Kap. 8-4 Press- og krympeforbindelse
|
|
- Grete Enoksen
- 7 år siden
- Visninger:
Transkript
1 K. -4 Pess- og kymefobdelse.4. Dmesjoeg v kymefobdelse Dmesjoeg v kymefobdelse fslegge e essmo slk kokykke () mellom delee e lsekkelg å oveføe belsge e gldg og kke så so segee v elle ksel bl fo høy Kymefobdelse eges som ykkveggede ø Smmeføyg oås ved å bebede ves bog (d = ) oe mde e kseldmeee (d = ). TO meode Pessfobdelse ve esses å ksele e ovmg elle Kymefobdelse ve moees å ksele e bk v kefe ved ve ovmes elle ksele vkjøles fø mosje. Kokykk mlggjø oveføg v e so osjosmome og e kslkf vh fksjo Pessfobdelse k h syldeske elle koske sgsfle Pessfobdelse k kke oveføe lke høy belsg som kymefobdelse M A M M ko h. A F F ko h h Fo å gå gldg : MSK Mskkosksjo MSK Mskkosksjo
2 Kokykk mellom v og ksel Ee kymg bl foholde mellom dlfoskyvg, dmel essmo og kokykk E E E E Fo e skve elle e ø s fo og Fo e v s fo = og = Fo e ksel s fo = og = MSK Mskkosksjo 4 Beegg v kymesege ', ', ', ', Fo e ø s fo og Fo e kje kokykk () bl kymesege ksel og ve MSK Mskkosksjo
3 5 Beegg v kymesege Fo e y, skelgfomede skve som oee med vkelhsghe Fo e mssve oeede skve e hll sem ( = ) Mks. seg ved = ( sem v skve) MSK Mskkosksjo 6 Eksemel -5 MSK Mskkosksjo Rooskve Fge vse e jevykk ooskve v sål som skl kymes å e mssv sålksel ved e elv essmo å. Ude oml df oeee ooskve ved = o/m. Melegeskee fo både ooskve og ksele e = 7 kg/m, E = GP og =,. ) Beeg segee ooskve ved kokfle åkje lsd fo både ll ll og de dfslle. b) Ude df k ooskve løse desom fobdelse oeee ved e ll løs som gjø dffese mellom dlfoskyvgee e lk hlve de dmele essmoe. F dee lle ( løs ) og segee å ooskve løse.
4 Ko om olese Behov fo olese: femsllg v dele med eksk fom og mål e hveke mlg elle ødvedg Ko om olese - målolese Geeelle olese fo leæe mål Tolese: = ll vvk f de sesfsee mål å e egg = Øve gese mål Nede gese mål (dffese) Hvod gs olesee å egge? Noe ekle eksemle Geg v olese: ) Oveflekvle ) Målolese ) Tolese fo leæe og vkel mål b) Psgsolese (ISO olese) ) Geomeske olese Beegelse f fo f oleseklsse m fo mddels oleseklsse c fo gov oleseklsse v fo mege gov oleseklsse Geeelle olese gs å egge ved å skve følgede elle æhee v elfele: ISO-76-m o NS-ISO-76-m MSK Mskkosksjo 7 MSK Mskkosksjo
5 Ko om olese - Psgsolese ISO olesesysem Beyes fo komoee som skl væe lsse hvede me ess, de de geeelle olese kke ege seg. NS-ISO sdd g olesee med (e/o) boksv(e) og e ll Boksvkode g belggehee v oleseomåde som e bssvvk, dvs. vsde l bssmåle Soe boksve beyes fo vedg mål (bog): Boksvkode A g de søse boge Små boksve fo vedg mål (ksel): Boksvkode g de mse ksele Tllkode g IT-gde (olesegde) ee bellvede Psgsolese Psgsolesee gs v ISO 6 med følgede vedelses omåde Målevekøy, odksjosolke IT, IT, IT... IT6 Mskkomoee IT5 IT Delvs fedge odke IT IT6 Kosksjosdele (sk) IT6 IT F. eks. H7 (fo bog) og h7 (fo ksel). MSK Mskkosksjo 9 MSK Mskkosksjo
6 Psgsolese Tolesegdee eges m ( -6 m) f bssmåle e vhegg v bssmåles søelse og s v belle (se Tbell ). Tolesebelggehe fo bog og ksel Skjemsk femsllg v bssvvkees belggehe + A.o.m H lgge ove -lje (+ sde) JS e symmesk f -lje J og K lgge ove el. de -lje M.o.m. ZC lgge de -lje Ag v Tbell + Ag v Tbell Ag v Tbell Tolese fo Ø5H7 e,5 mm Belggehee gs v boksve H.o.m h lgge de -lje js e symmesk f -lje j og k lgge ove el. de -lje m.o.m. c lgge ove -lje MSK Mskkosksjo MSK Mskkosksjo
7 Psge Ske le lsgsbed ved moeg Ske bybhe fo lle dele e odk. Ag gde v bevegelghe elle fsklemmg besem v foskjelle mellom smmehøede dmesjoe fø smmesege. Fo ess- elle kymefobdelse skl de væe osv essmo Mksmm essmo: mx = d, mx d b, m Mmm essmo: m = d, m d b, mx Psge Fo bog og ksel k sge, vhegg v oleseomådee, væe: Klgssg gee klg mellom delee (dvs. = d d b < ) Mellomsg g ee klg elle ess Pesssg gee ess mellom delee (dvs. = d d b > ) ES øve vvk fo bog EI ede vvk fo bog es øve vvk fo ksel e ede vvk fo ksel MSK Mskkosksjo MSK Mskkosksjo 4
8 Psge H7- og h7-syseme Smme dmeefoskjell k oås ved mge foskjellge kombsjoe v bog- og kselolese lle odksjos- og målevekøy må begeses To syseme bk Bogsbsssysem (H-olese fo bog) olese fo bog velges og foskjellge sge oås ved å velge belggehee fo kselolese. (Aksele skl odsees) - mes bk fo mskkomoee. THE END Akselbsssysem (h-olese fo ksel) olese fo ksel velges og foskjellge sge oås ved å velge belggehee fo bogsole. (Boge skl odsees) - mes bk fo dele (dvs. devces, smee, osv.). LYKKE TIL EKSAMEN!! MSK Mskkosksjo 5 MSK Mskkosksjo 6
Newtons tredje lov. Kinematikk i to og tre dimensjoner
Newons ede lo Knemkk o og e dmensone 31.1.213 husk: nnleeng oblg #1 Mndg, 4.eb. kl.1 YS-MEK 111 31.1.213 1 Newons ede lo: Enhe knng h lld og lsende en moknng, elle den gensdge påknng o legeme på hende
DetaljerModul 1 15 studiepoeng, internt kurs Notodden/Porsgrunn
Høgskole i Telemk Avdelig fo estetiske fg, folkekultu og læeutdig BOKMÅL 4. mi 007 EKSAMEN I MATEMATIKK 3 Tid: 6 time Modul 5 studiepoeg, itet kus Notodde/Posgu Oppgvesettet e på 7 side (ikludet fomelsmlig).
DetaljerBASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12.
BASISÅR I IDRETTSVITENSKAP 1/11 Us indiiduell skiflig eksmen i 1BA 111- Beegelseslæe Mndg. ugus 11 kl. 1.-1. Hjelpemidle: klkulo og elle i fysikk Eksmensoppgen eså 3 side inklude fosiden Sensufis: 1. sepeme
DetaljerFakultet for teknologi, kunst og design Teknologiske fag
Fultet fo teologi, ust og desig Teologise fg Esme i: Diset mtemti Målfom: omål Dto: 8005 Tid: 5 time / l 9-4 tll side il foside: 0 tll ogve: 0 Tilltte hjelemidle: Fohådsgodjet odo Hådholdt lulto som ie
Detaljerbedre læring Handlingsplan for bærumsskolen mot 2020 Relasjons- og ledelseskompetanse/vurdering for læring/digital didaktikk
bee læng Hanlngsplan fo bæumsskolen mo 2020 Relasjons- og leelseskompeanse/vueng fo læng/gal akkk fe uvklngsomåe skolemelngen pesenee fe uvklngsomåe Længsoppage Den ykge læe bee læng Skolemelng fo bæumsskolen
DetaljerTransistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur:
0. Foseke akiekue Nå e asiso skal bukes il e foseke, oscillao, file, seso, ec. så vil de væe behov fo passive elemee som mosade, kodesaoe og spole ud asisoe. Disse vil søge fo biasig slik a asisoe få ikig
Detaljer2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r
I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 1 0 O r d i n æ r g e n e r a l f o r s a m l i n g i, a v h o l d e s m a n d a g 3. m ai 2 0 1 0, k l. 1 8 0 0 p å T r e
DetaljerFAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVEITETET I GDE Gid E K E N O G V E : FG: FY6 Fikk/Kjei LÆE: Fikk : e Henik Hogd Kjei : Gehe Lehnn Kle: Do: 7.5. Ekenid, f-il: 9.. Ekenogen beå følgende nll ide: 6 inkl. foide og edlegg nll oge: 5 nll
DetaljerNotat: Dekker pensum i beskrivende statistikk
Notat: Dekke pesum eskvede statstkk.3 Beskvede statstkk (sde 9 læeoka - 4. utgave) Beskvede (deskptv) statstkk omfatte samlg, eaedg og pesetasjo av data (tallmateale, osevasjoe, måleesultate). Nå følge
DetaljerFlerpartikkelsystemer Massesenter
lepakkelsysee assesene.4.3 YS-EK.4.3 YS-EK.4.3 Kollsjone beang a beegelsesenge:,,,, p p p p elassk kollsjon beang a eneg,,,,,,,,,, ( ( fullseng uelassk kollsjon:,,,,,, esusjonskoeffsen: uelassk kollsjon:,,,,
DetaljerFAG: FYS121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNIVERSIEE I GDER Gd E K S M E N S O P P G V E : G: YS kk LÆRER: kk : Pe Henk Hogd Kle: Do: 5.. Ekend, f-l: 9.. Ekenoppgen beå følgende nll de: 5 nkl. fode nll oppge: nll edlegg: lle hjelpedle e: Klkulo
DetaljerSk ie n ko mm une. R EG UL E R I N GS B ES T E MM E L SER T I L D eta ljr e gu l e ri n g
R EG UL E R I N GS B ES T E MM E L SER T I L D eta ljr e gu l e ri n g K j ø r b ekk d a l en 12 D 220 / 211 m. fl R e g u l e r i n g s be s te mm e ls e r sist date r t 27.09.17. P l an k a r t sist
DetaljerFAG: FYS118 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Thomas Gjesteland
UNIVESITETET I GDE Giad E K S M E N S O P P G V E : FG: FYS8 Fikk LÆE: Fikk : Pe Henik Hogad Thoa Gjeeland Klae: Dao:.5.6 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende nall ide: 6 inkl. foide nall
DetaljerINNKALLING TIL ORDINÆRT SAMEIERMØTE 2009
INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009 O r d i n æ r t s am e i e rm øt e i R u d s h ø g d a V B / S, a v h o l d e s m a n d a g 1 6. m a r s k l. 1 8 : 0 0 p å L o f s r u d s k o l e, L i l l e a
DetaljerRefleksjon og transmisjon av transverselle bølger på en streng
Reflesjon og ansmsjon av ansveselle bølge på en seng Fgu vse o lange senge med masse pe lengde og 2 som e sjøe sammen ogo, x 0. x-asen lgge paallel med sengen. V sal se hva som sje med en bølge som passee
DetaljerKap. 8 Bevegelsesmengde. Flerpartikkelsystem. Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Sentralt elastisk støt. Generell løsning: kap8.
Kap. 8 evegelsesmengde. Flepatkkelsystem. V skal se på: ewtons 2. lov på ny. Defnsjon evegelsesmengde. Kaftstøt, mpuls. Impulsloven. Flepatkkelsysteme: Kollsjone: Elastsk, uelastsk, fullstendg uelastsk
DetaljerLøsning øving 9 ( ) ( ) sin ( )
nsttutt fo fskk, NTNU Fg SF 4 Elektomgnetsme og MNFFY Elektstet og mgnetsme Høst Løsnng øvng 9 Oppgve Ktesske koodnte: Enhetsvektoen stå nomlt på, som dnne en vnkel med -ksen. Det et t dnne en vnkel med
DetaljerLøsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n.
Løsgsforslag ST20/ST620 205, kotuasjoseksame. a Rmelghetsfuksjoe blr Logartme Derverer Løser lgge Løsge er SME: L = 2 e l L = 2 l X X. X + l X. l L = 2 + 2 X = 2. ˆ = 2 X. X. b Her ka ma beytte trasformasjosformele,
DetaljerRekursjon. I. Et enkelt eksempel
Reusj I. ET ENKELT EKSEMPEL II. TRE AV REKURSIVE KALL, eusjsdybde temeg dg III.INDUKTIVE DATA TYPER g Reusj ve Dt Type IV. SPLITT OG HERSK PROBLEMLØSNING VED REKURSJON Kp. 8.. V. REKURSJONS EEKTIVITET
DetaljerTillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1 En funksjon f er gitt ved f ( x) ( x 2) e x.
UNIVERSITETET I BERGEN De maemaisk-nauvienskapelige fakule Eksamen i emne MAT Bukekus i maemaikk Fedag 8 febua, kl 9-4 BOKMÅL Tillae hjelpemidle: Læebok og kalkulao i samsva med fakulee sine egle Oppgave
DetaljerKapittel 9 ALGEBRA. Hva er algebra?
Kpttel 9 ALGEBRA Hv er lger? Kpttel 9 ALGEBRA Alger Ekelt k v s t lger er å rege me okstver steet for tll. Når v løser lgger, står okstve (vlgvs for et estemt tll. Når v ruker lger tl å utlee formler eller
DetaljerFAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013
FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN 5.- 6. JUNI 201 3 A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 09. 0 0 1 0. 0 0 R E G I S TR E R I NG N o e å b i t e i 10. 0 0 1 0. 15 Å p n i ng
DetaljerFAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVESITETET I GDE Gims E K S M E N S P P G V E G M-9 Memi LÆE Pe Heni Hos Klsse Do.. Esmensi -il 9.. Esmensoppven eså v ølene nll sie inl. osie vele nll oppve nll vele Tille hjelpemile e Kllo Hos omle
DetaljerVedlegg til eksamensoppgaven i Diskret matematikk
Vedlegg til esmesogve i Diset mtemti Det som stå he vil væe iholdet i esmesogves vedlegg høste 4 Deiisjoe og omle Logise oetoe: ie, og, elle, eslusiv elle, imlisjo Noe evivlese utsgslogi: P P P P Noe megdeidetitete:
DetaljerK j æ r e b e b o e r!
K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i
Detaljern r : Jf. brevet som følgjer med saka
: Jf. bevet som følgje med saka N Koodiat Sok Objekttype 1 / 2 0 1 3 K O M M U N E ( 1920 Lavage K A R T B L A D : am): GAB-id. (g, b, ad.kode, skivemåtealteativ S=syfaig H=hyd. oig. B=bev spåk el. kvesk
DetaljerFAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNVETETET AGDE Gid E K A E N O G A V E : FAG: FY Fikk/Kjei ÆE: Fikk : e Henik Hogd Kjei : Gehe ehnn Kle: Do: 7.5. Ekenid, -il: 9.. Ekenoppgen beå ølgende Anll ide: 6 inkl. oide og edlegg Anll oppge: 5
DetaljerSERVICEERKLÆRING 1. Innledning 2. Demokrati, samarbeid og medvirkning 3. Generell informasjon 4. Internasjonalisering
SERVICEERKLÆRING 1. Innlednngg 2. Demokt, smbed og medvknng 3. Geneell nomsjon b 4. Intensjonlseng e 5. Studestt 6. Studegjennomøngen 7. Bblotek 8. IT l 9. Studentveled 1. Innlednng g 2. Demokt, smbed
DetaljerFAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVEITETET I AGDE Gid E K A E N O G A V E : FAG: FY7 Fikk/Kjei LÆE: Fikk : e Henik Hogd Kjei : Gehe Lehnn Kle: Do: 7.. Ekenid, f-il: 9.. Ekenoppgen beå følgende Anll ide: 6 inkl. foide og edlegg Anll
DetaljerNye opplysninger i en deloppgave gjelder bare denne deloppgaven.
Oppgave a) Hva e åvedie av k o 7 å å ea e 5 %? b) Aa a du see k i bake. Hvo ye ka du heve ee å å ea e 5 % de føse 4 åee og deee sige il 7 % ålig? c) E bukbil kose k. Bile ka selges fo k 7 ee 6 å. Hva e
DetaljerGenerell informasjon om vanlige sfæriske lagere
og STANGENDER Innholdsfortegnelse: Innholdsfortegnelse og generell informasjon 14.1 GE-E-ES-2RS 14.2 GE-ES-Niro 14.3 GEG-E-ES-2RS 14.4 GEEM-ES-2RS 14.5 GEEW-E-ES 14.6 SA-E-ES-2RS 14.7 SABP-S 14.8 SAJK
DetaljerStivt legemers dynamikk
Stvt legees dnakk 8.04.06 FYS-MEK 0 8.04.06 Spnn spnn o punkt fo en patkkel ed asse og bevegelsesengde p: l p spnnsats: net d l Newtons ande lov: F net d p uten netto kaftoent e spnn bevat l kˆ l kˆ ˆj
DetaljerTMA4245 Statistikk Eksamen mai 2016
Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Lar X være kvadratprse. Har da at X N(µ, σ 2 ), med µ 30 og σ 2 2, 5 2. P (X < 30) P (X < µ) 0.5 ( X 30 P (X > 25)
DetaljerOppgave 1 ECON 2130 EKSAMEN 2011 VÅR
ECON 30 EKSAMEN 0 VÅR Oppgave E bedrf øsker å fordele koraker e vesergsprosjek hel lfeldg på 3 frmaer, A, B og C. Uvelgelse skjer ved loddrekg. Loddrekge er slk a hver av frmaee A, B og C, har e mulghe
DetaljerS T Y R E T G J Ø R O P P M E R K S O M P Å A T D Ø R E N E S T E N G E S K L
K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i
DetaljerEKSAMENSOPPGAVE. Fag: Fysikk/Elektro Fagnr: FO340A Faglig veileder: Rolf Ingebrigtsen
HØGSKOLN OSLO delng fo ngenøudnnng KSMNSOPPG g: yskk/leko gn: O3 glg elede: Rolf ngebgsen Klsse(): 1, 1, 1 Do:. ugus 8 ksensoppgen beså lle hjelpe- dle: nll sde: nkl. s. edlegg NGN skflge, kun godkjen
DetaljerLU skal gjøre at Paraguay som misjonsfelt blir bedre kjent. LU skal gi informasjon til utsendermenighet, KM og RS i Norge
Puy Fomået med K/LU Bede fomjofomd LU k jøe t Puy om mjofet b bede kjet LU k fomjo t utedemehet, K o Noe LU k mujøe bede beutu fo mjoe mehetee LU k utvke webde fo Puy om k b e eu fo mehetee LU k t buk
DetaljerI n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e
I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s a m e i e r m ø t e i L i s a K r i s t o f f e r s e n s P l a s s S E, a v h o l d e s o ns d a g 9. m a r s
DetaljerSØKNADSSKJ EMA. Helsesportsuka 2017 Olderfjord, Porsanger. Arrangør: Lions Club Porsanger mars 2017
SØKNADSSKJ EMA Helsespotsuka 2017 Oldefjod, Posange Aangø: Lions Club Posange 24 31. mas 2017 Det e viktig at alle spøsmål bli besvat mest mulig koekt fo at søknaden skal bli koekt behandlet. Det e kun
DetaljerTre klasser kollisjoner (eksempel: kast mot vegg)
Kap. 8 Bevegelsesmengde. Kollsjone. assesente. V skal se på: ewtons. lov på ny: Defnsjon bevegelsesmengde Kollsjone: Kaftstøt, mpuls. Impulsloven Elastsk, uelastsk, fullstendg uelastsk assesente (tyngdepunkt)
DetaljerFAG: FYS114 Fysikk/kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVERSITETET I GDER Gad E K S M E N S O G V E : FG: FYS Fkk/kje LÆRER: Fkk : e Henk Hogad Kje : Gehe Lehann Klae: Dao:.5. Ekaend, fa-l: 9.. Ekaenoppgaen beå a følgende nall de: nkl. fode nall oppgae:
DetaljerK j æ r e b e b o e r!
K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g e t s å r s b e r e t n i
DetaljerForelesning 3 mandag den 25. august
Forelesg adag de 5 august Merkad 171 For å bevse e propossjo o heltall so volverer to eller flere varabler, er det typsk ye lettere å beytte duksjo på e av varablee e duksjo på oe av de adre Det er for
DetaljerAvdeling for ingeniørutdanning. Eksamen i Diskret matematikk
wwwhioo Avdelig fo igeiøutdig Esme i Diset mtemti Dto: 3 feu Tid: 9 4 Atll side ilusive foside: 7 Atll oppgve: Tilltte hjelpemidle: Ku hådholdt lulto som ie ommuisee tådløst Med: Kdidte må selv otollee
DetaljerI n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e
I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s am e i e rm øt e i L y s e T e r r a s s e B s, a v h o l d e s o n s d a g 1 6. 0 3. 20 1 1, k l. 1 8 : 0 0 p
DetaljerMakroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende:
B. Makroøkoom Oppgave: Forklar påstades hold og drøft hvlke alteratv v står overfor: Fast valutakurs, selvstedg retepoltkk og fre kaptalbevegelser er kke forelg på samme td. Makroøkoom Iledg Mudells trlemma
DetaljerJeg har en venn. Ó j œ. # œ œ. œ œ. Ó J. œ œ. œ œ œ œ. œ œ. œ œ. œ œ œ. œ œ. œ œ œ. œ œ. œ œ. Norsk trad. arr Mattias Ristholm. Soprano.
eg vn Norsk trd rr Mts Rstholm oprno 4 3 Ó # eg vn gett stt lv, for eg skll få le ve Det ss 4 3 Ó eg vn gett stt lv, for eg skll få le ve Det 6 fn nes n l t n tv Det nyt t å stre ve For d eg le v så Ó
DetaljerKraftelektronikk (Elkraft 2 høst), Løsningsforslag til øvingssett 2, høst 2005
Krfelekronkk Elkrf hø, Lønngforlg l øvnge, hø 5 Ole-Moren Mgår HA 5 Oppgve 4 3 v voe vol - - -3-4 p p 3p 4p V v 3 3 n V [ co ] 3 3. 5 b Derom nvenelen krever ørre røm enn lgjengelge hlvleerkomponener åler,
DetaljerLøsningsforslag FY105-eksamen 15. januar 2004
Løsgsfoslag FY5-esae 5. jaua 4 Oppgae a) Newos.lo på losse g x x x+ x ed få x+ x Isa x() dffeesallgge: A s( + ϕ) + As( + ϕ) so se a x () As( ϕ) + e e løsg. Fa x ( ) Asϕ ϕ få : x() () A b) Toaleege l sysee
DetaljerVedlegg 3, detaljert oversikt over tiltak, kostnader og planstatus
Vedlegg 3, dealje vesk ve lak, ksnade g plansaus lan f sykkellak, 2002-2011 Vedlegg 3 nnehlde dealje vesk ve bl.a. lak, ksnade g plansaus. Nedenf fnnes en fklang l abellene: Seknng Beskve de ulke delseknngene
DetaljerP r in s ipp s ø k n a d. R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e
P r in s ipp s ø k n a d R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e O pp d ra g s n r : 2 0 1 50 50 O pp d ra g s n a v n : Sa n d s ta d g å r d
DetaljerAlternativer Mosjøen vgs
Alternativer Mosjøen vgs Alternativer Areal (m 2 BTA) Grad av samlokalisering 0 Nullalternativet 20 600 Tredelt løsning (som i dag) 0+ Nullpluss-alternativet 20 600 Tredelt løsning (som i dag) Fullinvesteringsalternativer
DetaljerK j æ r e b e b o e r!
K j æ r e b e b o e r! D u h o l d e r n å i n n k a l l i n g e n t i l år e t s g e n e r a l f o rs am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i n
DetaljerINNKALLING TIL ORDINÆRT SAMEIERMØTE 2010
INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s a m e i e r m ø t e i S / E S o r g e n f r i g a t e n 3 4, a v h o l d e s o ns d a g 1 0. m a rs 2 0 1 0 k l. 1 8. 0 0 i K l u b b r o m m
DetaljerK j æ r e b e b o e r!
1 H o v i n B o r e t t s l a g K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s
Detaljerskole.. FAUSKE KOMMUNE Sammendrag: Saksopplysninger: RESSURSFORDELINGEN TIL SKOLENE FOR SKOLEÅRET 2013/14 SAKSPAPIR
SAKSPAPR FAUSKE KMMUNE 3/589 Akv JoualpostD: sakd.: 3/63 Saksbehandle: Ave Rolandsen Sluttbehandlede vedtaksnstans: Dftsutvalget Sak n.: 08/3 DRFTSUTV AG Dato: 0.04.03 RESSURSFRDENGEN T SKENE FR SKEÅRET
DetaljerINNKALLING TIL ORDINÆRT SAMEIERMØTE 2009
INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009 O r d i n æ r t s am e i e rm øt e i, a v h o l d e s t o r s d a g 2 6. 0 3. 20 0 9, k l. 1 8 : 0 0 p å L y s e j o r d e t s k o l e, V æ k e r ø v e i e n 1
DetaljerFAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNIVEITETET I GDE Gid E K M E N O G V E : FG: FY Fikk LÆE: Fikk : e Henik Hogd Kle: Do:.5.6 Ekenid, f-il: 9. 4. Ekenoppgen beå følgende nll ide: 6 inkl. foide nll oppge: 4 nll edlegg: Tille hjelpeidle
DetaljerI n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e
1 S a m e i e t S o l h a u g e n I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s am e i e rm øt e i S am e i e t S o l h a u g e n, a v h o l d e s o n s d a
DetaljerFAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Margrethe Wold
UNVEEE DE ad E K M E N O P P V E : F: FY Fkk ÆE: Fkk : Pe Henk Hogad Magehe Wold Klae: Dao:..5 Ekaend, fa-l: 9.. Ekaenoppgaen beå a følgende nall de: 6 nkl. fode nall oppgae: nall edlegg: llae hjelpedle
DetaljerK j æ r e b e b o e r!
K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i
DetaljerKinematikk i to og tre dimensjoner 29.01.2014
Knemkk o og re dmensoner 29.1.214 FYS-MEK 111 29.1.214 1 hp://pngo.up.de/ ccess numer:7182 En len l der en sørre lsel som hr død er. Mssen l lselen er sørre enn mssen l len. Hlke følgende usgn er korrek?
DetaljerFAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVEITETET I AGDE Gid E K A E N O G A V E : FAG: FY Fikk/Kjei LÆE: Fikk : e Henik Hogd Kjei : Gehe Lehnn Kle: Do: 7.5. Ekenid, f-il: 9.. Ekenoppgen beå følgende Anll ide: 6 inkl. foide og edlegg Anll
DetaljerForelesning 17 torsdag den 16. oktober
Forelesnng 17 torsdag den 16. oktober 4.12 Orden modulo et prmtall Defnsjon 4.12.1. La p være et prmtall. La x være et heltall slk at det kke er sant at x 0 Et naturlg tall t er ordenen tl a modulo p dersom
DetaljerI N N K A L L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E
I N N K A L L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E 2 0 0 9 O r d i n æ r t s am e i e rm øt e i S am e i e t W al d em a rs H a g e, a v h o l d e s t o rs d a g 1 8. j u n i 2 0 0 9, k l.
DetaljerEks. 1, forts. av: Hvor stor er 1 coulomb? Kap. 23 Elektrisk potensial
Kp23 26.1.215 Kp. 23 Eektsk potens Sk defnee p gunng v eektsk fet E: Eektsk potense eneg, U Eektsk potens, V (Ketsteknkk: E. potensfoskje spennng) Ekvpotensfte Potensgdent og eektsk fet. Eks. 1, fots.
DetaljerI N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E
I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E 2 0 0 9 O r d i næ r t s am e i e rm ø t e i S am b o b o l i g s a m ei e fi n n e r s t e d t o r s d ag 3 0. 0 4. 2 0 0 9 K l. 1 8. 3 0
DetaljerFAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNIVERSIEE I AGDER Gid E K S A M E N S O P P G A V E : AG: YS ikk LÆRER: ikk : Pe Henik Hogd Kle: Do: 5.. Ekenid, f-il: 9.. Ekenoppgen beå følgende Anll ide: 5 inkl. foide Anll oppge: Anll edlegg: ille
DetaljerFAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVESITETET I AGDE Gimsa E K S A E N S O P P G A V E : FAG: A-9 aemaikk ÆE: Pe Heik Hogsa Klasse: Dao: 5.. Eksamesi, fa-il: 9.. Eksamesoppgave beså av følgee Aall sie: 5 ikl. fosie Aall oppgave: 5 Aall
DetaljerLekestativ MaxiSwing
Moteigsveiledig og vedliehold v31 Leestativ MaxiSig At : 1740 Leestativet e poduset ette følgede stadad og dietiv: EN 71; 2009/48/EU Poduset: IMPREST AS Näituse 25 50409 Tatu Estoia Moteigsveiledig og
DetaljerI n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e
1 V a l d r e s g t 1 6 S / E I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s am e i e rm øt e i V a l d r es g t 1 6 S / E, a v h o l d e s o n s d a g 2 7. a
DetaljerTMA4245 Statistikk Eksamen august 2014
Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Y 5 PY > 53) PY 53) P ) 53 5 Φ5) 933 668 Vekte av e fylt flaske, X + Y, er e leærkombasjo av uavhegge ormalfordelte
DetaljerSosialantropologisk institutt
Sosialantropologisk institutt Eksamensoppgaver til SOSANT2000: Generell antropologi: grunnlagsproblemer og kjernespørsmål Utsatt eksamen Høsten 2004 Skoleeksamen 16. desember kl. 9-15, Lesesal B, Eilert
DetaljerSeminaroppgaver for uke 13
1 ECON 2130 2016 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver) La X og Y være to uavhegge
Detaljersosiale behov FASE 2: Haug barnehage 2011-2012
: Hva kjennetegne bana i denne fasen? De voksnes olle Banemøte Påkledning Samlinge Måltid Posjekte Uteleik Konfliktløsning Vudeing Haug banehage 2011-2012 «Omsog, oppdagelse og læing i banehagen skal femme
DetaljerRegler om normalfordelingen
1 HG mars 2009 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette
DetaljerOppgave 3, SØK400 våren 2002, v/d. Lund
Oppgave 3, SØK400 våren 00, v/d. Lnd En bonde bonde dyrker poteter. Hvs det blr mldvær, blr avlngen 0. Hvs det blr frost, blr avlngen. Naboen bonde, som vl være tsatt for samme vær, dyrker også poteter,
DetaljerEt enkelt eksempel. terminering. i-120 : H Rekursjon: 1. invarianter (notat til Krogdahl&Haveraaen) ... t.o.m. som hale-rekursjon
Itesj tl eusj /** @pm > @etu... t sumw(t ) { t es =; whle ( > ) { es = es ; = ; etu es; /** @pm > @etu... t sumr(t ) { f ( == ) etu ; etu sumr(-); Geeellt, dg e % tg: t Ite(t ) { es= t; whle ( ftsett()
DetaljerINNKALLING TIL ORDINÆRT SAMEIERMØTE 2010
INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s am e i e rm øt e i U l l e r n s k og e n B o l i gs am e i e, a v h o l d e s t i rs d a g 2 7. a p r i l 2 0 1 0, k l. 1 8 : 3 0 p å B j ø r
DetaljerKap 4.3 Tannhjul og tannhjulvekslinger. Kap 4.3 Tannhjul og tannhjulvekslinger. Innhold. sylindrisk tannhjul. 1. Innledning begrep
Kap 4.3 Tannhjul og tannhjulvekslnge Kap 4.3 Tannhjul og tannhjulvekslnge Innhold. Innlednng begep. Kot om geometen tl et enkelt sylndsk tannhjul 3. Knematkken tl et pa tannhjul nngep 4. Stykebeegnng av
DetaljerO v e rfø rin g fra s to rt a n le g g til m in d re a n le g g
O v e rfø rin g fra s to rt a n le g g til m in d re a n le g g H v a k a n e n m in d re k o m m u n e ta m e d s e g? Iv a r S o lv i B enc hm a rk ing Wa ter S olutions E t s p ø rs m å l s o m m a
DetaljerFAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNVEEE DE ad E K M E N O P P V E : F: FY Fkk ÆE: Fkk : Pe Henk Hogad Klae: Dao:..5 Ekaend, fa-l: 9.. Ekaenoppgaen beå a følgende nall de: 5 nkl. fode nall oppgae: nall edlegg: llae hjelpedle e: Kalkulao
DetaljerRegler om normalfordelingen
HG mars 0 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette kurset.
DetaljerFAG: Fysikk fellesdel LÆRER: Fysikk : Per Henrik Hogstad
UNIVERSITETET I AGDER Giad E K S A M E N S O P P G A V E : FAG: Fikk felledel LÆRER: Fikk : Pe Henik Hogad Klae: Dao:.5.8 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: Anall oppgae: Anall
Detaljer[ ] [ ] [ ] [ ] [ ] [ ] [ ] Kap 03 Bevegelse i to eller tre dimensjoner
Kp Beegele o elle e denone. Ben SRel/SVdeo l å ulee følgende pkkel-beegele udee hghe og keleon -d: Sulengen fnne du på fgden elg Vdeo elle h denne URL-deen: hp://gd.u.no/pehh/phh/mric/srel/no/srelp/aa_/srel_phc_k_vel
DetaljerINNKALLING TIL ORDINÆRT SAMEIERMØTE 2010
INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s am e i e rm øt e i S am B o B o l i g s am e i e, a v h o l d es o ns d a g 2 8. 04. 2 0 1 0, k l. 1 8. 3 0 i G r ef s e n m e n i g h e t s s
DetaljerFAG: FYS121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNIVERSITETET I GDER Gad E K S M E N S O P P G V E : FG: FYS Fkk LÆRER: Fkk : Pe Henk Hogad Klae: Dao:.5. Ekaend, fa-l: 9.. Ekaenoppgaen beå a følgende nall de: 6 nkl. fode nall oppgae: nall edlegg: Tllae
DetaljerNARF årsmøte 2012. 14. - 15. juni Radisson Blu Atlantic Hotel Stavanger
NARF åsøte 2012 14. - 15. juni Rdisson Blu Atlntic Hotel Stvnge T e Velkoen til åsøte 2012 Vi skl utvikle oss ot en stekee, e synlig og ttktiv bnsje. NARFs Åsøte 2012 sette ed disse odene søkelyset på
DetaljerK j æ r e b e b o e r!
K j æ r e b e b o e r! D e t t e e r i n n k a l l i n g e n t i l å r e t s g e n er a l f o r s a m l i n g. D e n i n n e h o l d e r b o r e t t s l a g e t s å r s m e l d i n g o g r e g n s k a
Detaljer!"" #$ % <'/ & ' & & " E*.E *N 9 " 9 ) $ 9 ' &" )*./W BN 9 '" 9E * )* * 9 '" \./W 45 J = [\ T [\ > NO 1Z % H & 9: TG 23 Y*[\ $ * '
!"" #$ %1 21+ 3 1 NO 1Z % H & 9: TG 23 Y*[\ $ * ' =N> Y* TG *! > " 9: 23J #$%&' F '3 * (23 )* +0,-G.0XO/0
DetaljerVIKTIG Å HUSKE MHT HUSORDENSREGLER
VIKTIG Å HUSKE MHT HUSORDENSREGLER Ved inngåelse av leieavtale skal det alltid utleveres husordensregler, vedlagt i denne permen. Samtlige leietakere og de leietakerne gir adgang til boligen er underlagt
DetaljerGenerell støymodell for forsterkere (Mot Kap.2)
Geerell øymdell fr frerkere (M Kap.) år e frear øyaalyer av re yemer vl de være uprakk å aalyere med dealjere øymdeller fr alle mulge øyklder. velger ede å bruke freklede mdeller m repreeerer flere mulge
DetaljerFAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann
UNIVRSITTT I GDR Gi K S M N S O P P G V : FG: FYS5 Fyikk/Kjei LÆRR: Fyikk : Pe Henik Hog Gehe Lehnn Kle: Do:.. keni, f-il: 9. 4. kenoppgen eå følgene nll ie: 6 inkl. foie / elegg nll oppge: 5 nll elegg:
Detaljer[Skriv inn tekst]
[Skriv inn tekst] 22.08.2017 1 [Skriv inn tekst] 22.08.2017 2 Korrigert dato: 4 etasjer 8 1 33 1 34 520 etasjer 1 35 6 3 etasjer 1 32 Sandlekeplass 132 133 134 135 F RI O M RÅD E/F 132L OM VEI 133 KLATRETRÆR
DetaljerFAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVEITETET I DE imsa E K M E N O P P V E : : M-9 Maemaikk LÆE: Pe enik ogsa Klasse: Dao:.. Eksamensi a-il: 9.. Eksamensoppgaen beså a ølgene nall sie: 6 inkl. osie elegg nall oppgae: nall elegg: Tillae
DetaljerBK3 BK4 BB1. Eikrem Panorama BB2 ØVRE EIKREM UTVIKLINGSPLAN ILLUSTRASJONSPLAN - OVERSIKT. dato LEK 225 m² Byggegrense.
Byggeg rense ho pp ² eo 0 m Ut 15 BK3 ho pp ² eo 0 m Ut 20 ho pp ² eo 0 m Ut 75 B il. le 24 a U c + : -C etg K4 5 ho pp ² eo m Ut 150 o ph ² op Ute 130 m l. lei 30 ca + U : 4-A etg BK 6 ho opp Ute 0 m²
DetaljerLøsningsforslag til eksempeloppgave 2 i fysikk 2, 2009
Fysikk Eksempeloppgae Løsningsfoslag il eksempeloppgae i fysikk, 9 Del Oppgae Rikige sa på flealgsoppgaene a x e: a) C b) D c) B d) C e) C f) D g) C h) D i) B j) C k) A l) B m) A n) D o) B p) D q) D )
DetaljerLeif Agaard Ole Christian Moen. Re: Formannsliste OSS
ef d Oe Chn Men Re mnne OSS Sm de fem de ede ene mk. "" "B" mne f fmenn ene 1891, 190 197. Medemnb beke m eedende, d de kn eee e enen de ep. me ee kendee u. en ke deuen mme. (bunde h knke nen bede?) 188
DetaljerGjennomgang eksamensoppgaver ECON 2200
Gjeomgag eksamesoppgave ECON 00 Kjell Ae Bekke 6. mai 008 Oppgave 3 V06 a)kuvee edefo tege kuvee fo 0 ha de oppgitte egeskape y.0.5.0 0.5 0.0 3 4 5 6 7 8 9 0 3 4 5 x b)føst, mek desom optimal po tt ved
Detaljer2. Å R S B E R E T N I N G F O R Å R S R E G N S K A P F O R M E D B U D S J E T T F O R
S a m e i e t E d v a r d G r i e g s V e i 3-5 INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s am e i e rm øt e i S a m e i e t E d v a r d G r i e g s V e i 3-5, a v h o l d e s t o r s d
Detaljer