UNIVERSITETET I OSLO
|
|
- Adrian Ellefsen
- 6 år siden
- Visninger:
Transkript
1 UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: STK2100 Løsigsforslag Eksamesdag: Torsdag 14. jui Tid for eksame: Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: Oppgave 1 Ige Godkjet kalkulator og formelsamliger for STK1100/STK1110 og STK2100 Kotroller at oppgavesettet er komplett før du begyer å besvare spørsmålee. (a) I modeller med faktorer, sier regresjoskoeffisietee oe om ivået til de ulike kategoriee. Imidlertid, år også et kostatledd er med, blir det for mage parametre og vi må begrese/redusere disse til e dimesjo lavere. Dette ka gjøres på ulike måter, e er å sette de første lik ull, hvor de resterede koeffisietee måler avvik fra de første kategorie. (b) Vi har AIC = 2 log-lik + 2 p der p er atall parametre i modelle. Her er p = 17 som gir AIC= 2 ( 308.8) = Side flere av de estimerte koeffisietee har e tilhørede p-verdi som er gaske høy, tyder det på at vi bør ta bort oe variable. (c) Når vi gjør begresiger på modelle, vil vi ha et midre rom å optimere likelihoode på, oe som medfører lavere verdi. Her blir AIC= 2 ( 318.0) = Da dee verdie er oe midre e hva vi fikk tidligere, er de ye modelle å foretrekke. (d) For GAM har vi at ŷ = Sy og frihetsgrader blir da bereget ved trase(s). Vi får et høyere atall frihetsgrader her pga ikke-liearitet. Her blir da AIC= 2 ( 312.2) = Vi får da e forbedrig i forhold til tidligere modeller. Plottee viser ikke e veldig sterk ikke-liearitet, me gitt megde data blir de likevel sigifikat. (Fortsettes på side 2.)
2 Eksame i STK2100, Torsdag 14. jui Side 2 (e) Defiisjoee av regioee vil være kombiasjoer av logiske operatorer basert på ulike forklarigsvariable. Dermed kommer iteraksjoer i. Vi har at hver Y i er biomisk fordelt med ett forsøk. Sasylighetee for å få 1 ka variere fra observasjo til observasjo. Dette er da markert ved å ha e ideks i på p i. Ved å i tillegg ata uavhegighet mellom resposee, får vi da produktet av ledd av type p y i i (1 p i) 1 y i. Side vi for klassifikasjostrær atar at sasylighetee er like iefor hver regio, blir da p i = c m for x i R m. (f) Det er ikke helt opplagt hvorda e skal telle atall parametre i dette tilfellet. Vi har 13 edeoder som gir 13 c m parametre. I mage situasjoer bruker e dette som atall parametre. I tillegg har vi imidlertid 12 oppsplittiger. Hver oppsplittig har to parametre, e som spesifiserer hvilke variabel som skal splittes opp og e som spesifiserer hvilke verdi oppsplittige skal skje på. Totalt blir det dermed = 37 parametre. (E ka imidlertid argumetere for at Sex ikke har oe ekstra spesifiserig av hvor oppsplittig skal skje slik at e evetuelt også kue bruke 36 parametre. Merk at for adre faktorer med mer e 2 ivåer må e bestemme et ivå gjeom hvorda oppsplittig skjer.) Dette gir e AIC verdi på AIC = 2 ( 279.5) = dvs oe bedre e vi fikk med de tidligere modeller. (g) Trær gir ofte overtilpasig. E mulighet er å stoppe oppsplittig tidligere, me da ka e miste iteraksjoer som kommer seere. Det er derfor valig å først lage et stort tre og så beskjære dette for å miske variase. I prisippet blir frihetsgrader her eda vaskeligere å berege side vi i prisippet bør ta hesy til hele prosesse for å geerere det beskjærte treet. Hvis vi imidlertid ku forholder oss til størrelse på det edelige tre, får vi 9+2*8=25 frihetsgrader. Da blir AIC = 2 ( ) = som gir e ytterligere reduksjo i forhold til tidligere verdier. Kombiert med at vi å får et oe eklere tre å forholde oss til er derfor dette treet å foretrekke. (h) For å få et realistisk mål på hvorda e metode fugerer, må det evalueres på data som ikke er blitt brukt til treig. E mulighet (Fortsettes på side 3.)
3 Eksame i STK2100, Torsdag 14. jui Side 3 er å dele opp i et treigssett og et testsett, me da vil vi få et midre treigssett å estimere modelle med. Kryss-validerig utytter data bedre ved å sirkulere testsettet. E øsker ofte å måle metoder ved å se på hvorda det oppfører seg på ye datasett. Slike ye datasett er imidlertid ikke alltid tilgjegelig AIC (som ku bruker treigsdatasettet) vil ikke alltid gi et realistisk mål på hvor god e modell/metode er (baserer seg mye på modellatagelser). Et bedre mål ka være prediksjosfeil på ye data. Hvis vi imidlertid ikke har for mye data, vil vi tape edel estimerigsstyrke ved å ta bort e del av dataee til test. Kryss-validerig har si styrke i at det er e metode som både oppår et stort testsett (faktisk hele datasettet) og samtidig får et treigssett som er gaske stort (e adel (K 1)/K der K er atall grupper). E ekstra fordel med CV er at det ka parallelliseres slik at beregigstid ikke ødvedigvis blir alt for stor. Baggig og Radom Forest: Begge tar utgagspukt i at trær ka ha stor variasjo (egetlig e hvilke som helst metode med stor varias) og robustifiserer dette ved å istedet kombiere mage prediktorer basert på ulike datasett. De ulike datasett blir kostruert ved bootstrappig. Baggig og Radom Forest skiller seg ved at Baggig beytter alle forklarigsvariable ved hvert splitt mes Radom Forest gjør begresiger i settet av variable for å oppå midre korrelasjo mellom de ulike trær (prediktorer) som blir laget. Nevrale ett er gitt ved z im =h(α T mx i ), m = 1,..., M (1) T i =β 0 + β T z i (2) y i =g(t i ) + ε i (3) der både h( ) ad g( ) er mulige ikke-lieære fuktioer. Figur 1 illustrerer modelle. z-ee ka oppfattes som latete variable. Dype ett oppås ved å ha flere lag med latete variable. (i) Resultatee ka tyde på at iteraksjoer likevel ikke er så viktige i dee situasjoe (alle de beste modellee er av GAM type). Videre ka det se ut som ikke-lieæriteter er viktig, me at variabelseleksjoe mhp GAM ikke fugerer så godt. E mulig metode for å evaluere feilrate er å bruk de verdi ma har fått på de valge metode. Merk imidlertid at selv om hver av feilratee ka være forvetigsrette iefor hver metode, så vil vi å bruke miimum av 10 variable. Et slikt miimum vil ikke leger være forvetigsrett, og vil typisk være oe for optimistisk. Ideelt sett burde vi hatt et ekstra test-sett å vurdere de edelige modell på. (Fortsettes på side 4.)
4 Eksame i STK2100, Torsdag 14. jui Side 4 y z 1 z 2 z 3 z M 1 z M x 1 x 2 x 3 x p 1 x p Figure 1: Visualisatio of eural etwork with oe hidde layer. For det spesifikke problemet vil imidlertid prediksjo på ye data ikke være så aktuelt, ma er mer iteressert i å lære sammeheger. Sett fra dette perspektivet er det bra at e rimelig ekel model blir valgt, dog kaskje litt egativt at ikke oe av variablee blir valgt bort. Oppgave 2 (a) Vi har at der Y i =β 0 + β 1 x i1 + β 2 x i2 + ε i =β 0 + β 1 x 1 + β 2 x 2 + β 1 (x i1 x 1 ) + β 2 (x i2 x 2 ) + ε i = β 0 + β 1 x i1 + β 2 x i2 + ε i β 0 =β 0 + β 1 x 1 + β 2 x 2 x i1 =x i1 x 1 x i2 =x i2 x 2 β 0 agir å forvetet ivå år begge forklarigsvariable har verdier lik gjeomsittsverdiee av de observerte x-er. (b) Hvis forklarigsvariablee har veldig ulike skalaer, ka det være hesiktsmessig å legge ulike straffeledd på disse. Et alterativ kue være å skalere x-ee på forhåd. Ikke opplagt hva som er best. Side det er e e-til-e korrespodase mellom (β 0, β 1, β 2 ) og ( β 0, β 1, β 2 ) med β 0 = β 0 + β 1 x 1 + β 2 x 2 og vi har at (Fortsettes på side 5.) h(β 0, β 1, β 2 ) = h(β 0 + β 1 x 1 + β 2 x 2, β 1, β 2 ),
5 Eksame i STK2100, Torsdag 14. jui Side 5 vil de to miimerigsproblemee være ekvivalete. Vi har at β 0 h( β0, β 1, β 2 ) = 2 = 2 (y i β 0 β 1 x i1 β 2 x i2 ) (y i β 0 ) som hvis vi setter lik ull gir optimal verdi ˆ β0 = ȳ. (c) Vi har at β 1 h( β0, β 1, β 2 ) = 2 β 2 h( β0, β 1, β 2 ) = 2 (y i β 0 β 1 x i1 β 2 x i2 ) x i1 (y i β 0 β 1 x i1 β 2 x i2 ) x i2 som hvis vi setter lik ull gir likigssystemet β 1 [ β 1 x 2 i1 + λ 1 ] + β 2 x i2 x i1 = x i2 x i1 + β 2 [ x 2 i2 + λ 2 ] = y i x i1 y i x i2 Hvis i (x i1 x 1 )(x i2 x 2 ) = i x i1 x i2 = 0, forekler likigssystemet seg til β 1 [ β 2 [ x 2 i1 + λ 1 ] = x 2 i2 + λ 2 ] = som gir løsige (y i ȳ) x i1 (y i ȳ) x i2 ˆβ 1 = ˆβ 2 = y i x i1 x2 i1 + λ 1 y i x i2 x2 i2 + λ 2 Vi får da side β 0 = β 0 β 1 x 1 β 2 x 2 at ˆβ 0 = ȳ y i x i1 x2 i1 + λ x 1 y i x i2 1 x2 i2 + λ x 2 2 (Fortsettes på side 6.)
6 Eksame i STK2100, Torsdag 14. jui Side 6 (d) De første metode svarer til miste kvadraters metode. De adre svarer til valig Ridge regresjo. Det ser ut som det er viktigst å straffe β 1 (svarede til de mist sigifikate variabel), og valig Ridge ser da ut til å legge mest vekt på dee variabele. Valg av λ blir derfor mest påvirket av hvor mye vi treger å straffe β 1, og g dermed at λ 1 λ (faktisk lik i dette tilfellet). Hvis vi skulle bruke dee metode på mage forklarigsvariable for vi iallefall to problemer: Et umerisk problem ved at vi må miimere med hesy på mage λ j er. Et statistisk problem ved at vi ka lett få overtilpasig år vi å ifører mege ye tuigparametre i metode.
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i STK2120 Statistiske metoder og dataaalyse 2 Eksamesdag: Madag 6. jui 2011. Tid for eksame: 09.00 13.00. Oppgavesettet er på 5 sider.
DetaljerECON240 Statistikk og økonometri
ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi
DetaljerUNIVERSITETET I OSLO
UIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: ST 105 - Iførig i pålitelighetsaalyse Eksamesdag: 8. desember 1992 Tid til eksame: 0900-1500 Tillatte hjelpemidler: Rottma: "Matematische
DetaljerTMA4245 Statistikk Eksamen mai 2017
TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee
DetaljerLøsningsforslag til eksamen i STK desember 2010
Løsigsforslag til eksame i STK0 0. desember 200 Løsigsforslaget har med flere detaljer e det vil bli krevd til eksame. Oppgave a Det er tilpasset e multippel lieær regresjosmodell av forme β 0 + β x i
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
1 ECON130: EKSAMEN 013 VÅR - UTSATT PRØVE TALLSVAR. Det abefales at de 9 deloppgavee merket med A, B, teller likt uasett variasjo i vaskelighetsgrad. Svaree er gitt i
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: STK11 Sasylighetsregig og statistisk modellerig. LØSNINGSFORSLAG Eksamesdag: Fredag 9. jui 217. Tid for eksame: 9. 13.. Oppgavesettet
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2 Maskinlæring og statistiske metoder for prediksjon og klassifikasjon Eksamensdag: Torsdag 4. juni 28. Tid for eksamen: 4.3
DetaljerEKSAMEN. Oppgavesettet består av 5 oppgaver, hvor vekten til hver oppgave er angitt i prosent i oppgaveteksten. Alle oppgavene skal besvares.
EKSAMEN Emekode: SFB12003 Eme: Metodekurs II: Samfusviteskapelig metode og avedt statistikk Dato: 2.6.2014 Eksamestid: kl. 09.00 til kl. 13.00 Hjelpemidler: Kalkulator Faglærer: Bjørar Karlse Kivedal Eksamesoppgave:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2100 - FASIT Eksamensdag: Torsdag 15. juni 2017. Tid for eksamen: 09.00 13.00. Oppgavesettet er på 5 sider. Vedlegg: Tillatte
Detaljer211.7% 2.2% 53.0% 160.5% 30.8% 46.8% 17.2% 11.3% 38.7% 0.8%
Prøve-eksame II MET 1190 Statistikk Dato 31. mai 2019 kl 1100-1400 Alle svar skal begrues. Når besvarelse evalueres, blir det lagt vekt på at framgagsmåte og resultat preseteres så klart, presist og kortfattet
DetaljerX = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 11, blokk II Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som
DetaljerTMA4240 Statistikk Høst 2009
TMA440 Statistikk Høst 009 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave Øsker å fie 99% kofidesitervall for µ µ år vi atar ormalfordeliger
DetaljerIntroduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians
Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i
DetaljerOppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE =
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 2, blokk II Løsigsskisse Oppgave a Miste kvadraters metode tilpasser e lije til puktee ved å velge de lija som
DetaljerOppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?
ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel
DetaljerLøsningsforslag Oppgave 1
Løsigsforslag Oppgave 1 a X i µ 0 σ X i µ 0 2 σ 2, i 1,..., er uavhegige og stadard N0, 1 fordelte. Da er, i 1,..., uavhegige og χ 2 -fordelte med e frihetsgrad. Da er summe χ 2 -fordelt med atall frihetsgrader
DetaljerTMA4240 Statistikk Høst 2015
TMA4240 Statistikk Høst 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II I dee siste øvige fokuserer vi på lieær regresjo, der vi har kjete kovariater
DetaljerEcon 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering
Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor
DetaljerH 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2
TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4
DetaljerLøsning TALM1005 (statistikkdel) juni 2017
Løsig TALM1005 statistikkdel jui 2017 Oppgave 1 a Har oppgitt at sasyligte for at é harddisk svikter er p = 0, 037. Ifører hedelsee A : harddisk 1 svikter B : harddisk 2 svikter C : harddisk 3 svikter
DetaljerLøsningsforslag ST2301 øving 3
Løsigsforslag ST2301 øvig 3 Kapittel 1 Exercise 11 Et utvalg på 100 idivider trekkes fra e populasjo med tilfeldig parrig. Det ble observert AA 63 idivider av geotype AA, Aa 27, og aa 10. Lag et 95 % kofidesitervall
DetaljerLØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette
DetaljerTMA4245 Statistikk Eksamen 9. desember 2013
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 9. desember 2013 Oppgave 1 I kortspillet Blackjack får ma de høyeste geviste hvis de to første kortee ma
DetaljerTMA4245 Statistikk Vår 2015
TMA4245 Statistikk Vår 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II Oppgave 1 Kari har ylig kjøpt seg e y bil. Nå øsker hu å udersøke biles besiforbruk
DetaljerOppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1)
MOT30 Statistiske metoder, høste00 Løsiger til regeøvig r. 5 (s. ) Oppgaver fra boka: Oppgave 0.36 (0.0:8) Dekkslitasje X,..., X u.i.f. N(µ, σ ) og X,..., X u.i.f. N(µ, σ ) og alle variable er uavhegige.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i MAT00 Matematikk I Eksamesdag: Fredag 4 jui 00 Tid for eksame: 0900 00 Oppgavesettet er på sider Vedlegg: Tillatte hjelpemidler:
DetaljerOppgaver fra boka: X 2 X n 1
MOT30 Statistiske metoder, høste 00 Løsiger til regeøvig r 3 (s ) Oppgaver fra boka: 94 (99:7) X,, X uif N(µ, σ ) og X,, X uif N(µ, σ ) og alle variable er uavhegige Atar videre at σ = σ = σ og ukjet Kodesitervall
DetaljerMOT310 Statistiske metoder 1, høsten 2011
MOT310 Statistiske metoder 1, høste 2011 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 24. august, 2011 Bjør H. Auestad Itroduksjo og repetisjo 1 / 32 Repetisjo; 9.1,
DetaljerKapittel 8: Estimering
Kaittel 8: Estimerig Estimerig hadler kort sagt om hvorda å aslå verdie å arametre som,, og dersom disse er ukjete. like arametre sier oss oe om oulasjoe vi studerer (dvs om alle måliger av feomeet som
DetaljerOppgaven består av 9 delspørsmål, A,B,C,., som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<.. >>.
ECON 130 EKSAMEN 008 VÅR - UTSATT PRØVE SENSORVEILEDNING Oppgave består av 9 delspørsmål, A,B,C,., som abefales å veie like mye, Kommetarer og tallsvar er skrevet i mellom . Oppgave 1 Ved e spørreudersøkelse
DetaljerTMA4240 Statistikk Høst 2016
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 11 Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som vil være ormalfordelt
Detaljer5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44,
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 9, blokk II Løsigsskisse Oppgave a) Vi lar her Y være atall fugler som kolliderer med vidmølla i løpet av de gitte
Detaljer) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013
TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >
DetaljerStatistikk og økonomi, våren 2017
Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet
DetaljerRepetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10
Repetisjo; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10 og Geerell defiisjo av : Situasjo: Data x 1,...,x ;utfallav:x 1,...,X ; u.i.f. tilfeldige variable Ukjet parameter i fordelige til X i ee: θ Dersom L og U L
DetaljerKonfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.
Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege
DetaljerForkunnskaper i matematikk for fysikkstudenter. Derivasjon.
Defiisjo av derivert Vi har stor ytte av å vite hvor raskt e fuksjo vokser eller avtar Mer presist: Vi øsker å bestemme stigigstallet til tagete til fuksjosgrafe P Q Figure til vestre viser hvorda vi ka
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Eksame i: ECON130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: 6.05.017 Sesur kugøres: 16.06.017 Tid for eksame: kl. 14:30 17:30 Oppgavesettet er på 6 sider Tillatte helpemidler: Alle
DetaljerLøsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2018
Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2018 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe
DetaljerKort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram
2 Kort reetisjo fra kaittel 4 Betiget sasylighet og trediagram Eksemel: Fra e oulasjo av idrettsfolk trekkes e erso tilfeldig og testes for doig. De iteressate hedelsee er D=ersoe er doet, A=teste er ositiv.
DetaljerTMA4240 Statistikk Høst 2015
Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del
DetaljerTMA4240 Statistikk Eksamen desember 2015
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA20 Statistikk Eksame desember 205 Løsigsskisse Oppgave a) De kumulative fordeligsfuksjoe til X, F (x) P (X x): F (x) P (X x) x
DetaljerKLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon
Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi
DetaljerLØSNING: Eksamen 28. mai 2015
LØSNING: Eksame 28. mai 2015 MAT110 Statistikk 1, vår 2015 Oppgave 1: revisjo ) a) Situasjoe som beskrives i oppgave ka modelleres med e ure. I dee ure er fordelige kjet, M atall bilag med feil og N 100
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 5 jui 2015 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi
DetaljerST1201 Statistiske metoder
ST Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember Oppgave a) Dette er e ANOVA-tabell for k-utvalg med k 4 og j 6 for j,,3,4.
DetaljerEmnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard
EKSAMEN Emekode: SFB107111 Emeav: Metode 1, statistikk deleksame Dato: 7. mai 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Has Kristia Bekkevard
DetaljerIN3030 Uke 12, v2019. Eric Jul PSE, Inst. for informatikk
IN3030 Uke 12, v2019 Eric Jul PSE, Ist. for iformatikk 1 Hva skal vi se på i Uke 12 Review Radix sort Oblig 4 Text Program Parallellizig 2 Oblig 4 Radix sort Parallelliser Radix-sorterig med fra 1 5 sifre
DetaljerOppgave 1 Hardheten til en bestemt legering er undersøkt med åtte målinger og resultatene ble (i kg/mm 2 ) som i tabellen til høyre.
EKSAMEN I: ÅMA110 SANNSYNLIGHETSREGNING MED STATISTIKK VARIGHET: 4 TIMER DATO: 28. AUGUST 2010 BOKMÅL TILLATTE HJELPEMIDLER: KALKULATOR: HP30S, Casio FX82 eller TI-30 OPPGAVESETTET BESTÅR AV 3 OPPGAVER
Detaljern 2 +1) hvis n er et partall.
TMA445 Statistikk Vår 04 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Oppgave Mediae til et datasett, X, er de midterste verdie. Hvis vi har stokastiske
DetaljerTMA4240 Statistikk Høst 2016
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 2 Løsigsskisse Oppgave a Miste kvadraters metode tilpasser e lije til puktee ved å velge de lija som miimerer kvadratsumme
DetaljerEKSAMEN Løsningsforslag
..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59
DetaljerLineær regresjonsanalyse (13.4)
2 Kap. 13: Lieær korrelasjos- og regresjosaalyse ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Kap. 13.1-13.3: Lieær korrelasjosaalyse. Disse avsitt er ikke pesum, me de lieære
DetaljerTotalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21%
TMA4100 Høste 2007 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Kommetarer til eksame Dette dokumetet er e oppsummerig av erfarigee fra sesure av eksame i TMA4100 Matematikk
DetaljerTMA4240 Statistikk 2014
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a µ populasjosgjeomsitt, dvs. eit gjeomsitt for alle bilae som køyrer på vegstrekige
DetaljerTMA4240 Statistikk Høst 2016
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 8 Løsigsskisse Oppgave 1 a) Simuler 1000 datasett i MATLAB. Hvert datasett skal bestå av 100 utfall fra e ormalfordelig
DetaljerTMA4245 Statistikk Eksamen august 2015
Eksame august 15 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave 1 a asylighetee blir og X > Z > 1 1 Z 1 Φ.3,.5 W > 5 X + Y > 5 b Forvetet samfuskostad blir
DetaljerEstimering 1 -Punktestimering
Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer
DetaljerEmnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal
EKSAMEN Emekode: SFB10711 Emeav: Metode 1, statistikk deleksame Dato: 10. oktober 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Bjørar Karlse Kivedal
DetaljerLøsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan
Løsigsforslag for adre obligatoriske oppgave i STK11 Våre 27 Av Igu Fride Tvete (ift@math..uio.o) og Ørulf Borga (borga@math.uio.o). NB! Feil ka forekomme. NB! Sed gjere e mail hvis du fier e feil! Oppgave
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5
ÅMA11 Sasylighetsregig med statistikk, våre 7 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 59 Bjør
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det mtemtisk-turviteskpelige fkultet Eksme i: STK1110 Sttistiske metoder og dtlyse Løsigsforslg Eksmesdg: Tirsdg 18. desemer 2018 Tid for eksme: 09.00 13.00 Oppgvesettet er på 5 sider.
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 56
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 3. april Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1 / 56
DetaljerH T. Amundsen INNHOLD
Itere otater STATISTISK SENTRALBYRÅ. oktober 1980 KORRELASJONSKOEFFISIENTEN - ENDA ENGANG Av H T. Amudse INNHOLD 1. Iledig *****..... * 0 1. Produktmametkorrelasjoskoeffisiete og sammehege med lieær regresjo.
DetaljerEksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)
Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 19 des. 2014 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi
DetaljerEstimering 1 -Punktestimering
Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer
DetaljerTMA4240/4245 Statistikk 11. august 2012
Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA424/4245 Statistikk. august 22 Eksame - løsigsforslag Oppgave Vi har N Nµ,σ 2, µ 85 og X > 88. a X µ X > 88 σ > 88 µ Z > 88 85
DetaljerEstimering 2. -Konfidensintervall
Estimerig 2 -Kofidesitervall Dekkes av kap. 9.4-9.5, 9.10, 9.12 og forelesigsotatee. Dersom forsøket gjetas mage gager vil (1 α)100% av itervallee [ ˆΘ L, ˆΘ U ] ieholde de ukjete parametere θ (som er
DetaljerPrøveeksamen STK2100 (fasit) - vår 2018
Prøveeksamen STK2100 (fasit) - vår 2018 Geir Storvik Vår 2018 Oppgave 1 (a) Vi har at E = Y Ŷ =Xβ + ε X(XT X) 1 X T (Xβ + ε) =[I X(X T X) 1 X T ]ε Dette gir direkte at E[E] = 0. Vi får at kovariansmatrisen
DetaljerEKSAMEN. Oppgavesettet består av 5 oppgaver, hvor vekten til hver oppgave er angitt i prosent i oppgaveteksten. Alle oppgavene skal besvares.
EKSAMEN Emekode: SFB12003 Eme: Metodekurs II: Samfusviteskapelig metode og avedt statistikk Dato: 10.12.2014 Eksamestid: kl. 09.00 til kl. 13.00 Hjelpemidler: Kalkulator Faglærer: Bjørar Karlse Kivedal
DetaljerEKSAMEN Løsningsforslag
7. jauar 7 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 4. desember 6 Hjelpemidler: - To A4-ark med valgfritt ihold på begge sider. Emeav: Matematikk for IT Eksamestid: 9. 3. Faglærer: Christia F Heide Kalkulator
DetaljerSTK1100 våren 2017 Estimering
STK1100 våre 017 Estimerig Svarer til sidee 331-339 i læreboka Ørulf Borga Matematisk istitutt Uiversitetet i Oslo 1 Politisk meigsmålig Spør et tilfeldig utvalg på 1000 persoer hva de ville ha stemt hvis
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 53
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen.
ÅMA0 Sasylighetsregig med statistikk, våre 0 Kp. 5 Estimerig. Målemodelle. Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.). (Pukt)Estimerig i målemodelle
DetaljerLikningssystem for maksimum likelihood løsning
Maksimum likelihood metode Likigssystem for maksimum likelihood løsig Treig av klassifikator ute merket treigssett. Atakelser (i første omgag): Atall klasser c er kjet, ÁpriorisasyligheteeP(w i ), i =
DetaljerTMA4240 Statistikk Høst 2015
Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a - β agir biles besiforbruk i liter/mil - Rimelig med α 0 fordi med x 0 ige
DetaljerEKSAMENSOPPGAVE. Mat-1060 Beregningsorientert programmering og statistikk
Fakultet for aturviteskap og tekologi EKSAMENSOPPGAVE Eksame i: (Kode og av) Dato: 05.1.017 Klokkeslett: 09:00-13:00 Sted: Åsgårdv 9 Mat-1060 Beregigsorietert programmerig og statistikk Tillatte hjelpemidler:
Detaljer8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt).
Eksamesoppgave våre 011 Ordiær eksame Bokmål Fag: Matematikk Eksamesdato: 10.06.011 Studium/klasse: GLU 5-10 Emekode: MGK00 Eksamesform: Skriftlig Atall sider: 8 (ikludert forside og formelsamlig) Eksamestid:
DetaljerLØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03).
LØSNING, EKSAMEN I STATISTIKK, TMA440, DESEMBER 006 OPPGAVE 1 Ata at sa porøsitet er r. Målig med utstyret gir da X (x; r, 0,03). a) ( ) X r P(X > r) P 0,03 > 0 P(Z > 0) 0,5. ( X r P(X r > 0,05) P 0,03
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4
ÅMA11 Sasylighetsregig med statistikk, våre 21 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 22. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 29 Bjør
DetaljerLøsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015
Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2015 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe
DetaljerLØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling
Side1av4 HØGSKOLEN I NARVIK Istitutt for data-, elektro-, og romtekologi Siviligeiørstudiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital sigalbehadlig Tid: Fredag 06.03.2008, kl: 09:00-12:00 Tillatte
DetaljerModeller og parametre. STK Punktestimering - Kap 7. Eksempel støtfangere. Statistisk inferens. Binomisk fordeling. p X (x) = p x (1 p) n x
STK1100 - Puktestimerig - Kap 7 Geir Storvik Modeller og parametre Biomisk fordelig ( ) p X (x) = p x (1 p) x x Parameter: p Normalfordelig f X (x) = 1 2πσ e 1 2σ 2 (x µ) 2 11. april 2016 Parametre: µ,
DetaljerEksamen REA3028 S2, Våren 2010
Eksame REA308 S, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (6 poeg) a) Deriver fuksjoee: 1) f x x lx f x x lx x x f
DetaljerPåliteligheten til en stikkprøve
Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.
ÅMA Sasylighetsregig med statistikk, våre 6 Kp. 4 Kotiuerlige tilfeldige variable og ormaldelige Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsdeliger) Vi har til å sett på diskrete
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2007
ÅMA Sasylighetsregig med statistikk, våre 27 Kp. 6 (kp. 6) Tre deler av faget/kurset:. Beskrivede statistikk 2. Sasylighetsteori, sasylighetsregig 3. Statistisk iferes estimerig kofidesitervall hypotesetestig
DetaljerST1201 Statistiske metoder
ST20 Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember 2005 Oppgave a Ma beyttet radomisert blokkdesig. I situasjoe har ma k =
DetaljerUkeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1
Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable
DetaljerDetaljert løsningsveiledning til ECON1310 seminaroppgave 9, høsten der 0 < t < 1
Detaljert løsigsveiledig til ECON30 semiaroppgave 9, høste 206 Dee løsigsveiledige er mer detaljert e det et fullgodt svar på oppgave vil være, og mer utfyllede e e valig fasit. De er met som e guide til
DetaljerForelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling
STAT (V6) Statistikk Metoder Yushu.Li@uib.o Forelesig 4 og 5 Trasformasjo, Weibull-, logormal, beta-, kji-kvadrat -, t-, F- fordelig. Oppsummerig til Forelesig og..) Momet (momet about 0) og setral momet
DetaljerAVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE
AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Statistikk Gruppe(r): Alle ( 2. årskull) Eksamesoppgav Atall sider (ikl. e består av: forside): 5 Tillatte hjelpemidler: Emekode: LO070A Dato: 11.06.2004
DetaljerTil nå, og så videre... TMA4240 Statistikk H2010 (25) Mette Langaas. Foreleses mandag 15.november, 2010
TMA4240 Statistikk H2010 (25) 11.4: Egeskaper til MKE 11.5: Iferes om α og β 11.6: Prediksjo Mette Lagaas Foreleses madag 15.ovember, 2010 2 Til å, og så videre... Modell ekel lieær regresjo: Y = α + βx
DetaljerLøsningsforslag ST1101/ST6101 kontinuasjonseksamen 2018
Løsigsforslag ST/ST6 kotiuasjoseksame Oppgave a Defier hedelsee R, B, B rød kule i første trekig, blå kule i adre trekig, blå kule i tredje trekig. Vi skal fie PR B B for to ulike situasjoer. Geerelt vet
Detaljer