Løsningsforslag til øving 9 OPPGAVE 1 a)
|
|
- Kåre Skoglund
- 9 år siden
- Visninger:
Transkript
1 Høgskole i Gjøvik vd for ek, øk og ledelse aemaikk 5 Løsigsforslag il øvig 9 OPPGVE ) Bereger egeverdiee: de I) ) ) ) Egeverdier: og ) ) Bereger egevekoree: vi ivi ii) vi ed λ : ) ) v Velger s som gir s Da får vi egevekore: v s,s Kommear: For hver egeverdi er de uedelig mage egevekorer, i dee ilfelle alle vekorer parallelle med I praksis er de ok å velge u é av disse Vi skriver derfor ofe bare T v i sede for v s,s Beigelse s er ødvedig fordi ullvekor pr defiisjo ikke ka være e egevekor ) ) ed λ : v Egevekor: ) v, Diagoaliserer Har: D, hvor: D, [ v, v ], Da gjelder videre: D, hvor : D ) ) 9 9 erk! Som før ev, hvis v er e egevekor må også v ) være e egevekor ilke De er selvsag valgfri hvilke av egeverdiee vi døper hhv og, bare de kes il rikige egevekorer Feks kue vi like gjere sa D Vi får likevel samme svar: D og [ w, w] [v, v] 9 Side av
2 OPPGVE erk! Når vi skal berege egeverdier og egevekorer er de valgfri om vi bruker rekkefølge de I) eller de I ), og følgelig i I)v i eller i I )v i I dee ilfelle ka siseve form løe seg dersom vi vil ugå masse egaive all de I ) ) ) ) ) ) ) ) ) ) 9 ) 9 ) ) ) ) ) ) ) ) ) ) Egeverdier:,, Isa λ : ) ) ) z v rad eller ): z Velger: z De gir: Fra rad : Egevekor: v r, r 5 Isa : ad : Velger: z Gir: ad : Egevekor: v s, s Isa : ad : Velger: z Gir: ad : Egevekor: v, Egevekoree er pr def, og sår derfor vikelre på hveradre v i v j ) dersom v i v j Her: v v ), v v, v v ) Kommear: For e smmerisk marise T ) med reelle koeffisieer, er de allid mulig å fie e se egevekorer som sår vikelre på hveradre orogoale egevekorer) Hvis egeverdiee er forskjellige som i dee eksempele, skjer de auomaisk Dersom vi har sammefallede egeverdier, må vi gjøre e beviss valg I mage sammeheger er de e fordel med orogoale egevekorer, fordi disse da ka dae e orogoal aksekors Side av
3 OPPGVE Fra læreboka, side Proper ): i race ) aii i i Dvs: a a a ) Dessverre fies ige ilsvarede sarvei for å besemme egevekoree Egevekorer: i I) v i ed : ) ) ) z Velger z Gir : z, Egevekor: v s, s ed ) : ) ) ) Ku é fri parameer Feks z, gir, Egevekor: v, I dee ilfelle er de ikke mulig å fie lieær uavhegige egevekorer il egeverdie λ v vil være parallell med v uase valg av z ) Da ka vi ikke see opp e iveribel egevekormarise, og følgelig ikke D slik som i oppg er derfor ikke diagoaliserbar Kommear: )-mariser har geerel egeverdier røer) Dersom alle egeverdiee er forskjellige,, fier vi allid lieær uavhegige egevekorer arise er da diagoaliserbar Hvis oe av egeverdiee er sammefallede, feks, er ikke svare gi på forhåd I oe ilfeller ka vi likevel fie lieær uavhegige egevekorer, adre gager ikke som i dee eksemple) OPPGVE ) ) ) ) Egeverdier: j Nærmere besem: j * og j erk! Egeverdiee opprer som e kompleks-kojuger par, de samme må da gjelde egevekoree Side av
4 OPPG fors Isa : j j De er kaskje ikke så le å se a de o likigee fakisk er like, me prøv feks å gage rad med Fra rad : j gir j Egevekor: v j j ) Da må * v v Se i for på valig måe hvis du ikke er overbevis ) j Komplekskojugere egeverdier: j Fra før: abs ), arg ) a a 5 j j5 j j 5 Omskreve il polar form: e e Også vis idligere: e e Vikele 5 ugjør periode side 5 Jamfør oppg har vi 9 D 9 j 5 j De ber feks a e e, hvor 9 m j m 9 e e m ), og ilsvarede D Dermed har vi D 9 D og 9 D 9 D OPPGVE 5 Pla: z I dee ilfelle ser vi bare eer reelle egeverdier Projeksjo: u plae = v =v u v figure: De er bare vekorer som ligger i plae eller sår vikelre på plae som avbilder paralleller il seg selv, dvs gir rasformasjoer av pe v v ed adre ord: lle vekorer som ligger i plae, sam ormalvekore il plae ka bees som egevekorer Side av
5 OPPG 5 fors) hp diagoaliserig må vi fie lieær uavhegige egevekorer Vi velger førs vilkårlige ikke-parallelle vekorer fra plae z Feks mes, z gir v,, z gir v De sise lieær uavhegige egevekore må bli ormalvekore, dvs Ved projeksjo: v v, v v og v v Egeverdiee er alså, v v v v Jamfør oppg : Projeksjosmarise: D p vha kalkulaor) OPPGVE X Saus pr i dag: u %, hvor allee agir markedsadelee i % il hhv avis X og Y Y Fordelige eer år: 9 5 u u % er overgagsmarise ) 9 Kor forklarig: vis X miser % = ) og sier dermed igje med 9% 9) av sie opprielige aboeer, me får il gjegjeld % ) av Y's aboeer Tilsvarede vil Y beholde 9% 9) av "ege lesere" og får % ) av X's lesere ao: X 9X Y, Y X 9Y ar de samme uviklige hver år framover, da har vi eer år: u u u Vi søker fordelige eer "uedelig" lag id u lim u Fier egeverdiee il : 9 9 )9 ) D 9 Egevekoree: v v [ v, v ] Side 5 av
6 OPPG fors leraiv Egevekoree er lieær uavhegige Vi ka derfor see u kv kv U i fra defiisjoe v v ka vi see u u kv kv k v k v Dee leder videre il a u u k λ v k λ v Dvs: u lim k k k Vi ka besemme k, me de er ikke ødvedig) Edelig markedsfordelig: avis X: % % ), avis Y: % 5 % ) erk! ed og er de edelige fordelige ee og alee besem av egevekore v leraiv Bruker samme prisipp som i oppg b: u u D u 5 5 % ) 5 OPPGVE Overgagsmarise 5 foreller oss følgede: 5 5 % av dree i gruppe i) dør før de blir år gamle Dermed er de bare 5 % 5) som overføres fra gruppe i) il grp ii) eer e ed -årsperiode Tilsvarede vil 5 % av dra i grp ii) dø før de blir år, reserede 5 % 5) overføres il grp iii) eer ed -årsperiode Hver dr i grp ii) føder i gjeomsi e hudr i løpe av -årsperiode, mes dree i grp iii) føder hudr i si Disse "føde" må selvsag have i grp i) Eer periode år): Eer perioder år): u u u u aall hudr) c) Egeverdiee il : 5 5 ) , 5 j5, 5 j5 e: Dvs:, mes Jamfør oppg, aleraiv, behøver vi derfor bare fie egevekore ilhørede λ 5 5 a b c 5 5 a b c a b c v Side av
7 OPPG c) fors Edelig fordelig: u k v kv k aall dr), som prosevis ilsvarer: % 9 ed adre ord: De edelige fordelige er igje direke besem av v som gir forholde ::, % % eller prosevis: i) % %, ii) %, iii) 9% ) ) ) leraiv kue vi ha rege u a u D u 9 5 aall dr), me da måe vi førs ha fue alle egevekoree og dereer bla iverer egevekormarise som er ) og kompleks Tugvi! ) Kommear: På lag sik forblir aall dr kosa fordi de domierede egeverdie λ De førse periodee vil aall dr i hver gruppe variere me fram og ilbake fordi o av egeverdiee er komplekse Se pk Dersom vi hadde ha λ og,, ville populasjoe voks over alle greser, me de prosevise forholde mellom gruppee ville forsa vær edig besem av ilhørede egevekor v Dersom alle λ j, ville populasjoe dødd u eer e aall geerasjoer OPPGVE ) ) ) ) ) ) På smbolsk form: hvor : d) d Vi forear e "dekoplig" av likigssee vha egeverdiee og egevekoree vi fa i oppg De oppår vi med subsiusjoe z og dermed z ), hvor z er midleridige "hjelpevariabler" Nærmere besem: z gir -koordiaee il, dvs i forhold il e basis besåede av egevekoree ) De gir: z z z z z z z Dz z z z z Vi sier igje med homogee difflikiger: z z, z z og z z ed løsig: z ) Ce, z ) Ce og z) C e Ci ubeseme kosaer ) Vi øsker løsiger mhp ), og forear derfor "ilbakesubsiusjoe" z Dee ka vi aleraiv urkke som e re vekoraddisjo, side v, v, v z De gir: z ) v, v, v z z v zv zv Ce v Ce v C e v z Isa verdiee vi fa i oppg, får vi de geerelle løsige: C e C e C e Dvs: ) ) ) Ce Ce C e Ce C e Ce Ce C e Side av
8 i ) OPPG fors) I dee ilfelle er iiialbeigelsee gi, og vi ka derfor besemme kosaee C i Isa i de geerelle løsige og de oppgie iibeigelsee får vi: ) C ) C kalkulaor C, C C ) C De gir de spesielle løsige: ) e e, ) e e e, ) e e e 5 5 ) -5 - ) ) id s) erk! lle resposee dør u med ide fordi vi ikke har oe re pådrag Sseme faller il ro Side av
3. Beregning av Fourier-rekker.
Forelesigsoaer i maemaikk. 3. Beregig av 3.. Formlee for Fourier-koeffisieee. Vi går re på sak: a f være e sykkevis koiuerlig fuksjo med periode p. De uedelige rigoomeriske rekka cos( ) si ( ) a + a +
DetaljerInvesteringer og skatt. Skattesatser med videre. Finansinvesteringer. Eksempler på finansinvesteringer
Iveseriger og ska Løsomhe av fiasiveseriger før og eer ska Løsomhe av realiveseriger eer ska Avhedelse (salg) av aleggsmidler Egekapialavkasig eer ska Joh-Erik Adreasse 1 Høgskole i Øsfold Skaesaser med
DetaljerEksamen i Matematikk desember, Løsningsforslag. . Det gir iht tabell ( nr.[22] ): G(s) = 3
Høgskole i Gjøvik Avdelig for Tekologi Eksame i Maemaikk 5. desember Løsigsforslag OPPGAVE a) f () e si() Aleraiv s 8s Seer: g () si( ). De gir ih abell ( r.[] ): G(s) (s + ) (s + 9) Har a: f () e g().
DetaljerMot3.: Støy i forsterkere med tilbakekobling
Mo3.: Søy i forserkere med ilbakekoblig Hiil har vi diskuer forserkere ue ilbakekoblig ("ope-loop"). Nå vil vi diskuere virkige av ilbakekoblig. Geerel beyes ilbakekoblig for å... edre forserkig, edre
DetaljerMer om utvalgsundersøkelser
Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse
DetaljerAlgebra R2, Prøve 1 løsning
Algebra R, Prøve løsig Del Tid: 70 mi Hjelpemidler: Skrivesaker Oppgave E rekke er gi ved a og a Du skal ) udersøke hva slags rekke de er Vi fier de førse leddee: a a a a, 6, 3 0, 4 4 3 4 De ser u som
DetaljerMatematikk for IT. Oblig 7 løsningsforslag. 16. oktober
Matematikk for IT Oblig 7 løsigsforslag. oktober 7..8 a) Vi skal dae kodeord som består av sifree,,,, 7. odeordet er gldig dersom det ieholder et like atall (partall) -ere. Dee løses på samme måte som..:
DetaljerOM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z
OM TAYLOR POLYNOMER I dette otatet, som utfyller avsitt 6. i Gullikses bok, skal vi se på Taylor polyomer og illustrere hvorfor disse er yttige. Det å berege Taylor polyomer for håd er i prisippet ikke
DetaljerLøsningsforslag til prøveeksamen i MAT1110, våren 2012
Løsigsforslag til prøveeksame i MAT, våre Oppgave : Vi har A = 3 III+I I+II 3 ( )II 3 3 Legg merke til at A er de utvidede matrise til ligigssystemet. Vi ser at søyle 3 og 4 i de reduserte trappeforme
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØ-ØNDELAG Avdelig for ekologi Eksamesdao: irsdag.1.1 arighe/eksamesid: 9-14 Emekode: Emeav: Klasse(r): ED33 Isrumeerigsekikk 3EA Sudiepoeg: 1 Faglærer(e): (av og elefor på eksamesdage) Dag
DetaljerEKSAMEN Løsningsforslag
..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:
DetaljerTMA4245 Statistikk Eksamen mai 2017
TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee
DetaljerKapittel 10 fra læreboka Grafer
Forelesigsotat i Diskret matematikk torsdag 6. oktober 017 Kapittel 10 fra læreboka Grafer (utdrag) E graf er e samlig pukter (oder) og kater mellom puktee (eg. odes, vertex, edge). E graf kalles rettet
DetaljerAvsnitt 8.1 i læreboka Differensligninger
Diskret Matematikk Fredag 6. ovember 015 Avsitt 8.1 i læreboka Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker
DetaljerUkeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1
Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: STK2100 Løsigsforslag Eksamesdag: Torsdag 14. jui 2018. Tid for eksame: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte
DetaljerFØLGER, REKKER OG GJENNOMSNITT
FØLGER, REKKER OG GJENNOMSNITT Espe B. Lagelad realfagshjoret.wordpress.com espebl@hotmail.com 9.mars 06 Iledig E tallfølge er e serie med tall som kommer etter hveradre i e bestemt rekkefølge. Kvadrattallee
DetaljerDifferensligninger Forelesningsnotat i Diskret matematikk Differensligninger
Differesligiger Forelesigsotat i Diskret matematikk 017 Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker er imidlertid
Detaljert [0, t ]. Den er i bevegelse langs en bane. Med origo menes her nullpunktet
FAO 9 Forberedelse il skoleprøve Del Prakisk bruk av inegral Oppgave parikkelfar Hasigheen il en parikkel ved iden er gi ved v () = i m/min. Tiden er ( + ) + regne i min, for angivelse av posisjon. [,
DetaljerEksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)
Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy
DetaljerInnhold og forelesningsplan Eksempler på LP Begreper Løsning av enkelt eksempel Praktisk relevans Leksjon 2: Simpleksmetoden for løsning av LP
Lekso 2 Mål for kurset teoretisk forståelse, gruleggede optimerig løsigsmetoder LP og utvidelser algoritmisk forståelse avedelser LP og utvidelser modellerig og løsig v.h.a. verktøy Ihold og forelesigspla
Detaljer8 + 2 n n 4. 3n 4 7 = 8 3.
Seksjo 4. Oppgave (). Fi greseverdiee: 8 a) 4 + 4 7 b) 4 +7 5 c) + 7 4 ( ) d) 5 4 44 + 5 4 e) 5 + si() e +6 5 Løsig. Vi vil bruke samme metode som i Eksempel 4..5 fra boke i disse oppgavee. Når vi skal
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable
ÅMA Saslighetsregig med statistikk, våre K. 3 Diskrete tilfeldige variable Noe viktige saslighetsmodeller Noe viktige saslighetsmodeller ( Sas.modell : å betr det klasse/te sas.fordelig.) Biomisk modell
DetaljerMatematikk for IT. Løsningsforslag til prøve 2. Torsdag 24. oktober 2013
.. Matematikk for IT Løsigsforslag til prøve Torsdag. oktober Oppgave Gitt følgede predikat: P(x : x > 5 ta at uiverset ( de mulige verdier av x som vi tar i betraktig er alle hele tall, Z. Skriv hvert
DetaljerUNIVERSITETET I OSLO
ide UNIVRI I OO De maemai-aurvieapelige faule ame i: amedag: id for eame: Oppgaveee er på 4 ider Vedlegg: illae jelpemidler: MK454 Kompoimaerialer og -orujoer ordag 8-- 9 Formelar ( ide) Roma formelamlig
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN SØ-ØNDELAG Avdeig for ekoogi Kadidar: Eksamesdao: Fredag 9.1.11 Varighe/eksamesid: 9-14 Emekode: Emeav: Kasse(r): ED33 srumeerigsekikk 3EA Sudiepoeg: 1 Fagærer(e): Dag Aue (73559583) Koakperso(adm.)(fyes
DetaljerPåliteligheten til en stikkprøve
Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee
DetaljerE K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400
UNIVERSITETET I AGDER Grimstad E K S A M E N : FAG: Matematikk MA-54 LÆRER: MORTEN BREKKE Klasse(r): Alle Dato:. des Eksamestid, fra-til: 0900-400 Eksamesoppgave består av følgede iklusive forside Atall
DetaljerYF kapittel 3 Formler Løsninger til oppgavene i læreboka
YF kapiel 3 Formler Løsninger il oppgavene i læreoka Oppgave 301 a E 0,15 l 0,15 50 375 Den årlige energiproduksjonen er 375 kwh. E 0,15 l 0,15 70 735 Den årlige energiproduksjonen er 735 kwh. Oppgave
DetaljerTotalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21%
TMA4100 Høste 2007 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Kommetarer til eksame Dette dokumetet er e oppsummerig av erfarigee fra sesure av eksame i TMA4100 Matematikk
DetaljerARBEIDSHEFTE I MATEMATIKK
ARBEIDSHEFTE I MATEMATIKK Temahefte r Hvorda du reger med poteser Detaljerte forklariger Av Matthias Loretze mattegriseforlag.com Opplsig: E potes er e forkortet skrivemåte for like faktorer. E potes består
DetaljerUtvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008
Utvidet løsigsforslag Eksame i TMA4 Matematikk, 6/ 8 Oppgave i) Vi gjør substitusjoe u = si θ og får π/ [ u si θ cos θ dθ = u du = E ae løsigsmetode er π/ si θ cos θ dθ = π/ ] si θ dθ = 4 = 4 ( ( ) ( ))
Detaljer2.1 Polynomdivisjon. Oppgave 2.10
. Polyomdivisjo Oppgave. ( 5 + ) : = + + ( + ):( ) 6 + 6 8 8 = + + c) ( + 5 ) : = + 6 6 d) + + + = + + = + + + 8+ ( ):( ) + + + Oppgave. ( + 5+ ):( ) 5 + + = + ( 5 ): 9 + + + = + + + 5 + 6 9 c) ( 8 66
DetaljerObligatorisk oppgave nr. 3 i Diskret matematikk
3. obligatoriske oppgave i Diskret matematikk høste 08. Obligatorisk oppgave r. 3 i Diskret matematikk Ileverigsfrist. ovember 08 Oppgave er frivillig og tregs ikke leveres, me hvis dere leverer de ie
Detaljerf '( x) 28x 6x 2 ( 2) x x 4(3t 2 s) 6s 2x 6(3t 2 s) 2t ln x 2ln y med bibetingelsen 2x y m. Her er m 0
Fsit obligtorisk oppgve Oppgve (9 poeg) Deriver følgede fuksjoer med hes på lle rgumeter ) f ( ) 7 f '( ) 8 6 svr: b) Svr: g ( ) ( ) ( ) g ( ) ( ) ( ) c) h( ) f ( )( ) Svr: h( ) f '( )( ) f ( ) d) Svr:
DetaljerLøsning eksamen R1 våren 2010
Løsig eksame R våre 00 Oppgave a) ) f ( ) l f ( ) ' l l l l f ( ) (l ) ) g( ) 4e g( ) 4 e ( ) 4 e ( ) g( ) 4( ) e b) ( ) 4 4 6 P ) P() 4 4 6 8 6 8 6 0 Divisjo med ( ) går opp. 4 4 6 : ( ) 8 4 4 8 6 8 6
DetaljerEcon 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering
Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor
DetaljerH 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2
TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4
Detaljer1. Egenverdiproblemet.
Forelesigsotater i matematikk Egeerdier og egeektorer Side Egeerdiproblemet De gruleggede problemstillige Fra de gruleggede matriseregige husker du sikkert at år e ektor multipliseres med e kadratisk matrise
DetaljerEksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:
DetaljerFotball krysser grenser (konfirmanter Ålgård og Gjesdal)
1 Fotball krysser greser (kofirmater Ålgård og Gjesdal) Øsker du e ide til et praktisk rettet prosjekt/aksjo der kofirmater ka bidra til de fattige dele av verde? Her har du et ferdig opplegg for hvorda
DetaljerEksamen INF3350/INF4350 H2006 Løsningsforslag
Eksame INF3350/INF4350 H2006 Løsigsforslag Oppgave. Score (eller bit score) S' er e statistisk idikator på hvor sigifikat e match er. Høyere bit score svarer til høyere sigifikas. Idikatore er uavhegig
DetaljerSensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave våren 2012
Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT ECON 3 Obligaorisk øvelsesoppgave våren 22 Ved sensuren illegges alle oppgavene lik vek For å få godkjen besvarelsen må den i hver fall: gi mins
DetaljerIntroduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians
Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i
DetaljerECON240 Statistikk og økonometri
ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi
DetaljerFagdag 2-3mx 24.09.07
Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.
DetaljerEstimering 1 -Punktestimering
Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer
DetaljerLØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03).
LØSNING, EKSAMEN I STATISTIKK, TMA440, DESEMBER 006 OPPGAVE 1 Ata at sa porøsitet er r. Målig med utstyret gir da X (x; r, 0,03). a) ( ) X r P(X > r) P 0,03 > 0 P(Z > 0) 0,5. ( X r P(X r > 0,05) P 0,03
DetaljerEstimering 1 -Punktestimering
Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer
DetaljerObligatorisk oppgave ECON 1310 høsten 2014
Obligaorisk oppgave EON 30 høsen 204 Ved sensuren vil oppgave elle 20 prosen, oppgave 2 elle 50 prosen, og oppgave 3 elle 30 prosen. For å få godkjen må besvarelsen i hver fall: gi mins re nesen rikige
DetaljerMAT1030 Forelesning 26
MAT030 Forelesning 26 Trær Roger Anonsen - 5. mai 2009 (Sis oppdaer: 2009-05-06 22:27) Forelesning 26 Li repeisjon Prims algorime finne de minse uspennende ree i en veke graf en grådig algorime i den forsand
DetaljerHøgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008
Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:
DetaljerForelesning 26. MAT1030 Diskret Matematikk. Trær med rot. Litt repetisjon. Definisjon. Forelesning 26: Trær. Roger Antonsen
MAT1030 Diskre Maemaikk Forelesning 26: Trær Roger Anonsen Insiu for informaikk, Universiee i Oslo Forelesning 26 5. mai 2009 (Sis oppdaer: 2009-05-06 22:27) MAT1030 Diskre Maemaikk 5. mai 2009 2 Li repeisjon
DetaljerMA1102 Grunnkurs i analyse II Vår 2019
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA0 Grukurs i aalyse II Vår 09 9 Vi har rekke Dette er e geometrisk rekke som beskrevet på side 50 i læreboka, med x (side ) Spesielt
DetaljerS2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen
Utvlgte løsiger oppgvesmlige S kpittel Rekker Utvlgte løsiger oppgvesmlige 0 Vi k prøve med differsemetode Differsee mellom leddee utover er 4,6,8, så det er rimelig t differse mellom femte og fjerde ledd
DetaljerSTK1100: Kombinatorikk
1100: ombiatorikk auar 2009 Ørulf orga Matematisk istitutt Uiversitetet i Oslo 1 Uiform sasylighetsmodell: t stokastisk forsøk har N utfall Det er de mulige utfallee for forsøket i atar at de N utfallee
DetaljerLøsningsforslag Oppgave 1
Løsigsforslag Oppgave 1 a X i µ 0 σ X i µ 0 2 σ 2, i 1,..., er uavhegige og stadard N0, 1 fordelte. Da er, i 1,..., uavhegige og χ 2 -fordelte med e frihetsgrad. Da er summe χ 2 -fordelt med atall frihetsgrader
Detaljer) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013
TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >
DetaljerStatistikk og økonomi, våren 2017
Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet
DetaljerTMA4100 Høst Løsningsforslag Øving 2. Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag
TMA400 Høst 206 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig 2 2..0: Vi bruker eisjoe for ikke-vertikale tagetlijer sie 97 i læreboke). Tagetlije gjeom et pukt
DetaljerSystem 2000 HLK-Relais-Einsatz Bruksanvisning
Sysem 2000 HLK-Relais-Einsaz Sysem 2000 HLK-Relais-Einsaz Ar. Nr.: 0303 00 Innholdsforegnelse 1. rmasjon om farer 2 2. Funksjonsprinsipp 2 3. onasje 3 4. Elekrisk ilkopling 3 4.1 Korsluningsvern 3 4.2
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSOLEN I SØ-ØNDELAG Avdelig for ekologi Målform: Bokmål Eksamesdao: 4.1.13 Varighe/eksamesid: 9-14 Emekode: Emeav: lasse(r): ED33 Isrumeerigsekikk ELA11H Sudiepoeg: 1 Faglærer(e): (av og elefor på eksamesdage)
DetaljerOppgave 1 ECON 2130 EKSAMEN 2011 VÅR
ECON 30 EKSAMEN 0 VÅR Oppgave E bedrf øsker å fordele koraker e vesergsprosjek hel lfeldg på 3 frmaer, A, B og C. Uvelgelse skjer ved loddrekg. Loddrekge er slk a hver av frmaee A, B og C, har e mulghe
Detaljerav Erik Bédos, Matematisk Institutt, UiO, 25. mai 2007.
Om den diskree Fourier ransformen av Erik Bédos, Maemaisk Insiu, UiO,. mai 7. Vi lar H beegne indreproduk romme som besår av alle koninuerlige komplekse funksjoner definer på inervalle [, π] med indreproduke
DetaljerLøsning TALM1005 (statistikkdel) juni 2017
Løsig TALM1005 statistikkdel jui 2017 Oppgave 1 a Har oppgitt at sasyligte for at é harddisk svikter er p = 0, 037. Ifører hedelsee A : harddisk 1 svikter B : harddisk 2 svikter C : harddisk 3 svikter
DetaljerEksamen REA3028 S2, Våren 2011
Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l
DetaljerKOMPLEKSE TALL KARL K. BRUSTAD
KOMPLEKSE TALL KARL K BRUSTAD 1 Defiisjoer og otasjo Defiisjo 1 Et kompleks tall er et objekt på forme x + i der x og er reelle tall og kalles heholdsvis realdele og imagiærdele til det komplekse tallet
DetaljerHøst 98 Ordinær eksamen
ø 98 Ordiær ekae. Vi eker o a e parikkel beeger eg lag e re lije lag -ake. Parikkele arer i ro i origo ed ide =. ekuder. Parikkele haighe o ukjo a ide er gi ed: A B hor A. B. a Bereg parikkele akelerajo
DetaljerPlan for fagdag 3. Plan: Litt om differanse- og summefølger. Sammenhengen a n a 1 n 1 i 1
Pla for fagdag 3 R2-18.11.10 Pla: Litt om differase- og summefølger. Sammehege a a 1 1 i 1 d i. Geometriske resoemet. Arbeidsoppgaver. Differase- og summefølger Regresjo med lommereger Differaser er ofte
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel
DetaljerIN3030 Uke 12, v2019. Eric Jul PSE, Inst. for informatikk
IN3030 Uke 12, v2019 Eric Jul PSE, Ist. for iformatikk 1 Hva skal vi se på i Uke 12 Review Radix sort Oblig 4 Text Program Parallellizig 2 Oblig 4 Radix sort Parallelliser Radix-sorterig med fra 1 5 sifre
DetaljerEksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksame 21.05.2013 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast i etter 2 timar. Del 2 skal leverast
DetaljerForelesning 25. Trær. Dag Normann april Beskjeder. Oppsummering. Oppsummering
Forelesning 25 Trær Dag Normann - 23. april 2008 Beskjeder Roger har bed meg gi følgende beskjeder: 1 De mese av plenumsregningen i morgen, 24/4, blir avleregning, slik a sudenene ikke kan belage seg på
DetaljerFaglærer går normalt én runde gjennom lokalet. Ha evt. spørsmål klare!
Side 1 av 7 Noe viktige pukter: (i) (ii) (iii) (iv) Les hele eksamessettet øye før du begyer! Faglærer går ormalt é rude gjeom lokalet. Ha evt. spørsmål klare! Skriv svaree die i svarrutee og levér i oppgavearket.
DetaljerForelesning nr.9 INF 1410
Forelesning nr.9 INF 141 29 espons il generelle C- og -kreser 3.3.29 INF 141 1 Oversik dagens emaer Naurlig espons respons il generelle C- og -kreser på uni-sep funksjonen Naurlig og vungen respons for
DetaljerTMA4240 Statistikk Høst 2016
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 8 Løsigsskisse Oppgave 1 a) Simuler 1000 datasett i MATLAB. Hvert datasett skal bestå av 100 utfall fra e ormalfordelig
DetaljerGenerell støymodell for forsterkere (Mot Kap.2)
Geerell øymdell fr frerkere (M Kap.) år e frear øyaalyer av re yemer vl de være uprakk å aalyere med dealjere øymdeller fr alle mulge øyklder. velger ede å bruke freklede mdeller m repreeerer flere mulge
DetaljerLøsningsforslag: Deloppgave om heuristiske søkemetoder
Løsigsforslag: Deloppgave om heuristiske søkemetoder 6. mai 00 Iledig Vi skal betrakte det såkalte grafdeligsproblemet (graph partitioig problem). Problemet ka ekelt formuleres som følger: Gitt e graf
DetaljerSignifikante sifre = alle sikre pluss ett siffer til
Sigifikate siffer og stadardavvik behadles i kap. Disse to emee skal vi ta for oss i dag. Kofidesgreser behadles i kap 4. Dette skal vi ta for oss i osdag. Presetasjo av aalysedata ka gjøres på følgede
DetaljerLØSNING: Eksamen 28. mai 2015
LØSNING: Eksame 28. mai 2015 MAT110 Statistikk 1, vår 2015 Oppgave 1: revisjo ) a) Situasjoe som beskrives i oppgave ka modelleres med e ure. I dee ure er fordelige kjet, M atall bilag med feil og N 100
DetaljerLandrapport fra Norge NBO:s styremöte 18. november 2014
Ladrappor fra Norge NBO:s syremöe 18. ovember 2014 Nyckelal för Norge ovember 2014. Folkmägd 5 138 000 Förväad BNP-uvecklig 2,2 % Iflaiosak 2,5 % Arbeslöshe 3,4 % Syrräa 1,5 % Bolåeskuld i förhållade ill
DetaljerEksamen R2, Høsten 2010
Eksame R, Høste 00 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (6 poeg) a) Deriver fuksjoee ) f l f ( ) l l (l ) ) g( ) si cos f si
DetaljerLøsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan
Løsigsforslag for adre obligatoriske oppgave i STK11 Våre 27 Av Igu Fride Tvete (ift@math..uio.o) og Ørulf Borga (borga@math.uio.o). NB! Feil ka forekomme. NB! Sed gjere e mail hvis du fier e feil! Oppgave
DetaljerBeskjeder. MAT1030 Diskret matematikk. Oppsummering. Oppsummering
Beskjeder MAT1030 Diskre maemaikk Forelesning 25: Trær Dag Normann Maemaisk Insiu, Universiee i Oslo 23. april 2008 Roger har bed meg gi følgende beskjeder: 1 De mese av plenumsregningen i morgen, 24/4,
DetaljerTMA4100 Matematikk 1 Høst 2014
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag TMA400 Matematikk Høst 04 Løsigsforslag Øvig 3 Review Exercises, side 454 Vi starter med å tege e figur av e skål med va: z A(z)
DetaljerEksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke
Oversikt, del 5 Hypotesetestig, del 4 (oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler (styrke, dimesjoerig,...
DetaljerKonfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.
Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege
Detaljer1. Premonitions - Foresight (ex-rmgdn Pause)
SVÆRT RUBATO - MYE VISUELLE TEGN: Dee låta har svært lite tydelig tempo Derfor må vi fokusere på å gjøre mye visuelle teg til hveradre I tillegg til visuelle teg (mest av alt felles asatser på lage toer
DetaljerMA1102 Grunnkurs i analyse II Vår 2014
Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag MA Grukurs i aalyse II Vår 4 Løsigsforslag Øvig..4 f ) Skriver om, og får Reger ut ved L'Hopitals regel at cos/) cos/)) = /. cos/)
DetaljerKommentarer til oppgaver;
Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i STK2120 Statistiske metoder og dataaalyse 2 Eksamesdag: Madag 6. jui 2011. Tid for eksame: 09.00 13.00. Oppgavesettet er på 5 sider.
DetaljerEKSAMENSOPPGAVE. Antall sider inkl. forside: 4
Avdelig for igeiørudig Fg: ITUETELL AALYE Grupper: 3KA Esesoppgve esår v Tille hjelpeidler: EKAEOPPGAE All sider il. forside: 4 Fgr: O 458 K Do: 4.0.0 All oppgver: 5 Fglig veileder: Per Ol øig Esesid,
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i MAT00 Matematikk I Eksamesdag: Fredag 4 jui 00 Tid for eksame: 0900 00 Oppgavesettet er på sider Vedlegg: Tillatte hjelpemidler:
DetaljerOblig 2 - MAT1120. Fredrik Meyer 26. oktober 2009 = A = P1 1 A 1 P 1 A 1 A 2 = P 1. A k+1. A k P k
Oblig 2 - MAT20 Fredri Meyer 26 otober 2009 Matrisee A i er defiert sli der P er e rotasjosmatrise som defierer i oppgave 2: A A 2 A + = A = P A P = P A P Oppgave Matrisee A i+ og A i er similære det fies
DetaljerOppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?
ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt
DetaljerRente og pengepolitikk. 8. forelesning ECON 1310 21. september 2015
Rete og pegepolitikk 8. forelesig ECON 1310 21. september 2015 1 Norge: lav og stabil iflasjo det operative målet for pegepolitikke, ær 2,5 proset i årlig rate. Iflasjosmålet er fleksibelt, dvs. at setralbake
DetaljerØving 1: Bevegelse. Vektorer. Enheter.
Lørdagsverksed i fysikk. Insiu for fysikk, NTNU. Høsen 007. Veiledning: 8. sepember kl :5 5:00. Øving : evegelse. Vekorer. Enheer. Oppgave a) Per løper 800 m på minuer og 40 sekunder. Hvor sor gjennomsnisfar
DetaljerForelesning Moment og Momentgenererende funksjoner
ushu.li@uib.o Forelesig + 3 Momet og Mometgeererede fuksjoer 1. Oppsummerig til Forelesig 1 1.1) Fuksjoe av S.V: hvis variabele er e fuksjo (trasformasjo) av S.V. : g( ), da er også e S.V.: til ethvert
DetaljerDer oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.
Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:
Detaljer