Kap. 8-4 Press- og krympeforbindelse

Størrelse: px
Begynne med side:

Download "Kap. 8-4 Press- og krympeforbindelse"

Transkript

1 K. -4 Pess- og kymefobdelse.4. Dmesjoeg v kymefobdelse Dmesjoeg v kymefobdelse fslegge e essmo slk kokykke () mellom delee e lsekkelg å oveføe belsge e gldg og kke så so segee v elle ksel bl fo høy Kymefobdelse eges som ykkveggede ø Smmeføyg oås ved å bebede ves bog (d = ) oe mde e kseldmeee (d = ). TO meode Pessfobdelse ve esses å ksele e ovmg elle Kymefobdelse ve moees å ksele e bk v kefe ved ve ovmes elle ksele vkjøles fø mosje. Kokykk mlggjø oveføg v e so osjosmome og e kslkf vh fksjo Pessfobdelse k h syldeske elle koske sgsfle Pessfobdelse k kke oveføe lke høy belsg som kymefobdelse M A M M ko h. A F F ko h h Fo å gå gldg : MSK Mskkosksjo MSK Mskkosksjo

2 Kokykk mellom v og ksel Ee kymg bl foholde mellom dlfoskyvg, dmel essmo og kokykk E E E E Fo e skve elle e ø s fo og Fo e v s fo = og = Fo e ksel s fo = og = MSK Mskkosksjo 4 Beegg v kymesege ', ', ', ', Fo e ø s fo og Fo e kje kokykk () bl kymesege ksel og ve MSK Mskkosksjo

3 5 Beegg v kymesege Fo e y, skelgfomede skve som oee med vkelhsghe Fo e mssve oeede skve e hll sem ( = ) Mks. seg ved = ( sem v skve) MSK Mskkosksjo 6 Eksemel -5 MSK Mskkosksjo Rooskve Fge vse e jevykk ooskve v sål som skl kymes å e mssv sålksel ved e elv essmo å. Ude oml df oeee ooskve ved = o/m. Melegeskee fo både ooskve og ksele e = 7 kg/m, E = GP og =,. ) Beeg segee ooskve ved kokfle åkje lsd fo både ll ll og de dfslle. b) Ude df k ooskve løse desom fobdelse oeee ved e ll løs som gjø dffese mellom dlfoskyvgee e lk hlve de dmele essmoe. F dee lle ( løs ) og segee å ooskve løse.

4 Ko om olese Behov fo olese: femsllg v dele med eksk fom og mål e hveke mlg elle ødvedg Ko om olese - målolese Geeelle olese fo leæe mål Tolese: = ll vvk f de sesfsee mål å e egg = Øve gese mål Nede gese mål (dffese) Hvod gs olesee å egge? Noe ekle eksemle Geg v olese: ) Oveflekvle ) Målolese ) Tolese fo leæe og vkel mål b) Psgsolese (ISO olese) ) Geomeske olese Beegelse f fo f oleseklsse m fo mddels oleseklsse c fo gov oleseklsse v fo mege gov oleseklsse Geeelle olese gs å egge ved å skve følgede elle æhee v elfele: ISO-76-m o NS-ISO-76-m MSK Mskkosksjo 7 MSK Mskkosksjo

5 Ko om olese - Psgsolese ISO olesesysem Beyes fo komoee som skl væe lsse hvede me ess, de de geeelle olese kke ege seg. NS-ISO sdd g olesee med (e/o) boksv(e) og e ll Boksvkode g belggehee v oleseomåde som e bssvvk, dvs. vsde l bssmåle Soe boksve beyes fo vedg mål (bog): Boksvkode A g de søse boge Små boksve fo vedg mål (ksel): Boksvkode g de mse ksele Tllkode g IT-gde (olesegde) ee bellvede Psgsolese Psgsolesee gs v ISO 6 med følgede vedelses omåde Målevekøy, odksjosolke IT, IT, IT... IT6 Mskkomoee IT5 IT Delvs fedge odke IT IT6 Kosksjosdele (sk) IT6 IT F. eks. H7 (fo bog) og h7 (fo ksel). MSK Mskkosksjo 9 MSK Mskkosksjo

6 Psgsolese Tolesegdee eges m ( -6 m) f bssmåle e vhegg v bssmåles søelse og s v belle (se Tbell ). Tolesebelggehe fo bog og ksel Skjemsk femsllg v bssvvkees belggehe + A.o.m H lgge ove -lje (+ sde) JS e symmesk f -lje J og K lgge ove el. de -lje M.o.m. ZC lgge de -lje Ag v Tbell + Ag v Tbell Ag v Tbell Tolese fo Ø5H7 e,5 mm Belggehee gs v boksve H.o.m h lgge de -lje js e symmesk f -lje j og k lgge ove el. de -lje m.o.m. c lgge ove -lje MSK Mskkosksjo MSK Mskkosksjo

7 Psge Ske le lsgsbed ved moeg Ske bybhe fo lle dele e odk. Ag gde v bevegelghe elle fsklemmg besem v foskjelle mellom smmehøede dmesjoe fø smmesege. Fo ess- elle kymefobdelse skl de væe osv essmo Mksmm essmo: mx = d, mx d b, m Mmm essmo: m = d, m d b, mx Psge Fo bog og ksel k sge, vhegg v oleseomådee, væe: Klgssg gee klg mellom delee (dvs. = d d b < ) Mellomsg g ee klg elle ess Pesssg gee ess mellom delee (dvs. = d d b > ) ES øve vvk fo bog EI ede vvk fo bog es øve vvk fo ksel e ede vvk fo ksel MSK Mskkosksjo MSK Mskkosksjo 4

8 Psge H7- og h7-syseme Smme dmeefoskjell k oås ved mge foskjellge kombsjoe v bog- og kselolese lle odksjos- og målevekøy må begeses To syseme bk Bogsbsssysem (H-olese fo bog) olese fo bog velges og foskjellge sge oås ved å velge belggehee fo kselolese. (Aksele skl odsees) - mes bk fo mskkomoee. THE END Akselbsssysem (h-olese fo ksel) olese fo ksel velges og foskjellge sge oås ved å velge belggehee fo bogsole. (Boge skl odsees) - mes bk fo dele (dvs. devces, smee, osv.). LYKKE TIL EKSAMEN!! MSK Mskkosksjo 5 MSK Mskkosksjo 6

Newtons tredje lov. Kinematikk i to og tre dimensjoner

Newtons tredje lov. Kinematikk i to og tre dimensjoner Newons ede lo Knemkk o og e dmensone 31.1.213 husk: nnleeng oblg #1 Mndg, 4.eb. kl.1 YS-MEK 111 31.1.213 1 Newons ede lo: Enhe knng h lld og lsende en moknng, elle den gensdge påknng o legeme på hende

Detaljer

Modul 1 15 studiepoeng, internt kurs Notodden/Porsgrunn

Modul 1 15 studiepoeng, internt kurs Notodden/Porsgrunn Høgskole i Telemk Avdelig fo estetiske fg, folkekultu og læeutdig BOKMÅL 4. mi 007 EKSAMEN I MATEMATIKK 3 Tid: 6 time Modul 5 studiepoeg, itet kus Notodde/Posgu Oppgvesettet e på 7 side (ikludet fomelsmlig).

Detaljer

BASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12.

BASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12. BASISÅR I IDRETTSVITENSKAP 1/11 Us indiiduell skiflig eksmen i 1BA 111- Beegelseslæe Mndg. ugus 11 kl. 1.-1. Hjelpemidle: klkulo og elle i fysikk Eksmensoppgen eså 3 side inklude fosiden Sensufis: 1. sepeme

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Fultet fo teologi, ust og desig Teologise fg Esme i: Diset mtemti Målfom: omål Dto: 8005 Tid: 5 time / l 9-4 tll side il foside: 0 tll ogve: 0 Tilltte hjelemidle: Fohådsgodjet odo Hådholdt lulto som ie

Detaljer

bedre læring Handlingsplan for bærumsskolen mot 2020 Relasjons- og ledelseskompetanse/vurdering for læring/digital didaktikk

bedre læring Handlingsplan for bærumsskolen mot 2020 Relasjons- og ledelseskompetanse/vurdering for læring/digital didaktikk bee læng Hanlngsplan fo bæumsskolen mo 2020 Relasjons- og leelseskompeanse/vueng fo læng/gal akkk fe uvklngsomåe skolemelngen pesenee fe uvklngsomåe Længsoppage Den ykge læe bee læng Skolemelng fo bæumsskolen

Detaljer

Transistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur:

Transistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur: 0. Foseke akiekue Nå e asiso skal bukes il e foseke, oscillao, file, seso, ec. så vil de væe behov fo passive elemee som mosade, kodesaoe og spole ud asisoe. Disse vil søge fo biasig slik a asisoe få ikig

Detaljer

2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r

2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 1 0 O r d i n æ r g e n e r a l f o r s a m l i n g i, a v h o l d e s m a n d a g 3. m ai 2 0 1 0, k l. 1 8 0 0 p å T r e

Detaljer

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVEITETET I GDE Gid E K E N O G V E : FG: FY6 Fikk/Kjei LÆE: Fikk : e Henik Hogd Kjei : Gehe Lehnn Kle: Do: 7.5. Ekenid, f-il: 9.. Ekenogen beå følgende nll ide: 6 inkl. foide og edlegg nll oge: 5 nll

Detaljer

Notat: Dekker pensum i beskrivende statistikk

Notat: Dekker pensum i beskrivende statistikk Notat: Dekke pesum eskvede statstkk.3 Beskvede statstkk (sde 9 læeoka - 4. utgave) Beskvede (deskptv) statstkk omfatte samlg, eaedg og pesetasjo av data (tallmateale, osevasjoe, måleesultate). Nå følge

Detaljer

Flerpartikkelsystemer Massesenter

Flerpartikkelsystemer Massesenter lepakkelsysee assesene.4.3 YS-EK.4.3 YS-EK.4.3 Kollsjone beang a beegelsesenge:,,,, p p p p elassk kollsjon beang a eneg,,,,,,,,,, ( ( fullseng uelassk kollsjon:,,,,,, esusjonskoeffsen: uelassk kollsjon:,,,,

Detaljer

FAG: FYS121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERSIEE I GDER Gd E K S M E N S O P P G V E : G: YS kk LÆRER: kk : Pe Henk Hogd Kle: Do: 5.. Ekend, f-l: 9.. Ekenoppgen beå følgende nll de: 5 nkl. fode nll oppge: nll edlegg: lle hjelpedle e: Klkulo

Detaljer

Sk ie n ko mm une. R EG UL E R I N GS B ES T E MM E L SER T I L D eta ljr e gu l e ri n g

Sk ie n ko mm une. R EG UL E R I N GS B ES T E MM E L SER T I L D eta ljr e gu l e ri n g R EG UL E R I N GS B ES T E MM E L SER T I L D eta ljr e gu l e ri n g K j ø r b ekk d a l en 12 D 220 / 211 m. fl R e g u l e r i n g s be s te mm e ls e r sist date r t 27.09.17. P l an k a r t sist

Detaljer

FAG: FYS118 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Thomas Gjesteland

FAG: FYS118 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Thomas Gjesteland UNIVESITETET I GDE Giad E K S M E N S O P P G V E : FG: FYS8 Fikk LÆE: Fikk : Pe Henik Hogad Thoa Gjeeland Klae: Dao:.5.6 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende nall ide: 6 inkl. foide nall

Detaljer

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009 INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009 O r d i n æ r t s am e i e rm øt e i R u d s h ø g d a V B / S, a v h o l d e s m a n d a g 1 6. m a r s k l. 1 8 : 0 0 p å L o f s r u d s k o l e, L i l l e a

Detaljer

Refleksjon og transmisjon av transverselle bølger på en streng

Refleksjon og transmisjon av transverselle bølger på en streng Reflesjon og ansmsjon av ansveselle bølge på en seng Fgu vse o lange senge med masse pe lengde og 2 som e sjøe sammen ogo, x 0. x-asen lgge paallel med sengen. V sal se hva som sje med en bølge som passee

Detaljer

Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Sentralt elastisk støt. Generell løsning: kap8.

Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Sentralt elastisk støt. Generell løsning: kap8. Kap. 8 evegelsesmengde. Flepatkkelsystem. V skal se på: ewtons 2. lov på ny. Defnsjon evegelsesmengde. Kaftstøt, mpuls. Impulsloven. Flepatkkelsysteme: Kollsjone: Elastsk, uelastsk, fullstendg uelastsk

Detaljer

Løsning øving 9 ( ) ( ) sin ( )

Løsning øving 9 ( ) ( ) sin ( ) nsttutt fo fskk, NTNU Fg SF 4 Elektomgnetsme og MNFFY Elektstet og mgnetsme Høst Løsnng øvng 9 Oppgve Ktesske koodnte: Enhetsvektoen stå nomlt på, som dnne en vnkel med -ksen. Det et t dnne en vnkel med

Detaljer

Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n.

Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n. Løsgsforslag ST20/ST620 205, kotuasjoseksame. a Rmelghetsfuksjoe blr Logartme Derverer Løser lgge Løsge er SME: L = 2 e l L = 2 l X X. X + l X. l L = 2 + 2 X = 2. ˆ = 2 X. X. b Her ka ma beytte trasformasjosformele,

Detaljer

Rekursjon. I. Et enkelt eksempel

Rekursjon. I. Et enkelt eksempel Reusj I. ET ENKELT EKSEMPEL II. TRE AV REKURSIVE KALL, eusjsdybde temeg dg III.INDUKTIVE DATA TYPER g Reusj ve Dt Type IV. SPLITT OG HERSK PROBLEMLØSNING VED REKURSJON Kp. 8.. V. REKURSJONS EEKTIVITET

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1 En funksjon f er gitt ved f ( x) ( x 2) e x.

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1 En funksjon f er gitt ved f ( x) ( x 2) e x. UNIVERSITETET I BERGEN De maemaisk-nauvienskapelige fakule Eksamen i emne MAT Bukekus i maemaikk Fedag 8 febua, kl 9-4 BOKMÅL Tillae hjelpemidle: Læebok og kalkulao i samsva med fakulee sine egle Oppgave

Detaljer

Kapittel 9 ALGEBRA. Hva er algebra?

Kapittel 9 ALGEBRA. Hva er algebra? Kpttel 9 ALGEBRA Hv er lger? Kpttel 9 ALGEBRA Alger Ekelt k v s t lger er å rege me okstver steet for tll. Når v løser lgger, står okstve (vlgvs for et estemt tll. Når v ruker lger tl å utlee formler eller

Detaljer

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN 5.- 6. JUNI 201 3 A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 09. 0 0 1 0. 0 0 R E G I S TR E R I NG N o e å b i t e i 10. 0 0 1 0. 15 Å p n i ng

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESITETET I GDE Gims E K S M E N S P P G V E G M-9 Memi LÆE Pe Heni Hos Klsse Do.. Esmensi -il 9.. Esmensoppven eså v ølene nll sie inl. osie vele nll oppve nll vele Tille hjelpemile e Kllo Hos omle

Detaljer

Vedlegg til eksamensoppgaven i Diskret matematikk

Vedlegg til eksamensoppgaven i Diskret matematikk Vedlegg til esmesogve i Diset mtemti Det som stå he vil væe iholdet i esmesogves vedlegg høste 4 Deiisjoe og omle Logise oetoe: ie, og, elle, eslusiv elle, imlisjo Noe evivlese utsgslogi: P P P P Noe megdeidetitete:

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i

Detaljer

n r : Jf. brevet som følgjer med saka

n r : Jf. brevet som følgjer med saka : Jf. bevet som følgje med saka N Koodiat Sok Objekttype 1 / 2 0 1 3 K O M M U N E ( 1920 Lavage K A R T B L A D : am): GAB-id. (g, b, ad.kode, skivemåtealteativ S=syfaig H=hyd. oig. B=bev spåk el. kvesk

Detaljer

FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNVETETET AGDE Gid E K A E N O G A V E : FAG: FY Fikk/Kjei ÆE: Fikk : e Henik Hogd Kjei : Gehe ehnn Kle: Do: 7.5. Ekenid, -il: 9.. Ekenoppgen beå ølgende Anll ide: 6 inkl. oide og edlegg Anll oppge: 5

Detaljer

SERVICEERKLÆRING 1. Innledning 2. Demokrati, samarbeid og medvirkning 3. Generell informasjon 4. Internasjonalisering

SERVICEERKLÆRING 1. Innledning 2. Demokrati, samarbeid og medvirkning 3. Generell informasjon 4. Internasjonalisering SERVICEERKLÆRING 1. Innlednngg 2. Demokt, smbed og medvknng 3. Geneell nomsjon b 4. Intensjonlseng e 5. Studestt 6. Studegjennomøngen 7. Bblotek 8. IT l 9. Studentveled 1. Innlednng g 2. Demokt, smbed

Detaljer

FAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVEITETET I AGDE Gid E K A E N O G A V E : FAG: FY7 Fikk/Kjei LÆE: Fikk : e Henik Hogd Kjei : Gehe Lehnn Kle: Do: 7.. Ekenid, f-il: 9.. Ekenoppgen beå følgende Anll ide: 6 inkl. foide og edlegg Anll

Detaljer

Nye opplysninger i en deloppgave gjelder bare denne deloppgaven.

Nye opplysninger i en deloppgave gjelder bare denne deloppgaven. Oppgave a) Hva e åvedie av k o 7 å å ea e 5 %? b) Aa a du see k i bake. Hvo ye ka du heve ee å å ea e 5 % de føse 4 åee og deee sige il 7 % ålig? c) E bukbil kose k. Bile ka selges fo k 7 ee 6 å. Hva e

Detaljer

Generell informasjon om vanlige sfæriske lagere

Generell informasjon om vanlige sfæriske lagere og STANGENDER Innholdsfortegnelse: Innholdsfortegnelse og generell informasjon 14.1 GE-E-ES-2RS 14.2 GE-ES-Niro 14.3 GEG-E-ES-2RS 14.4 GEEM-ES-2RS 14.5 GEEW-E-ES 14.6 SA-E-ES-2RS 14.7 SABP-S 14.8 SAJK

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stvt legees dnakk 8.04.06 FYS-MEK 0 8.04.06 Spnn spnn o punkt fo en patkkel ed asse og bevegelsesengde p: l p spnnsats: net d l Newtons ande lov: F net d p uten netto kaftoent e spnn bevat l kˆ l kˆ ˆj

Detaljer

TMA4245 Statistikk Eksamen mai 2016

TMA4245 Statistikk Eksamen mai 2016 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Lar X være kvadratprse. Har da at X N(µ, σ 2 ), med µ 30 og σ 2 2, 5 2. P (X < 30) P (X < µ) 0.5 ( X 30 P (X > 25)

Detaljer

Oppgave 1 ECON 2130 EKSAMEN 2011 VÅR

Oppgave 1 ECON 2130 EKSAMEN 2011 VÅR ECON 30 EKSAMEN 0 VÅR Oppgave E bedrf øsker å fordele koraker e vesergsprosjek hel lfeldg på 3 frmaer, A, B og C. Uvelgelse skjer ved loddrekg. Loddrekge er slk a hver av frmaee A, B og C, har e mulghe

Detaljer

S T Y R E T G J Ø R O P P M E R K S O M P Å A T D Ø R E N E S T E N G E S K L

S T Y R E T G J Ø R O P P M E R K S O M P Å A T D Ø R E N E S T E N G E S K L K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i

Detaljer

EKSAMENSOPPGAVE. Fag: Fysikk/Elektro Fagnr: FO340A Faglig veileder: Rolf Ingebrigtsen

EKSAMENSOPPGAVE. Fag: Fysikk/Elektro Fagnr: FO340A Faglig veileder: Rolf Ingebrigtsen HØGSKOLN OSLO delng fo ngenøudnnng KSMNSOPPG g: yskk/leko gn: O3 glg elede: Rolf ngebgsen Klsse(): 1, 1, 1 Do:. ugus 8 ksensoppgen beså lle hjelpe- dle: nll sde: nkl. s. edlegg NGN skflge, kun godkjen

Detaljer

LU skal gjøre at Paraguay som misjonsfelt blir bedre kjent. LU skal gi informasjon til utsendermenighet, KM og RS i Norge

LU skal gjøre at Paraguay som misjonsfelt blir bedre kjent. LU skal gi informasjon til utsendermenighet, KM og RS i Norge Puy Fomået med K/LU Bede fomjofomd LU k jøe t Puy om mjofet b bede kjet LU k fomjo t utedemehet, K o Noe LU k mujøe bede beutu fo mjoe mehetee LU k utvke webde fo Puy om k b e eu fo mehetee LU k t buk

Detaljer

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s a m e i e r m ø t e i L i s a K r i s t o f f e r s e n s P l a s s S E, a v h o l d e s o ns d a g 9. m a r s

Detaljer

SØKNADSSKJ EMA. Helsesportsuka 2017 Olderfjord, Porsanger. Arrangør: Lions Club Porsanger mars 2017

SØKNADSSKJ EMA. Helsesportsuka 2017 Olderfjord, Porsanger. Arrangør: Lions Club Porsanger mars 2017 SØKNADSSKJ EMA Helsespotsuka 2017 Oldefjod, Posange Aangø: Lions Club Posange 24 31. mas 2017 Det e viktig at alle spøsmål bli besvat mest mulig koekt fo at søknaden skal bli koekt behandlet. Det e kun

Detaljer

Tre klasser kollisjoner (eksempel: kast mot vegg)

Tre klasser kollisjoner (eksempel: kast mot vegg) Kap. 8 Bevegelsesmengde. Kollsjone. assesente. V skal se på: ewtons. lov på ny: Defnsjon bevegelsesmengde Kollsjone: Kaftstøt, mpuls. Impulsloven Elastsk, uelastsk, fullstendg uelastsk assesente (tyngdepunkt)

Detaljer

FAG: FYS114 Fysikk/kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS114 Fysikk/kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVERSITETET I GDER Gad E K S M E N S O G V E : FG: FYS Fkk/kje LÆRER: Fkk : e Henk Hogad Kje : Gehe Lehann Klae: Dao:.5. Ekaend, fa-l: 9.. Ekaenoppgaen beå a følgende nall de: nkl. fode nall oppgae:

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g e t s å r s b e r e t n i

Detaljer

Forelesning 3 mandag den 25. august

Forelesning 3 mandag den 25. august Forelesg adag de 5 august Merkad 171 For å bevse e propossjo o heltall so volverer to eller flere varabler, er det typsk ye lettere å beytte duksjo på e av varablee e duksjo på oe av de adre Det er for

Detaljer

Avdeling for ingeniørutdanning. Eksamen i Diskret matematikk

Avdeling for ingeniørutdanning. Eksamen i Diskret matematikk wwwhioo Avdelig fo igeiøutdig Esme i Diset mtemti Dto: 3 feu Tid: 9 4 Atll side ilusive foside: 7 Atll oppgve: Tilltte hjelpemidle: Ku hådholdt lulto som ie ommuisee tådløst Med: Kdidte må selv otollee

Detaljer

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s am e i e rm øt e i L y s e T e r r a s s e B s, a v h o l d e s o n s d a g 1 6. 0 3. 20 1 1, k l. 1 8 : 0 0 p

Detaljer

Makroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende:

Makroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende: B. Makroøkoom Oppgave: Forklar påstades hold og drøft hvlke alteratv v står overfor: Fast valutakurs, selvstedg retepoltkk og fre kaptalbevegelser er kke forelg på samme td. Makroøkoom Iledg Mudells trlemma

Detaljer

Jeg har en venn. Ó j œ. # œ œ. œ œ. Ó J. œ œ. œ œ œ œ. œ œ. œ œ. œ œ œ. œ œ. œ œ œ. œ œ. œ œ. Norsk trad. arr Mattias Ristholm. Soprano.

Jeg har en venn. Ó j œ. # œ œ. œ œ. Ó J. œ œ. œ œ œ œ. œ œ. œ œ. œ œ œ. œ œ. œ œ œ. œ œ. œ œ. Norsk trad. arr Mattias Ristholm. Soprano. eg vn Norsk trd rr Mts Rstholm oprno 4 3 Ó # eg vn gett stt lv, for eg skll få le ve Det ss 4 3 Ó eg vn gett stt lv, for eg skll få le ve Det 6 fn nes n l t n tv Det nyt t å stre ve For d eg le v så Ó

Detaljer

Kraftelektronikk (Elkraft 2 høst), Løsningsforslag til øvingssett 2, høst 2005

Kraftelektronikk (Elkraft 2 høst), Løsningsforslag til øvingssett 2, høst 2005 Krfelekronkk Elkrf hø, Lønngforlg l øvnge, hø 5 Ole-Moren Mgår HA 5 Oppgve 4 3 v voe vol - - -3-4 p p 3p 4p V v 3 3 n V [ co ] 3 3. 5 b Derom nvenelen krever ørre røm enn lgjengelge hlvleerkomponener åler,

Detaljer

Løsningsforslag FY105-eksamen 15. januar 2004

Løsningsforslag FY105-eksamen 15. januar 2004 Løsgsfoslag FY5-esae 5. jaua 4 Oppgae a) Newos.lo på losse g x x x+ x ed få x+ x Isa x() dffeesallgge: A s( + ϕ) + As( + ϕ) so se a x () As( ϕ) + e e løsg. Fa x ( ) Asϕ ϕ få : x() () A b) Toaleege l sysee

Detaljer

Vedlegg 3, detaljert oversikt over tiltak, kostnader og planstatus

Vedlegg 3, detaljert oversikt over tiltak, kostnader og planstatus Vedlegg 3, dealje vesk ve lak, ksnade g plansaus lan f sykkellak, 2002-2011 Vedlegg 3 nnehlde dealje vesk ve bl.a. lak, ksnade g plansaus. Nedenf fnnes en fklang l abellene: Seknng Beskve de ulke delseknngene

Detaljer

P r in s ipp s ø k n a d. R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e

P r in s ipp s ø k n a d. R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e P r in s ipp s ø k n a d R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e O pp d ra g s n r : 2 0 1 50 50 O pp d ra g s n a v n : Sa n d s ta d g å r d

Detaljer

Alternativer Mosjøen vgs

Alternativer Mosjøen vgs Alternativer Mosjøen vgs Alternativer Areal (m 2 BTA) Grad av samlokalisering 0 Nullalternativet 20 600 Tredelt løsning (som i dag) 0+ Nullpluss-alternativet 20 600 Tredelt løsning (som i dag) Fullinvesteringsalternativer

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n n k a l l i n g e n t i l år e t s g e n e r a l f o rs am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i n

Detaljer

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s a m e i e r m ø t e i S / E S o r g e n f r i g a t e n 3 4, a v h o l d e s o ns d a g 1 0. m a rs 2 0 1 0 k l. 1 8. 0 0 i K l u b b r o m m

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! 1 H o v i n B o r e t t s l a g K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s

Detaljer

skole.. FAUSKE KOMMUNE Sammendrag: Saksopplysninger: RESSURSFORDELINGEN TIL SKOLENE FOR SKOLEÅRET 2013/14 SAKSPAPIR

skole.. FAUSKE KOMMUNE Sammendrag: Saksopplysninger: RESSURSFORDELINGEN TIL SKOLENE FOR SKOLEÅRET 2013/14 SAKSPAPIR SAKSPAPR FAUSKE KMMUNE 3/589 Akv JoualpostD: sakd.: 3/63 Saksbehandle: Ave Rolandsen Sluttbehandlede vedtaksnstans: Dftsutvalget Sak n.: 08/3 DRFTSUTV AG Dato: 0.04.03 RESSURSFRDENGEN T SKENE FR SKEÅRET

Detaljer

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009 INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009 O r d i n æ r t s am e i e rm øt e i, a v h o l d e s t o r s d a g 2 6. 0 3. 20 0 9, k l. 1 8 : 0 0 p å L y s e j o r d e t s k o l e, V æ k e r ø v e i e n 1

Detaljer

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVEITETET I GDE Gid E K M E N O G V E : FG: FY Fikk LÆE: Fikk : e Henik Hogd Kle: Do:.5.6 Ekenid, f-il: 9. 4. Ekenoppgen beå følgende nll ide: 6 inkl. foide nll oppge: 4 nll edlegg: Tille hjelpeidle

Detaljer

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 1 S a m e i e t S o l h a u g e n I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s am e i e rm øt e i S am e i e t S o l h a u g e n, a v h o l d e s o n s d a

Detaljer

FAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Margrethe Wold

FAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Margrethe Wold UNVEEE DE ad E K M E N O P P V E : F: FY Fkk ÆE: Fkk : Pe Henk Hogad Magehe Wold Klae: Dao:..5 Ekaend, fa-l: 9.. Ekaenoppgaen beå a følgende nall de: 6 nkl. fode nall oppgae: nall edlegg: llae hjelpedle

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i

Detaljer

Kinematikk i to og tre dimensjoner 29.01.2014

Kinematikk i to og tre dimensjoner 29.01.2014 Knemkk o og re dmensoner 29.1.214 FYS-MEK 111 29.1.214 1 hp://pngo.up.de/ ccess numer:7182 En len l der en sørre lsel som hr død er. Mssen l lselen er sørre enn mssen l len. Hlke følgende usgn er korrek?

Detaljer

FAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVEITETET I AGDE Gid E K A E N O G A V E : FAG: FY Fikk/Kjei LÆE: Fikk : e Henik Hogd Kjei : Gehe Lehnn Kle: Do: 7.5. Ekenid, f-il: 9.. Ekenoppgen beå følgende Anll ide: 6 inkl. foide og edlegg Anll

Detaljer

Forelesning 17 torsdag den 16. oktober

Forelesning 17 torsdag den 16. oktober Forelesnng 17 torsdag den 16. oktober 4.12 Orden modulo et prmtall Defnsjon 4.12.1. La p være et prmtall. La x være et heltall slk at det kke er sant at x 0 Et naturlg tall t er ordenen tl a modulo p dersom

Detaljer

I N N K A L L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E

I N N K A L L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E I N N K A L L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E 2 0 0 9 O r d i n æ r t s am e i e rm øt e i S am e i e t W al d em a rs H a g e, a v h o l d e s t o rs d a g 1 8. j u n i 2 0 0 9, k l.

Detaljer

Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap. 23 Elektrisk potensial

Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap. 23 Elektrisk potensial Kp23 26.1.215 Kp. 23 Eektsk potens Sk defnee p gunng v eektsk fet E: Eektsk potense eneg, U Eektsk potens, V (Ketsteknkk: E. potensfoskje spennng) Ekvpotensfte Potensgdent og eektsk fet. Eks. 1, fots.

Detaljer

I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E

I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E 2 0 0 9 O r d i næ r t s am e i e rm ø t e i S am b o b o l i g s a m ei e fi n n e r s t e d t o r s d ag 3 0. 0 4. 2 0 0 9 K l. 1 8. 3 0

Detaljer

FAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERSIEE I AGDER Gid E K S A M E N S O P P G A V E : AG: YS ikk LÆRER: ikk : Pe Henik Hogd Kle: Do: 5.. Ekenid, f-il: 9.. Ekenoppgen beå følgende Anll ide: 5 inkl. foide Anll oppge: Anll edlegg: ille

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESITETET I AGDE Gimsa E K S A E N S O P P G A V E : FAG: A-9 aemaikk ÆE: Pe Heik Hogsa Klasse: Dao: 5.. Eksamesi, fa-il: 9.. Eksamesoppgave beså av følgee Aall sie: 5 ikl. fosie Aall oppgave: 5 Aall

Detaljer

Lekestativ MaxiSwing

Lekestativ MaxiSwing Moteigsveiledig og vedliehold v31 Leestativ MaxiSig At : 1740 Leestativet e poduset ette følgede stadad og dietiv: EN 71; 2009/48/EU Poduset: IMPREST AS Näituse 25 50409 Tatu Estoia Moteigsveiledig og

Detaljer

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 1 V a l d r e s g t 1 6 S / E I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s am e i e rm øt e i V a l d r es g t 1 6 S / E, a v h o l d e s o n s d a g 2 7. a

Detaljer

TMA4245 Statistikk Eksamen august 2014

TMA4245 Statistikk Eksamen august 2014 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Y 5 PY > 53) PY 53) P ) 53 5 Φ5) 933 668 Vekte av e fylt flaske, X + Y, er e leærkombasjo av uavhegge ormalfordelte

Detaljer

Sosialantropologisk institutt

Sosialantropologisk institutt Sosialantropologisk institutt Eksamensoppgaver til SOSANT2000: Generell antropologi: grunnlagsproblemer og kjernespørsmål Utsatt eksamen Høsten 2004 Skoleeksamen 16. desember kl. 9-15, Lesesal B, Eilert

Detaljer

Seminaroppgaver for uke 13

Seminaroppgaver for uke 13 1 ECON 2130 2016 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver) La X og Y være to uavhegge

Detaljer

sosiale behov FASE 2: Haug barnehage 2011-2012

sosiale behov FASE 2: Haug barnehage 2011-2012 : Hva kjennetegne bana i denne fasen? De voksnes olle Banemøte Påkledning Samlinge Måltid Posjekte Uteleik Konfliktløsning Vudeing Haug banehage 2011-2012 «Omsog, oppdagelse og læing i banehagen skal femme

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG mars 2009 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette

Detaljer

Oppgave 3, SØK400 våren 2002, v/d. Lund

Oppgave 3, SØK400 våren 2002, v/d. Lund Oppgave 3, SØK400 våren 00, v/d. Lnd En bonde bonde dyrker poteter. Hvs det blr mldvær, blr avlngen 0. Hvs det blr frost, blr avlngen. Naboen bonde, som vl være tsatt for samme vær, dyrker også poteter,

Detaljer

Et enkelt eksempel. terminering. i-120 : H Rekursjon: 1. invarianter (notat til Krogdahl&Haveraaen) ... t.o.m. som hale-rekursjon

Et enkelt eksempel. terminering. i-120 : H Rekursjon: 1. invarianter (notat til Krogdahl&Haveraaen) ... t.o.m. som hale-rekursjon Itesj tl eusj /** @pm > @etu... t sumw(t ) { t es =; whle ( > ) { es = es ; = ; etu es; /** @pm > @etu... t sumr(t ) { f ( == ) etu ; etu sumr(-); Geeellt, dg e % tg: t Ite(t ) { es= t; whle ( ftsett()

Detaljer

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s am e i e rm øt e i U l l e r n s k og e n B o l i gs am e i e, a v h o l d e s t i rs d a g 2 7. a p r i l 2 0 1 0, k l. 1 8 : 3 0 p å B j ø r

Detaljer

Kap 4.3 Tannhjul og tannhjulvekslinger. Kap 4.3 Tannhjul og tannhjulvekslinger. Innhold. sylindrisk tannhjul. 1. Innledning begrep

Kap 4.3 Tannhjul og tannhjulvekslinger. Kap 4.3 Tannhjul og tannhjulvekslinger. Innhold. sylindrisk tannhjul. 1. Innledning begrep Kap 4.3 Tannhjul og tannhjulvekslnge Kap 4.3 Tannhjul og tannhjulvekslnge Innhold. Innlednng begep. Kot om geometen tl et enkelt sylndsk tannhjul 3. Knematkken tl et pa tannhjul nngep 4. Stykebeegnng av

Detaljer

O v e rfø rin g fra s to rt a n le g g til m in d re a n le g g

O v e rfø rin g fra s to rt a n le g g til m in d re a n le g g O v e rfø rin g fra s to rt a n le g g til m in d re a n le g g H v a k a n e n m in d re k o m m u n e ta m e d s e g? Iv a r S o lv i B enc hm a rk ing Wa ter S olutions E t s p ø rs m å l s o m m a

Detaljer

FAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNVEEE DE ad E K M E N O P P V E : F: FY Fkk ÆE: Fkk : Pe Henk Hogad Klae: Dao:..5 Ekaend, fa-l: 9.. Ekaenoppgaen beå a følgende nall de: 5 nkl. fode nall oppgae: nall edlegg: llae hjelpedle e: Kalkulao

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen HG mars 0 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette kurset.

Detaljer

FAG: Fysikk fellesdel LÆRER: Fysikk : Per Henrik Hogstad

FAG: Fysikk fellesdel LÆRER: Fysikk : Per Henrik Hogstad UNIVERSITETET I AGDER Giad E K S A M E N S O P P G A V E : FAG: Fikk felledel LÆRER: Fikk : Pe Henik Hogad Klae: Dao:.5.8 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: Anall oppgae: Anall

Detaljer

[ ] [ ] [ ] [ ] [ ] [ ] [ ] Kap 03 Bevegelse i to eller tre dimensjoner

[ ] [ ] [ ] [ ] [ ] [ ] [ ] Kap 03 Bevegelse i to eller tre dimensjoner Kp Beegele o elle e denone. Ben SRel/SVdeo l å ulee følgende pkkel-beegele udee hghe og keleon -d: Sulengen fnne du på fgden elg Vdeo elle h denne URL-deen: hp://gd.u.no/pehh/phh/mric/srel/no/srelp/aa_/srel_phc_k_vel

Detaljer

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s am e i e rm øt e i S am B o B o l i g s am e i e, a v h o l d es o ns d a g 2 8. 04. 2 0 1 0, k l. 1 8. 3 0 i G r ef s e n m e n i g h e t s s

Detaljer

FAG: FYS121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERSITETET I GDER Gad E K S M E N S O P P G V E : FG: FYS Fkk LÆRER: Fkk : Pe Henk Hogad Klae: Dao:.5. Ekaend, fa-l: 9.. Ekaenoppgaen beå a følgende nall de: 6 nkl. fode nall oppgae: nall edlegg: Tllae

Detaljer

NARF årsmøte 2012. 14. - 15. juni Radisson Blu Atlantic Hotel Stavanger

NARF årsmøte 2012. 14. - 15. juni Radisson Blu Atlantic Hotel Stavanger NARF åsøte 2012 14. - 15. juni Rdisson Blu Atlntic Hotel Stvnge T e Velkoen til åsøte 2012 Vi skl utvikle oss ot en stekee, e synlig og ttktiv bnsje. NARFs Åsøte 2012 sette ed disse odene søkelyset på

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D e t t e e r i n n k a l l i n g e n t i l å r e t s g e n er a l f o r s a m l i n g. D e n i n n e h o l d e r b o r e t t s l a g e t s å r s m e l d i n g o g r e g n s k a

Detaljer

!"" #$ % <'/ & ' & & " E*.E *N 9 " 9 ) $ 9 ' &" )*./W BN 9 '" 9E * )* * 9 '" \./W 45 J = [\ T [\ > NO 1Z % H & 9: TG 23 Y*[\ $ * '

! #$ % <'/ & ' & &  E*.E *N 9  9 ) $ 9 ' & )*./W BN 9 ' 9E * )* * 9 ' \./W 45 J = [\ T [\ > NO 1Z % H & 9: TG 23 Y*[\ $ * ' !"" #$ %1 21+ 3 1 NO 1Z % H & 9: TG 23 Y*[\ $ * ' =N> Y* TG *! > " 9: 23J #$%&' F '3 * (23 )* +0,-G.0XO/0

Detaljer

VIKTIG Å HUSKE MHT HUSORDENSREGLER

VIKTIG Å HUSKE MHT HUSORDENSREGLER VIKTIG Å HUSKE MHT HUSORDENSREGLER Ved inngåelse av leieavtale skal det alltid utleveres husordensregler, vedlagt i denne permen. Samtlige leietakere og de leietakerne gir adgang til boligen er underlagt

Detaljer

Generell støymodell for forsterkere (Mot Kap.2)

Generell støymodell for forsterkere (Mot Kap.2) Geerell øymdell fr frerkere (M Kap.) år e frear øyaalyer av re yemer vl de være uprakk å aalyere med dealjere øymdeller fr alle mulge øyklder. velger ede å bruke freklede mdeller m repreeerer flere mulge

Detaljer

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann UNIVRSITTT I GDR Gi K S M N S O P P G V : FG: FYS5 Fyikk/Kjei LÆRR: Fyikk : Pe Henik Hog Gehe Lehnn Kle: Do:.. keni, f-il: 9. 4. kenoppgen eå følgene nll ie: 6 inkl. foie / elegg nll oppge: 5 nll elegg:

Detaljer

[Skriv inn tekst]

[Skriv inn tekst] [Skriv inn tekst] 22.08.2017 1 [Skriv inn tekst] 22.08.2017 2 Korrigert dato: 4 etasjer 8 1 33 1 34 520 etasjer 1 35 6 3 etasjer 1 32 Sandlekeplass 132 133 134 135 F RI O M RÅD E/F 132L OM VEI 133 KLATRETRÆR

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVEITETET I DE imsa E K M E N O P P V E : : M-9 Maemaikk LÆE: Pe enik ogsa Klasse: Dao:.. Eksamensi a-il: 9.. Eksamensoppgaen beså a ølgene nall sie: 6 inkl. osie elegg nall oppgae: nall elegg: Tillae

Detaljer

BK3 BK4 BB1. Eikrem Panorama BB2 ØVRE EIKREM UTVIKLINGSPLAN ILLUSTRASJONSPLAN - OVERSIKT. dato LEK 225 m² Byggegrense.

BK3 BK4 BB1. Eikrem Panorama BB2 ØVRE EIKREM UTVIKLINGSPLAN ILLUSTRASJONSPLAN - OVERSIKT. dato LEK 225 m² Byggegrense. Byggeg rense ho pp ² eo 0 m Ut 15 BK3 ho pp ² eo 0 m Ut 20 ho pp ² eo 0 m Ut 75 B il. le 24 a U c + : -C etg K4 5 ho pp ² eo m Ut 150 o ph ² op Ute 130 m l. lei 30 ca + U : 4-A etg BK 6 ho opp Ute 0 m²

Detaljer

Løsningsforslag til eksempeloppgave 2 i fysikk 2, 2009

Løsningsforslag til eksempeloppgave 2 i fysikk 2, 2009 Fysikk Eksempeloppgae Løsningsfoslag il eksempeloppgae i fysikk, 9 Del Oppgae Rikige sa på flealgsoppgaene a x e: a) C b) D c) B d) C e) C f) D g) C h) D i) B j) C k) A l) B m) A n) D o) B p) D q) D )

Detaljer

Leif Agaard Ole Christian Moen. Re: Formannsliste OSS

Leif Agaard Ole Christian Moen. Re: Formannsliste OSS ef d Oe Chn Men Re mnne OSS Sm de fem de ede ene mk. "" "B" mne f fmenn ene 1891, 190 197. Medemnb beke m eedende, d de kn eee e enen de ep. me ee kendee u. en ke deuen mme. (bunde h knke nen bede?) 188

Detaljer

Gjennomgang eksamensoppgaver ECON 2200

Gjennomgang eksamensoppgaver ECON 2200 Gjeomgag eksamesoppgave ECON 00 Kjell Ae Bekke 6. mai 008 Oppgave 3 V06 a)kuvee edefo tege kuvee fo 0 ha de oppgitte egeskape y.0.5.0 0.5 0.0 3 4 5 6 7 8 9 0 3 4 5 x b)føst, mek desom optimal po tt ved

Detaljer

2. Å R S B E R E T N I N G F O R Å R S R E G N S K A P F O R M E D B U D S J E T T F O R

2. Å R S B E R E T N I N G F O R Å R S R E G N S K A P F O R M E D B U D S J E T T F O R S a m e i e t E d v a r d G r i e g s V e i 3-5 INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s am e i e rm øt e i S a m e i e t E d v a r d G r i e g s V e i 3-5, a v h o l d e s t o r s d

Detaljer