Modul 1 15 studiepoeng, internt kurs Notodden/Porsgrunn
|
|
- Martin Thor Ervik
- 9 år siden
- Visninger:
Transkript
1 Høgskole i Telemk Avdelig fo estetiske fg, folkekultu og læeutdig BOKMÅL 4. mi 007 EKSAMEN I MATEMATIKK 3 Tid: 6 time Modul 5 studiepoeg, itet kus Notodde/Posgu Oppgvesettet e på 7 side (ikludet fomelsmlig). Hjelpemidle: Klkulto, vedlgt fomelsmlig (bkest i oppgvesettet), L97 og LK06. Kotolle t du h fått lle kee. Les oppgvetekstee øye. Buk ege k på hve oppgve. Begu lle sv. Alle delspøsmål telle like mye. Oppgve ) Pimtllsfktoise 533. Redegjø fo femggsmåte du buke. Fi støste felles fkto og miste felles multiplum fo 533 og 00 = c) Gjø ede fo hvod du vil fokle begepee støste felles fkto og miste felles multiplum fo eleve i skole. T gjee utggspukt i e pktisk situsjo. Oppgve Tbelle edefo vise tllfølge : ) Fi e ekusiv fomel fo. Fi e eksplisitt fomel fo. Nedefo se du e epesetsjo v de te føste tllee i e følge v figutll vi k klle hitllee.
2 c) Hvis vi klle det -te hitllet fo H k vi vise t H = Fomele k utledes ved t m dele opp figutllet på e hesiktsmessig måte. Beskiv e oppdelig v H og utled fomele. Oppgve 3 ) E psiet skl t to type medisi ette følgede møste: Medisi A skl ts hve tedje dg, medisi B skl ts hve sjette dg. Medisi A ts føste gg på e tisdg, og medisi B føste gg fedg smme uke. De to typee medisi skl ikke ts smme dg fo ofte, i hvet fll ikke me e e gg i måede. Doktoe øske defo å fosike seg om t så ikke skje, og sette opp følgede kogues: + 3x x(mod 7). i) Løs koguese doktoe h stt opp. ii) Fokl smmehege mellom poblemet doktoe ville løse og koguese, og edegjø fo hv løsige v koguese fotelle om det pktiske poblemet. Beskiv hvilke tll som gi est ved divisjo med både 5 og 3? c) Fi este å deles på 3. d) Vis hvod du k buke Eules teoem til å fie de te siste sifee i Oppgve 4 ) Odet L J A G e e del v e kodet meldig. Meldige e kodet med fomele y 3x + 5(mod 9). Fi ut hv L J A G e i kltekst. I RSA-systemet gis det e såklt offetlig økkel fo kode, otet ( k, ). Sikkehete i systemet kyttes til t det e svæt vskelig å fktoisee tllet. Fokl hvofo det e ødvedig å fktoisee fo å kue dekyptee meldige lget med dette systemet. Oppgve 5 ) Fi lle positive heltllige løsige til ligige x + 9y = 700. Beskiv e pktisk situsjo hvo poblemstillige l seg fomulee som e dioftisk ligig. Situsjoe skl væe slik t de e begipelig fo eleve i guskole. Hvilke fedighete og begepe k skoleeleve utvikle gjeom dette beidet? c) Vi betkte ligige 9x + 5y = c. Hvilke kv må du sette til c fo t ligige skl h løsig?
3 Oppgve 6 ) Reg ut summe L Fokl hvofo det be k fies ett pytgoeisk tippel hvo det ee tllet e 7. c) E det iktig t ( + b ) ( +? d) Vis t 4 ( b ) desom og b e odde heltll. e) Vis t 5 e delelig med 5 fo lle vlg v positive. (Hit: Fktoise slik 5 = (( ) ) = ( )( + ) osv., elle buk mtemtisk iduksjo) Oppgve 7 I tikkele Pisippe fo utfomig v udevisig sette Al Bell opp oe hovedpukte m bø t hesy til ved plleggig v udevisig. H eve blt et situsjo, feedbck og efleksjo og tilbkeblikk. Redegjø i kote tekk hv Bell sie om dette. 3
4 Høgskole i Telemk Avdelig fo estetiske fg, folkekultu og læeutdig FORMELSAMLING FOR MATEMATIKK 3, MODUL DIVISJONSALGORITMEN: Hvis, b N, fies q, Z, slik t = q b +, hvo 0 < b INDUKSJONSPRINSIPPET L P( ) væe et mtemtisk utsg som vhege v N. D e P( ) s fo lle N desom:. P () e s.. P( ) P( + ) (hvis det stemme fo, så må det også stemme fo + ) STØRSTE FELLES FAKTOR OG MINSTE FELLES MULTIPLUM: mfm (, = b sff (, LØSNING FOR DIOFANTISK LIGNING De lieæe dioftiske ligige x + by = c h løsig hvis og be hvis sff (, c. Desom løsige eksistee, og ( x0, y 0) e e spesiell løsig, e de geeelle løsige: b x = x0 + t t Z sff (, y = y0 t t Z sff (, TALLTEORIENS FUNDAMENTALTEOREM Ethvet helt tll støe e, k skives som et podukt v pimtllspotese. Dette poduktet klles pimtllsfktoiseige til tllet. Pimtllsfktoiseige e etydig å m se bot f ekkefølge v fktoee. REGLER OG PRØVER FOR 9 OG L væe et helt positivt tll, og T ( ) tvesumme til. Nieegele: T ( )(mod 9) T ( + b + L ) T ( ) + T ( + L (mod9 Niepøve fo multipliksjo: T ( b L) [ T ( ) T( L] (mod9) Niepøve fo ddisjo: [ ] ) L væe et helt positivt tll, og A( ) de lteeede tvesumme til. Elleveegele: A( )(mod) A ( + b + L ) A( ) + A( + L (mod Ellevepøve fo ddisjo: [ ] ) 4
5 Ellevepøve fo multipliksjo: A ( b L) [ A( ) A( L] (mod) SUMMEFORMELEN FOR DE FØRSTE HELTALLENE: k = ( + ) k = GEOMETRISK REKKE: k 3 x = + x + x + x + L + x = k = 0 + x x ( + ) ARITMETISK REKKE: = ( + ) ( + ) (Altetiv fom: L + = ) + L, hvo = FIBONACCI-TALLENE Vi l F væe det -te Fibocci-tllet. Vi h F = og F =, og følge e videe beskevet ved t F + = F + F. DERIVERTE OG DOBBELTDERIVERTE FØLGER Gitt e følge, =,,3,... Deivet følge: = +. Dobbeltdeivet følge: = + KONGRUENSREGNEREGLENE. (mod ). b(mod ) b (mod ) 3. b(mod ) og b c(mod ) c(mod ) 4. b(mod ) og c d(mod ) + c b + d(mod ) og c bd(mod ) 5. b(mod ) + c b + c(mod ) og c bc(mod ) 6. b(mod ) k k b (mod ) EKSISTENS AV LØSNING FOR LINEÆRE KONGRUENSER x b(mod ) h løsig hvis og be hvis sff (, ) b. Hvis sff (, ) =, e løsige etydig. Hvis sff (, ) = d > fies det d ibydes ikoguete løsige modulo. Hvis x e e hvilke som helst løsig, e de esteede gitt ved x + d, x +, LL x + ( d ) d d FORKORTNINGSLOVENE FOR KONGRUENSREGNINGEN. Desom c cb(mod ) og sff ( c, ) =, så e b(mod ). Desom c cb(mod c), så e b(mod ) INVERS MODULO Desom et tll c e slik t c (mod ), sie vi t c e ivese til modulo. 5
6 POTENSREKKER ( + )( + ) L + = ( + ) L + = DET KINESISKE RESTTEOREMET L 3,,,..., væe tulige tll, og t t ( i, j ) = å i j. D h settet x (mod ) x (mod ) M x (mod ) e felles løsig modulo poduktet N = 3, og dee løsige k gis ved X = x N + xn x N, hvo Ni = N / i, og Nixi (mod i ) TALLTEORETISKE FUNKSJONER k k k Vi l = p p L p væe pimtllsfktoiseige til et tulig tll. D e: τ ( ) = tll fktoe i = ( + k )( + k ) L ( + k ) (vi telle både og tllet selv som fktoe) k + k + k + p p p σ ( ) = summe v fktoee i = L p p p ( og tllet selv skl væe med i summe) φ( ) = L p p p = tll tll f og med til og med som e ibydes pimiske med FERMATS LILLE TEOREM: Desom p e et pimtll og p /, så e p (mod p) WILSONS TEOREM: Desom p e et pimtll, så e ( p )! (mod p) EULERS TEOREM: Desom sff (, ) =, så e φ ( ) (mod ) RSA-KRYPTERING De offetlige økkele (, k ), hvo k e kodigsekspoete, og poduktet v i pisippet to stoe pimtll, må velges slik t sff ( k, φ ( )) =. 6
7 Dekodigsekspoete j bestemmes ved t de skl tilfedsstille kj (mod φ( )). RIKE, FATTIGE OG PERFEKTE TALL Desom summe v fktoee i, uttt selv, e lik, klles et pefekt tll. Desom dee summe e mide e, klles tllet fttig, og hvis de e støe klles ikt. Det k beskives slik: e ikt σ ( ) > e fttig σ ( ) < e pefekt σ ( ) = PYTAGOREISKE TRIPLER Alle pimitive pytgoeiske tiple, ( x, y, z ) k uttykkes ved fomlee x = st y = s t z = s + t de s og t e hele tll slik t s > t > 0, sff ( s, t ) = og s t + (mod ). Demed k lle pytgoeiske tiple uttykkes ved: x k st y k s t z = k s + t = = ( ) ( ) TILORDNINGEN AV TALL TIL BOKSTAVENE I ALFABETET 7
Fakultet for teknologi, kunst og design Teknologiske fag
Fultet fo teologi, ust og desig Teologise fg Esme i: Diset mtemti Målfom: omål Dto: 8005 Tid: 5 time / l 9-4 tll side il foside: 0 tll ogve: 0 Tilltte hjelemidle: Fohådsgodjet odo Hådholdt lulto som ie
DetaljerUtvalg med tilbakelegging
Utvalg med tilbakelegging Gitt n foskjellige objekte. Vi skal velge objekte på en slik måte at fo hvet objekt vi velge, notee vi hvilket det e og legge det tilbake. Det bety at vi kan velge det samme objektet
DetaljerS2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen
Utvlgte løsiger oppgvesmlige S kpittel Rekker Utvlgte løsiger oppgvesmlige 0 Vi k prøve med differsemetode Differsee mellom leddee utover er 4,6,8, så det er rimelig t differse mellom femte og fjerde ledd
DetaljerUtvalg med tilbakelegging
Utvalg med tilbakelegging Gitt n foskjellige objekte. Vi skal velge objekte på en slik måte at fo hvet objekt vi velge, notee vi hvilket det e og legge det tilbake. Det bety at vi kan velge det samme objektet
DetaljerKombinatorikk. MAT0100V Sannsynlighetsregning og kombinatorikk. Multiplikasjonssetningen
MAT0100V Sasylighetsegig og kombiatoikk Kombiatoikk Odede utvalg med og ute tilbakeleggig Uodede utvalg ute tilbakeleggig Pascals talltekat og biomialkoeffisietee Øulf Boga Matematisk istitutt Uivesitetet
DetaljerKAPITTEL 6. STØRRELSER OG TALL I GRESK MATEMATIKK
KAPITTEL 6. STØRRELSER OG TALL I GRESK MATEMATIKK Gekee kjete de atulige tallee og de kjete til fohold - dvs det vi i dag vil ofatte som bøke. E guleggede ofatig va at to lijestykke måtte ha et felles
DetaljerAvdeling for ingeniørutdanning. Eksamen i Diskret matematikk
wwwhioo Avdelig fo igeiøutdig Esme i Diset mtemti Dto: 3 feu Tid: 9 4 Atll side ilusive foside: 7 Atll oppgve: Tilltte hjelpemidle: Ku hådholdt lulto som ie ommuisee tådløst Med: Kdidte må selv otollee
DetaljerKombinatorikk. MAT0100V Sannsynlighetsregning og kombinatorikk. Multiplikasjonssetningen
MAT000V Sasylighetsegig og kombiatoikk Kombiatoikk Odede utvalg med og ute tilbakeleggig Uodede utvalg ute tilbakeleggig Pascals talltekat og biomialkoeffisietee Øulf Boga Matematisk istitutt Uivesitetet
DetaljerPytagoreiske tripler og Fibonacci-tall
Johan F. Aanes Pytagoeiske tiple og Fibonai-tall Pytagoas og Fibonai siamesiske tvillinge? Me enn 700 å skille dem i tid, men matematisk e de på en måte uadskillelige. Pytagoas (a. 585 500 f.k.) og Leonado
DetaljerMatematikk 3MX AA6524 / AA6526 Elever / privatister Oktober 2002
E K S A M E N LÆRINGSSENTERET Matematikk 3MX AA6524 / AA6526 Eleve / pivatiste Bokmål Eksempeloppgave ette læeplan godkjent juli 2000 Videegående kus II Studieetning fo allmenne, økonomiske og administative
DetaljerVedlegg til eksamensoppgaven i Diskret matematikk
Vedlegg til esmesogve i Diset mtemti Det som stå he vil væe iholdet i esmesogves vedlegg høste 4 Deiisjoe og omle Logise oetoe: ie, og, elle, eslusiv elle, imlisjo Noe evivlese utsgslogi: P P P P Noe megdeidetitete:
DetaljerAvdeling for ingeniørutdanning. Eksamen i Diskret matematikk
www.hio.o vdelig fo igeiøutdig Esme i Diset mtemti Dto: 7. deseme Tid: 9 4 tll side ilusive foside: 8 tll ogve: Tilltte hjelemidle: Ku hådholdt lulto som ie ommuisee tådløst. Med: Kdidte må selv otollee
DetaljerMA1301 Tallteori Høsten 2014 Løsninger til Eksamen
MA1301 Tallteori Høsten 2014 Løsning til Eksamen Richard Williamson 11. desemb 2014 Innhold Oppgave 1 2 a)........................................... 2 b)........................................... 2 c)...........................................
DetaljerEKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00
EKSAMENSOPPGAVE - Skoleeksamen MET 11803 Matematikk Institutt fo Samfunnsøkonomi Utleveing: 17122014 Kl 0900 Innleveing: 17122014 Kl 1400 Vekt: 70% av MET 1180 Antall side i oppgaven: Antall vedleggsfile:
DetaljerHøgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008
Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:
DetaljerAvdeling for ingeniørutdanning. Eksamen i Diskret matematikk
wwwhioo Avdelig fo igeiøutdig Esme i Diset mtemti Dto: feu Tid: 9 4 Atll side ilusive foside: 8 Atll oppgve: Tilltte hjelpemidle: Ku hådholdt lulto som ie ommuisee tådløst Med: Kdidte må selv otollee t
DetaljerMA1301 Tallteori Høsten 2014 Oversikt over pensumet
MA1301 Tallteori Høsten 2014 Oversikt over pensumet Richard Williamson 3. desember 2014 Innhold Pensumet 2 Generelle råd 2 Hvordan bør jeg forberede meg?.......................... 2 Hva slags oppgaver
Detaljer8 Eksamens trening. E2 (Kapittel 1) På figuren er det tegnet grafene til funksjonene f og g gitt ved
84 8 Eksamenstening 8 Eksamens tening Uten hjelpemidle E1 (Kapittel 1) Polynomfunksjonen P e gitt ved P ( ) = 7 + 14 8, DP = R. a Det kan vises at alle heltallige løsninge av P() = 0 gå opp i konstantleddet
DetaljerOppgave 1 a)1 b)3 c)2 d)3 e)3 f)2 g)3 h)2 i)1 j)2 k)1 l)2
1 Løsningsfoslag EMC-eksamen 24.5. Oppgave 1 a)1 b)3 c)2 d)3 e)3 f)2 g)3 h)2 i)1 j)2 k)1 l)2 Oppgave 2 a) En geneisk standad e en geneell standad som bukes nå det ikke foeligge en poduktstandad. EN581
DetaljerLøsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010
Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 1. a) Ingen andre tall enn en deler en, og en deler fire, så (1, 4) = 1 b) 1 c) 7 er et primtall og 7 er ikke en faktor i 41, så største felles
DetaljerGjennomgang eksamensoppgaver ECON 2200
Gjeomgag eksamesoppgave ECON 00 Kjell Ae Bekke 6. mai 008 Oppgave 3 V06 a)kuvee edefo tege kuvee fo 0 ha de oppgitte egeskape y.0.5.0 0.5 0.0 3 4 5 6 7 8 9 0 3 4 5 x b)føst, mek desom optimal po tt ved
DetaljerEKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002/MNFFY101 GENERELL FYSIKK II Lørdag 6. desember 2003 kl Bokmål
ide av 0 NORGE TEKNIK- NATURVITENKAPELIGE UNIVERITET INTITUTT FOR FYIKK Faglig kontakt unde eksamen: Føsteamanuensis Knut Ane tand Telefon: 73 59 34 6 EKAMEN FAG TFY460 ØLGEFYIKK OG FAG FY00/MNFFY0 GENERELL
DetaljerObligatorisk oppgave nr. 3 i Diskret matematikk
3. obligatoriske oppgave i Diskret matematikk høste 08. Obligatorisk oppgave r. 3 i Diskret matematikk Ileverigsfrist. ovember 08 Oppgave er frivillig og tregs ikke leveres, me hvis dere leverer de ie
DetaljerMA1301 Tallteori Høsten 2014
MA1301 Tallteori Høsten 014 Richard Williamson 1. august 015 Innhold Forord 7 1 Induksjon og rekursjon 9 1.1 Naturlige tall og heltall............................ 9 1. Bevis.......................................
DetaljerQED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Tallenes hemmeligheter
QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Tallenes hemmeligheter Kapittel 1 Oppgave 8. Nei Oppgave 9. Det nnes ikke nødvendigvis et minste element i mengden. Et eksempel
DetaljerLøsningsforslag kapittel 3
Løsningsoslg kpittel 3 3.1 ) Uttykket o (den konigusjonelle) entopien S e gitt ved S k ln W, de W uttykke ntll skillbe mikotilstnde. Siden kystllen inneholde n vknse odelt ove N N! N! tomplsse e W og S
DetaljerFakultet for teknologi, kunst og design Teknologiske fag
Fultet fo teologi, ust og desig Teologise fg Esme i: Diset mtemti Målfom: Bomål Dto: 0504 Tid: 5 time / l 9-4 Atll side (il foside): 0 Atll oppgve: 0 Tilltte hjelpemidle: Fohådsgodjet odo Hådholdt lulto
DetaljerSlik bruker du pakken
Slik buke du pakken Kompetanseutviklingspakken Lesestategie og leseengasjement Dette e infomasjon til deg/dee som skal lede femdiften i kollegiet. He finne du en ovesikt ove pakkens innhold til hjelp i
DetaljerEKSAMEN Løsningsforslag
..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:
DetaljerLøsningsforslag til Øvingsoppgave 5
Oppgve 5.1 ) Figu 5.1 vise et foenklet tilstndsdigm fo det metstbile system jen-kbon, Fe-C. Skiv på digmmet stuktuelementene og fsene som tilhøe de enkelte flte. Mek v eutektisk og eutektoidisk eksjon
DetaljerHesteveddeløp i 8. klasse
Andeas Loange Hesteveddeløp i 8. klasse Spillbettet. Gå det an å ha det gøy, utfoske algebaens mysteie og samtidig læe noe? Vi befinne oss i 8. klasse på Kykjekinsen skole i Begen. Jeg ha nettopp blitt
DetaljerDette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0
Prinsippet om matematisk induksjon: anta du har en påstand som er avhengig av et positivt heltall n. Om du kan vise to ting, nemlig at påstanden er sann for n = 1 og at om påstanden er sann for n = k,
DetaljerFakultet for teknologi, kunst og design Teknologiske fag
Fultet fo teologi ust og desig Teologise fg Ny/utstt esme i: Diset mtemti Målfom: Bomål Dto: 4.0.06 Tid: 5 time/l. 09-4 Atll side (il. foside): 0 Atll oppgve: 0 Tilltte hjelpemidle: HÅNDHOLDT KALKULATOR
DetaljerRelativt primiske tall
Relativt primiske tall To heltall a og b (der ikke begge er 0) kalles relativt primiske hvis gcd(a, b) = 1, dvs. de har ingen felles faktorer utenom 1. NB! a og b trenger ikke være primtall for at de skal
DetaljerØving 6. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme. Veiledning: Uke 7 Innleveringsfrist: Mandag 19. februar.
Institutt fo fsikk, NTNU TFY4155/FY1003: Elektisitet og mgnetisme Vå 2007 Veiledning: Uke 7 Innleveingsfist: Mndg 19. febu Øving 6 Oppgve 1 z Figuen ove vise en gussflte (dvs lukket flte) S fomet som en
DetaljerMATEMATIKK 1 (for 8. 10. trinn) Emnebeskrivelser for studieåret 2014/2015
MATEMATIKK 1 (for 8. 10. trinn) Emnebeskrivelser for studieåret 2014/2015 Emnenavn Grunnleggende matematikk Precalculus MA6001 Undervisningssemester Høst 2014 Professor Petter Bergh petter.bergh@math.ntnu.no
DetaljerKapittel 4 Tall og algebra Mer øving
Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en
DetaljerMatematikk for IT. Prøve 2 løsningsforslag. Torsdag 27. oktober 2016 S S F S F F S F S F S S F S F S F F F F S S F F
Mtemtikk for IT Prøve løsigsforslg Torsdg 7 oktober 06 7 oktober 06 Oppgve ) Fi ved hjelp v shetstbeller om de to følgede smmestte utsg er logisk ekvivlete: i) p q ii) q p q) Utsg i): q p q S S F F S F
DetaljerEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk ntuitenskpelige uniesitet Institutt fo elektonikk og telekommuniksjon ide 1 8 Bokmål/Nynosk Fglig/fgleg kontkt unde eksmen: Johnnes k (48497352) Hjelpemidle: C - pesifisete tykte og håndskene
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 10. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
TFY0 Fysikk. Institutt fo fysikk, NTNU. Høsten 06. Øving 0. Opplysninge: esom ikke nnet e oppgitt, nts det t systemet e i elektosttisk likevekt. esom ikke nnet e oppgitt, e potensil undefostått elektosttisk
DetaljerØving 1. Institutt for fysikk, NTNU Fag SIF 4012 Elektromagnetisme og MNFFY 103 Elektrisitet og magnetisme Høst 2002
Institutt fo fysikk, NTNU Fg SIF 4 Elektomgnetisme og MNFFY Elektisitet og mgnetisme Høst Øving Veiledning: Tosdg 9. ugust Innleveingsfist: Tisdg. septembe kl. Oppgve En ldning q e plsset i (,y)(,) og
DetaljerTeorem 10 (Z n, + n ) er en endelig abelsk gruppe. 8. november 2005 c Vladimir Oleshchuk 35. Teorem 11 (Z n, ) er en endelig abelsk gruppe.
Endelige grupper Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. En gruppe er en mengde S sammen med en binær operasjon definert på S, betegnes (S, ), med følgende egenskaper: 1. a, b S, a b S 2. det
DetaljerKap. 8-4 Press- og krympeforbindelse
K. -4 Pess- og kymefobdelse.4. Dmesjoeg v kymefobdelse Dmesjoeg v kymefobdelse fslegge e essmo slk kokykke () mellom delee e lsekkelg å oveføe belsge e gldg og kke så so segee v elle ksel bl fo høy Kymefobdelse
DetaljerLØSNINGSFORSLAG TIL EKSAMEN MAI 2007
NTNU Noges teknisk-ntuvitenskpelige univesitet Fkultet fo ntuvitenskp og teknologi Institutt fo mteilteknologi TMT40 KJEMI LØSNINGSFORSLAG TIL EKSAMEN MAI 007 OPPGAVE ) - ph definees som den negtive logitmen
DetaljerEmnenavn: Finansiering og investering. Eksamenstid: 4 timer. Faglærer: Tor Arne Moxheim
EKSAMEN Emnekode: SFB6 Dato: 3. mai 9 Hjelpemidle: Godkjent kalkulato, vedlagte fomelsamling og entetabelle. Emnenavn: Finansieing og investeing Eksamenstid: 4 time Faglæe: o Ane Moxheim Om eksamensoppgaven
DetaljerOversikt over kryptografi
Oversikt over kryptografi Richard Williamson 3. desember 2014 Oppgave 1 Person A ønsker å sende meldingen Ha det! til person B, og ønsker å benytte RSAalgoritmen for å kryptere den. Den offentlige nøkkelen
DetaljerKapittel 10 fra læreboka Grafer
Forelesigsotat i Diskret matematikk torsdag 6. oktober 017 Kapittel 10 fra læreboka Grafer (utdrag) E graf er e samlig pukter (oder) og kater mellom puktee (eg. odes, vertex, edge). E graf kalles rettet
DetaljerChapter 2 - Discrete Mathematics and Its Applications. Løsningsforslag på utvalgte oppgaver
Chpter - Dscrete Mthemtcs d Its pplctos Løsgsforslg på utvlgte oppgver vstt Oppgve Gtt 7 ) E mtrse med rder og koloer er e mtrse Geerelt hr v t e m mtrse er e mtrse med m rder og koloer Uttrykket m klles
DetaljerLøysingsforslag til eksamen i MA1301-Talteori, 30/11-2005.
Løysingsforslag til eksamen i MA1301-Talteori, 30/11-2005. Oppgåve 1 a) Rekn ut gcd(788, 116). Finn alle løysingane i heile tal til likninga 788x + 116y = gcd(788, 116). b) Ein antikvar sel ein dag nokre
DetaljerNewtons lover i to og tre dimensjoner
Newtons love i to og te dimensjone 7..13 innleveing: buk iktige boks! FYS-MEK 111 7..13 1 Skått kast kontaktkaft: luftmotstand langtekkende kaft: gavitasjon initialbetingelse: () v() v v cos( α ) iˆ +
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 9. Veiledning: 18. oktober. Innleveringsfrist: 23. oktober kl 14.
TFY404 Fysikk. Institutt fo fysikk, NTNU. Høsten 203. Øving 9. Veiledning: 8. oktobe. Innleveingsfist: 23. oktobe kl 4. Oppgve ) Figuen vise et unifomt elektisk felt (heltukne linje). Lngs hvilken stiplet
Detaljerb) C Det elektriske feltet går radielt ut fra en positivt ladd partikkel.
Løsningsfoslag Fysikk 2 Høst 203 Løsningsfoslag Fysikk 2 Høst 203 Opp Sva Foklaing gave a) B Fomelen fo bevegelsesmengde p = mv gi enheten kg m. s Dette kan igjen skives som: kg m = kg m s s2 s = Ns b)
DetaljerEksempler på praktisk bruk av modulo-regning.
Eksempler på praktisk bruk av modulo-regning. Se http://www.cs.hioa.no/~evav/dm/emner/modulo1.pdf Tverrsum Tverrsummen til et heltall er summen av tallets sifre. Eksempel. a = 7358. Tverrsummen til a er
Detaljer( 6z + 3z 2 ) dz = = 4. (xi + zj) 3 i + 2 ) 3 x x 4 9 y. 3 (6 2y) (6 2y)2 4 y(6 2y)
TMA415 Matematikk 2 Vå 215 Noges teknisk natuvitenskapelige univesitet Institutt fo matematiske fag Løsningsfoslag Øving 11 Alle oppgavenumme efeee til 8. utgave av Adams & Essex Calculus: A Complete Couse.
Detaljera 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g.
Mtemtikk for ungomstrinnet KAPITTEL 4 TALL OG ALGEBRA MER ØVING Oppgve 1 Oppgve 2 Se på uttrykket A = g h. Hv forteller e ulike okstvene? Se på uttrykket O = 2π. Hv står e ulike symolene for? Forklr hv
DetaljerTransistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur:
0. Foseke akiekue Nå e asiso skal bukes il e foseke, oscillao, file, seso, ec. så vil de væe behov fo passive elemee som mosade, kodesaoe og spole ud asisoe. Disse vil søge fo biasig slik a asisoe få ikig
DetaljerFakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Diskret matematikk
Fakultet for tekologi, kust og desig Tekologiske fag Eksame i: Diskret matematikk Målform: Bokmål Dato: 9. ovember 017 Tid: Atall sider (ikl. forside): 9 Atall oppgaver: 6 Tillatte hjelpemidler: Forhådsgodkjet
DetaljerLøsningsforslag til eksamenen i MAT103, våren 2015
Løsningsforslag til eksamenen i MAT103, våren 2015 Oppgave 1 (vekt 10%) a) Et tall a er et partall hvis a er delelig med 2, dvs a 0(mod 2). Et tall a er et oddetall hvis a ikke delelig med 2, dvs a 1(mod
Detaljer"Kapittel 5 i et nøtteskall"
Ulve "Kapittel 5 i et øtteskall" (Vesjo 9.01.0 ) Jeg gå he i gjeom alle tekikke/fomle som e elevate i dette kapitlet ved å buke et eksempel side 198 som utgagspukt fo alle tekikkee. Ovesikt ove fomle og
DetaljerTerminprøve R2 Høsten 2014
Termiprøve R Høste 04 Del Tid: 3 timer Hjelpemidler: Skrivesaker Oppgave (6 poeg) E flate i rommet er gitt ved likige: x 4x y 6y z 8z 0 0 a) Vis at puktet P3, 5, ligger på flate b) Vis at dette er e kuleflate
Detaljer2. Bestem nullpunktene til g.
Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 0. desember 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig).
DetaljerEKSAMEN i. MA-132 Geometri. Torsdag 3. desember 2009 kl Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.
Institutt fo matematiske fag EKSAMEN i MA-1 Geometi Tosdag. desembe 009 kl. 9.00-14.00 Tillatte hjelpemidle: Alle tykte og skevne hjelpemidle. Kalkulato. Bokmål Oppgave 1 I oppgaven nedenfo skal du oppgi
DetaljerNTNU KOMPiS Studieplan for MATEMATIKK 1 (8. - 10. trinn) Studieåret 2014/2015
Godkjent april 2014 NTNU KOMPiS Studieplan for MATEMATIKK 1 (8. - 10. trinn) Studieåret 2014/2015 Profesjons- og yrkesmål Dette studiet er beregnet for lærere som har godkjent lærerutdanning med innslag
DetaljerEksamen i MA-104 Geometri Løsningsforslag
Eksamen i M-04 Geometi 4.0.007 Løsningsfoslag Oppgave Et kvadat ha side lik s, som du velge selv. E e midtpunktet på og F e midtpunktet på. iagonalen skjæe F i H. E skjæe F i G. I oppgaven skal du buke
DetaljerTillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1 En funksjon f er gitt ved f ( x) ( x 2) e x.
UNIVERSITETET I BERGEN De maemaisk-nauvienskapelige fakule Eksamen i emne MAT Bukekus i maemaikk Fedag 8 febua, kl 9-4 BOKMÅL Tillae hjelpemidle: Læebok og kalkulao i samsva med fakulee sine egle Oppgave
Detaljersosiale behov FASE 2: Haug barnehage 2011-2012
: Hva kjennetegne bana i denne fasen? De voksnes olle Banemøte Påkledning Samlinge Måltid Posjekte Uteleik Konfliktløsning Vudeing Haug banehage 2011-2012 «Omsog, oppdagelse og læing i banehagen skal femme
DetaljerIntegrasjon Skoleprosjekt MAT4010
Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning
Detaljertrygghet FASE 1: barnehage
tygghet banehage De voksnes olle Banemøte Leikeguppe Guppeaktivitet Hjemmebesøk Samlinge Måltid Påkledning Uteleik Konfliktløsning Vudeing Haug banehage 2011-2012 tygghet tygghet «Banehagen skal bistå
DetaljerLøsning øving 12 N L. Fra Faradays induksjonslov får vi da en indusert elektromotorisk spenning:
nstitutt fo fysikk, NTNU Fg SF 4 Elektognetise og MNFFY 3 Elektisitet og gnetise Høst øsning øving Oppgve Mgnetfeltet inne i solenoiden e : ( H( (N/) ( (dvs fo < R). Utenfo solenoiden: ( > R) Fo å eegne
DetaljerMidtsemesterprøve onsdag 7. mars 2007 kl Versjon A
Institutt fo fysikk, NTNU FY1003 lektisitet og mgnetisme I TFY4155 lektomgnetisme Vå 2007 Midtsemestepøve onsdg 7. ms 2007 kl 1300 1500. Løsningsfoslg. Vesjon 1) Hvilken påstnd om elektisk potensil e feil?
DetaljerNewtons lover i én dimensjon (2)
Newtons love i én dimensjon () 9.1.13 husk: data lab fedag 1-16 FYS-MEK 111 9.1.13 1 Identifikasjon av keftene: 1. Del poblemet inn i system og omgivelse.. Tegn figu av objektet og alt som beøe det. 3.
DetaljerDifferensligninger Forelesningsnotat i Diskret matematikk Differensligninger
Differesligiger Forelesigsotat i Diskret matematikk 017 Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker er imidlertid
Detaljerinformasjon GENERELL barnehage
2011 maianne@fuedesign.no «Det e at å ha 5 finge på hve hånd og 5 tæ på hve fot. Jeg kunne like gjene hatt 13 elle 30 sammenlagt. Og så ble det tilfeldigvis 20». Inge Hageup banehage Åpningstid Tilvenning
DetaljerAvsnitt 8.1 i læreboka Differensligninger
Diskret Matematikk Fredag 6. ovember 015 Avsitt 8.1 i læreboka Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker
Detaljerf '( x) 28x 6x 2 ( 2) x x 4(3t 2 s) 6s 2x 6(3t 2 s) 2t ln x 2ln y med bibetingelsen 2x y m. Her er m 0
Fsit obligtorisk oppgve Oppgve (9 poeg) Deriver følgede fuksjoer med hes på lle rgumeter ) f ( ) 7 f '( ) 8 6 svr: b) Svr: g ( ) ( ) ( ) g ( ) ( ) ( ) c) h( ) f ( )( ) Svr: h( ) f '( )( ) f ( ) d) Svr:
DetaljerVeileder for prosjektet har vært førsteamanuensis Stein-Erik Fleten. Jeg vil gjerne takke ham for all hjelp og faglig støtte.
SIS1101 Fodypigsemet i ivesteig, fiasieig og økoomistyig FORORD Dee appote e utabeidet høste 2002 og e e posjektoppgave utabeidet i tilkytig til fodypigsemet føste semeste det 5. ået ved siviligeiøstudiet
Detaljerc) etingelsen fo at det elektiske feltet E e otasjonsinvaiant om x-aksen e, med E og ee som denet ovenfo, at e E = E. Dette skal gjelde fo en vilkalig
Eksamen i klassisk feltteoi, fag 74 5, 4. august 995 Lsninge a) Koodinatene x; y; z tansfomees slik x 7 bx = x; y 7 by = y cos, z sin ; z 7 by = y sin + z cos Den invese tansfomasjonen e en otasjon en
Detaljerinformasjon GENERELL barnehage
maianne@futuia.no «Det e at å ha 5 finge på hve hånd og 5 tæ på hve fot. Jeg kunne like gjene hatt 13 elle 30 sammenlagt. Og så ble det tilfeldigvis 20». Inge Hageup banehage Åpningstid Tilvenning av nye
DetaljerNewtons lover i én dimensjon
Newtons love i én dimensjon 4.01.013 kaft akseleasjon hastighet posisjon YS-MEK 1110 4.01.013 1 Hva e kaft? Vi ha en intuitivt idé om hva kaft e. Vi kan kvantifisee en kaft med elongasjon av en fjæ. Hva
Detaljer12 MER OM POTENSER POTENSER
Kpittel MER OM OTENSER OTENSER 3 rekker for å helgrdere de første kmpe. 3 3 9 rekker for å helgrdere de to første kmpee. 3 3 3 7 rekker for å helgrdere de tre første kmpee. 3 3 3 3 3 3 3 3 3 3 3 3 53 44
DetaljerLØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302
Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Sie 1 v 6 LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 12. esemer 2006 Oppgve 1 ) Skriv ne efinisjonen på en tutologi. Svr: En tutologi
DetaljerTransistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur:
/3 0. Fosteke akitektue Nå e tasisto skal bukes til e fosteke, oscillato, filte, seso, etc. så vil det væe behov fo passive elemete som motstade, kodesatoe og spole udt tasistoe. Disse vil søge fo biasig
DetaljerFakultet for teknologi, kunst og design Teknologiske fag
Fultet o teologi, ust og desig Teologise g Esme i: Diset mtemti Målom: omål Dto: 8.. Tid: 5 time / l. 9-4 tll side il. oside: 9 tll ogve: Tilltte hjelemidle: Hådholdt lulto som ie ommuisee tådløst Med:
DetaljerPARENTESER Matematikerne har funnet på at i regneuttrykk kan vi bruke parenteser for å markere hvilken regneoperasjon som skal gjøres først.
Smmedrg kpittel SAMMENDRAG Dette er et smmedrg v det du hr rbeidet med om lgebr i Nummer 8, Nummer 9 og Nummer 10. Hvis du treger mer treig utover oppgvee i Nummer 10, fier du ekstr oppgver på elevettstedet.
DetaljerMA1301 Tallteori Høsten 2014 Oversikt over pensumet for midtsemesterprøven
MA1301 Tallteori Høsten 2014 Oversikt over pensumet for midtsemesterprøven Richard Williamson 3. oktober 2014 Innhold Pensumet 2 Generelle råd 2 Hvordan bør jeg forberede meg?..........................
DetaljerFakultet for teknologi, kunst og design Teknologiske fag
Fultet fo teologi, ust og desig Teologise fg Esme i: Diset mtemti Målfom: omål Dto: 04..05 Tid: 5 time / l. 9-4 tll side il. foside: tll ogve: 0 Tilltte hjelemidle: Fohådsgodjet odo. Hådholdt lulto som
DetaljerEksamen TFY 4240: Elektromagnetisk teori
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Ola Hundei, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektomagnetisk teoi 8 desembe 2007 kl. 09.00-13.00
DetaljerNTNU KOMPiS Studieplan for MATEMATIKK 1 (8.-13. trinn) med hovedvekt på 8.-10. trinn Studieåret 2015/2016
Versjon 01/15 NTNU KOMPiS Studieplan for MATEMATIKK 1 (8.-13. trinn) med hovedvekt på 8.-10. trinn Studieåret 2015/2016 Profesjons- og yrkesmål Dette studiet er beregnet for lærere på ungdomstrinnet som
DetaljerFasit. Grunnbok. Kapittel 2. Bokmål
Fsit 9 Grunnbok Kpittel Bokmål Kpittel Lineære funksjoner rette linjer. ƒ(x) = 4x + 5 ƒ() = 3 ƒ(4) = ƒ(6) = 9.6 ƒ(x) = -x b ƒ(x) = x b ƒ(x) = (x + ) 3 ƒ() = ƒ(4) = 8 ƒ(6) = 4 ƒ(x) = x 4 ƒ() = - ƒ(4) =
DetaljerInnhold. 1. Innledning... 3
Risikobaset tilsyn Modul fo makeds- og kedittisiko i fosiking Evalueing av makeds- og kedittisikonivå DAO: 15.09.2010 Innhold 1. Innledning... 3 2. Makedsisiko... 4 2.1 Metodikken... 4 2.2 Renteisiko...
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. ving 10.
TFY0 Fysikk. Institutt fo fysikk, NTNU. ving 0. Opplysninge: esom ikke nnet e oppgitt, nts det t systemet e i elektosttisk likevekt. esom ikke nnet e oppgitt, e potensil"undefosttt elektosttisk potensil",
DetaljerFagdag 2-3mx 24.09.07
Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.
DetaljerNotat: Dekker pensum i beskrivende statistikk
Notat: Dekke pesum eskvede statstkk.3 Beskvede statstkk (sde 9 læeoka - 4. utgave) Beskvede (deskptv) statstkk omfatte samlg, eaedg og pesetasjo av data (tallmateale, osevasjoe, måleesultate). Nå følge
DetaljerØving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
Institutt fo fysikk, NTNU TFY455/FY003: lektisitet og magnetisme Vå 2008 Øving 8 Veiledning: 04.03 i R2 25-400, 05.03 i R2 25-400 Innleveingsfist: Fedag 7. mas kl. 200 (Svatabell på siste side.) Opplysninge:
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FAG TEP4170 VARME- OG FORBRENNINGSTEKNIKK 18. mai 2007 Tid:
av 4 Noges teknisk-natuvitenskapelige univesitet Initutt fo enegi- og poseseknikk Kontakt unde eksamen: Toleif Weydahl, tlf. 7359634 / 945 ØSNINGSFORSAG TI EKSAMEN I FAG TEP47 VARME- OG FORBRENNINGSTEKNIKK
DetaljerLøsning midtveiseksamen H12 AST1100
Løsning midtveiseksamen H AST00 Aleksande Seland Setembe 5, 04 Ogave Vi se at kuven fo adiell hastighet e eiodisk og minne om en hamonisk funksjon. Vi kan defo anta at denne stjenen gå i bane undt et felles
DetaljerLøsningsforslag til øving 9 OPPGAVE 1 a)
Høgskole i Gjøvik vd for ek, øk og ledelse aemaikk 5 Løsigsforslag il øvig 9 OPPGVE ) Bereger egeverdiee: de I) ) ) ) Egeverdier: og ) ) Bereger egevekoree: vi ivi ii) vi ed λ : ) ) v Velger s som gir
DetaljerMandag E = V. y ŷ + V ẑ (kartesiske koordinater) r sin θ φ ˆφ (kulekoordinater)
Institutt fo fysikk, NTNU TFY4155/FY13: Elektisitet og magnetisme Vå 26, uke 6 Mandag 6.2.6 Beegning av E fa V [FGT 24.4; YF 23.5; TM 23.3; F 21.1; LHL 19.9; DJG 2.3.1, 1.2.2] Gadientopeatoen : V = V V
DetaljerOversikt over det kinesiske restteoremet
Oversikt over det kinesiske restteoremet Richard Williamson 3. desember 2014 Oppgave 1 Finn et heltall x slik at: (1) x 2 (mod 6); (2) x 3 (mod 11). Hvordan vet jeg at vi bør benytte det kinesiske restteoremet?
Detaljer