t du ende iuleingen f 3D til
DetaljerModul 1 15 studiepoeng, internt kurs Notodden/Porsgrunn
Høgskole i Telemk Avdelig fo estetiske fg, folkekultu og læeutdig BOKMÅL 4. mi 007 EKSAMEN I MATEMATIKK 3 Tid: 6 time Modul 5 studiepoeg, itet kus Notodde/Posgu Oppgvesettet e på 7 side (ikludet fomelsmlig).
DetaljerProblemet. Datamaskinbaserte doseberegninger. Usikkerheter i dose konsekvenser 1 Usikkerheter i dose konsekvenser 2
Poblemet Datamaskinbasete dosebeegninge Beegne dosefodeling i en pasient helst med gunnlag i CT-bilde Eiik Malinen Sentale kilde: T. Knöös (http://www.clin.adfys.lu.se/downloads.htm) A. Ahnesjö (div. publikasjone)
DetaljerKap. 23 Elektrisk potensial. Kap. 23. Elektrisk potensial
Kp3 7..5 Kp. 3 Elektsk potensl Skl defnee p gunnlg v elektsk felt E: Elektsk potensell eneg, U Elektsk potensl, V (Ketsteknkk: El. potenslfoskjell spennng) Ekvpotenslflte Potenslgdent og elektsk felt.
DetaljerLøsningsforslag Eksamen i fag TEP4110 Fluidmekanikk
Oppgave Løsningsfoslag Eksamen i fag TEP40 Fluidmekanikk Onsdag 8 desembe 00 kl 500 900 Hastighetspotensialet fo en todimensjonal potensialstømning av en inkompessibel fluid e gitt som: (, ) Acos ln ()
DetaljerKlikk (ctrl + klikk for nytt vindu) for å starte simuleringen i SimReal.
Kp 9 Rotjon 9. En ptikkel beege eg i en ikelbne ed kontnt inkelhtighet lik. -. Siule, ål og beegn ho to inkel diuekto h beeget eg i løpet.. Mek: Mek i checkboken D lik t du ende iuleingen f 3D til D. Fjen
DetaljerKap. 23 Elektrisk potensial. Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap 23
Kp 23 Kp. 23 Elektsk potensl Skl defnee på gunnlg v elektsk felt E: Elektsk potensell eneg, U Elektsk potensl, V (Ketsteknkk: El. potenslfoskjell spennng) Aed keves fo å føe smmen ldnnge Påføt ed g potensell
DetaljerLøsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Torsdag 2. desember 2004
NTNU Side 1 v 7 Institutt for fysikk Fkultet for nturvitenskp og teknologi Dette løsningsforslget er på 7 sider. Løsningsforslg til eksmen i TFY417 Fysikk Fysikk Torsdg. desember 4 Oppgve 1. Kvntemeknikk
DetaljerTKP4100 Strømning og varmetransport Løsningsforslag til øving 10
TKP4 Strømning og vrmetrnsport Løsningsforslg til øving Oppgve ) Entlpi ved utløpet (5 br, ), kj/kg Entlpi ved innløpet (5 br, x,95), 7 kj/kg overført: kj/kg Dvs. 4*/6,7 kw b) I området med overhetet dmp
Detaljer