Equations fondamentales de la mécanique linéaire de la rupture

Størrelse: px
Begynne med side:

Download "Equations fondamentales de la mécanique linéaire de la rupture"

Transkript

1 //5 Aee A Equatios fodaetales de la écaique liéaie de la uptue A. Zeghloul MMAE appels d élasticité plae octio d Ai e vaiables coplees epésetatio des déplaceets et des cotaites Epessio du toseu des effots Potetiels coplees das u doaie oé et ultipleet oee Potetiels coplees das u doaie ifii et ultipleet oee Plaque copotat u petit tou ciculaie Méthode utilisat l itégale de auch Plaque copotat u petit tou elliptique Méthode de Westegaad pou les fissues

2 //5 f appels d élasticité Equatios de copoteet Equatios d équilibe Equatios de copatibilité olutios véifiat les L Equatios de copoteet (loi de Hooe) υ υ E E ( tace ) µ λ( tace) E µ v λ Ev v v λ v bλ µ g v λ 3 E E µ λ µ µ b3λ µ g λ µ Etats plas : : L NM L NM µ λ λ µ µ λ λ µ c h QP c h QP µ λ λ e défoatios plaes λ µ λ e cotaites plaes λ µ Pa la suite, état de défoatios plaes : :

3 //5 ésolutio pa la éthode d Ai - Equatios d équilibe div f f X Y,,,, X Y H G K J b Vg,,, V, f gad V où V V (, ) V A V A A,,, V X V Y A foctio dai - Equatios de copatibilité i, l l, i il,, il ( il ) ( ),( 3) P EA PLAN,,,,,, µ b Αg λ µ V oces de volue foces de la pesateu µ b Αg λ µ V f ρ g ρ g b Αg V (, ) V ( ) g V ρ olutio d u poblèe d élasticité plae octio bihaoique A oces de volue égligées Α Α, Α, b Αg 3

4 //5 Eeple : Etude d u baage poids α H γ e γ b ol A alcule le chap de cotaites e foctio de γ e, γ b et α Pou quelles valeus de α le baage e se soulève pas e supposat : a- pas d ifiltatio sous le baage b- ifiltatio sous le baage α H ol A

5 //5 octio d Ai e vaiables coplees - octios holoophes (ou aaltiques) M(,) i i i (, ) Pla g g(, ) (, ) (, ) g g(, ) P P(, ) Q Q(, ) g g g,,, g i( g g ),,, g P iq g g, g, ig, g, g, ig, g est holoophe si E g g g( ) i Popiétés des foctios aaltiques dg g g g P iq i d P Q P Q i i Les paties éelle et iagiaie due foctio aaltique, sot haoiquesw U V E P Q P Q P Q veseet, si P(, ) et Q(, ) véifiet les coditios de auch g P iq est aaltique - i g est aaltique, sa déivée et so itégale le sot aussi 5

6 //5 - Epessios de la foctio d Ai i P A alos P P est haoique Α f P iq est aaltique P Q P Q alcul de Q(, ) Q dq d Q d P Q dq d P d p q ϕ f d p iq est aaltique P i p Α p q alos p χ( ) p iq est aaltique A p q p Α e ϕ χ Α ϕ χ ϕ χ Epessio des déplaceets λ µ λ µ λ µ λ µ λ µ λ µ λ µ λ µ λ µ du iu i b p iqg dα, iα, i p q A P µ λ µ λ µ µ U iu λ µ ϕ λ µ µ U p Α, α λ µ λ µ µ U q Α, β λ µ λ µ µ Α Α, λ µ λ µ µ Α Α, λ µ g, g, ig, g, g, ig, di di d i di di µ U iu ϕ ϕ ψ Α λ µ λ µ ϕ ϕ ϕ ψ α c d β c d A Α, iα, λ 3µ 3 v e DP λ µ ψ () χ() 6

7 //5 Α Α,, Α, Epessio des cotaites g g g,,, g i( g g ),,, c h c h di di di c,, h c,,, h di di di i Α iα i Α iα i Α Α Α,,,,,,,, i ϕ ϕ ϕ ψ g, g, ig, g, g, ig, ( ) ( ) Α ϕ χ ϕ χ i Α iα Α iα Α Α Α,,,, i ϕ ϕ ϕ ψ e di c h i d ϕ ψ i ϕ ϕ e ϕ e Φ i Φ Ψ ch d i Φ() ϕ() Ψ() ψ () e hageet de epèe e e cos. si. e si. cos. H G e e H G K J P P : u cos u si u si u cos cos si i u iu e ( u iu ) µ u iu i e ϕ ϕ ψ h h t P P e, e, u u u u P b g di di e i i e i d i i i i e ϕ ψ e Φ Ψ d i d i si cos 7

8 //5 P Epessio du toseu des effots α P X Y H, K, P α α d ds d H G cosα K J : et siα d cosα ds d siα ds t X.. cosα si α Α, cos α Α, siα t Y.. cosα si α Α, cos α Α, siα Vecteu cotaite ésultate pa uité d épaisseu su H P, K ds X Y X ds Y ds Y X d H G d H G Α ds Α ds X Y X ds Y ds Α ϕ χ ϕ χ Α Α Α Α Α X iy X iy ds d i i i i QP ( ) ( ) L NM X iy i ϕ ϕ ψ di di Moet pa uité d épaisseu e u poit M P P ds M H, K (,, ) M Y X ds L d Α b g M H G Α Α Α Α e i i L NM Α Α PP M Α L N M Q P L Α N M e QP e { ϕ ψ ϕdi } QP N L N M Q P d H G Α Q P M e χ ψ ϕ 8

9 //5 Epessios des foctios ϕ( ) et ψ ( ) das u doaie boé et ultipleet coee Doaie sipleet coee D D Doaie ultipleet coee D L Doaie doubleet coee Doaie ultipleet coee - Le chap des cotaites est solutio de e Φ i Φ Ψ ch d i - L uifoité de la solutio ipose su tout cotou feé de D eφ - ette coditio est satisfaite si o ped Φ() de la foe : Φ Α log Φ A, les poits situés à litéieu de et Φ ( ) uifoe das D _ coee Véificatio su la coube feée L - e i Φ πiα e Φ L L L Doaie ultipleet coee 9

10 //5 Φ Α logb g Φ Φ() ϕ() Φ d logb g foctio uifoe das D ϕ Α logb g b A glogb g b g ϕ Φ d cste Α log Φ d cste foctio uifoe das D ialeet ϕ Α γ log ϕ A γ b A g ϕ b g f. u. e Φ i Φ Ψ ch d i Ψ() ψ () - La coditio d uifoité de la solutio ipose Ψ() uifoe, c.a.d. ψ() de la foe : ψ γ log ψ ψ oséqueces su le chap des déplaceets? di di γ uifoe das D λ 3µ µ U iu ϕ ϕ ψ e DP λ µ µ U iu πi γ γ L Α ϕ Α γ log ϕ Α γ γ,

11 //5 alcul de la ésultate du toseu des effots su L ésultate des effots su L X iy i ϕ ϕ ψ di di L L oietée ves litéieu du cotou X iy i π iγ π iγ X iy πdγ γ i Α chageet de sige γ γ Doaie ultipleet coee X iy γ π X iy γ J π ialeet, les epessios de ϕ() et ψ() seot : ϕ X iy log ϕ π ψ X iy ψ πb g b glogb g Epessios des foctios ϕ( ) et ψ ( ) das u doaie ifii et ultipleet coee se place à l etéieu d u cecle de ao tès gad tel que :, < < log log log log K J H G K J X iy ϕ log ϕ π X iy ψ b g log ψ π uifoe das ( D- ) Développeet e séie de Lauet ϕ X iy log ϕ π ψ X iy ψ πb g b glogb g ϕ et ψ uifoes das D - X X et Y Y ϕ ψ a a

12 //5 ϕ ϕ i ϕ ψ e di d i X iy ϕ log ϕ π X iy ψ b g log ψ π ϕ ψ a a Les cotaites doivet este fiies à l ifii L N M X iy X iy π π a e i ϕ ψ i ϕ boée ψ boée a pou d a Q P e a a a a pou L epessio fiale des foctios ϕ() et ψ() est doc : X iy ϕ log Γ ϕ πb g X iy ψ log Γ ψ π d d Γ ϕ et Γ i d d ψ alcul des éels, et e foctio du chageet à l ifii α α α ϕ Li e Γ i Li ϕ ψ d i Γ - E foctio des cotaites o picipales - E foctio des cotaites picipales ϕ e Γ i i e Lid ϕ ψ i e Γ Γ c he α α i α c h

13 //5 Applicatio : plaque copotat u petit tou ciculaie de ao Au voisiage du tou coodoées polaies X iy d d ϕ log Γ πb g X iy d d ψ log Γ π X iy Φ a a Γ, a, π ϕ ϕ i i e ϕ ψ X iy d d Φ Γ 3 πb g X iy d d Ψ Γ 3 π X iy Ψ a a Γ, a, a d π a d di i - u le tou () o a : i Φ Φ e Φ Ψ e e i i i a e a e a e a a i i i i i e e - i le chageet su le tou () est cou, le tee de gauche est cou i Α e i a a ( ) Α a a a a a Γ ees e e ees e e i i a a Α a a ees e e i a Α a a Γ a i pou 3 Α ees e e pou a a Α a Γ ; a Γ ; a Γ Α ; a A Γ A Α a ; a a A ( pou 3) ; a a Α ( pou ) 3

14 //5 Eeple : chageet de tactio siple - oditios Liites (L) à l ifii - L su le tou (tou libe) Α d i Γ Γ a Γ ; a Γ ; a Γ Α ; a A Γ A Α a ; a a A ( pou 3) ; a a Α ( pou ) a Γ, a Γ, a a a Γ, a Γ, a3 a3 a 3 a b ga a - Déteiatio des foctios ϕ() et ψ() a, a, a a a, a, a3 a3 a 3 a Φ Ψ 3 ϕ ψ 3 - alcul des cotaites au voisiage du tou e Φ i i e Φ Ψ c h Au bod du tou, o a d i a π 3 K J 3 cos 3 cos 3 si a Le coefficiet de cocetatio des cotaites K Τ 3

15 //5 - alcul du chap des déplaceets di di i e du iu i µ ϕ ϕ ψ ϕ ψ 3 u cos 8µ u L NM U V W si µ QP U V W Eeple : chageet de tactio équibiaiale - oditios Liites (L) à l ifii - L su le tou (tou libe) Α d i Γ Γ a Γ ; a Γ ; a Γ Α ; a A Γ A Α a ; a a A ( pou 3) ; a b ga Α ( pou ) a Γ, a Γ, a a a Γ, a Γ, a a, a a 3 3 5

16 //5 - Déteiatio des foctios ϕ() et ψ() a, a a a a a a a a 3 3 Φ, Ψ ϕ, ψ - alcul des cotaites au voisiage du tou e Φ i i e Φ Ψ c h d i et Au bod du tou, o a a a KΤ Eeple 3 : ou sous pessio hdostatique P P - oditios Liites (L) à l ifii Γ Γ - L su le tou P, A P et A Φ d où ϕ Ψ i Α e i P d où ψ a Γ ; a Γ ; a Γ Α ; a A Γ A Α a ; a a A ( pou 3) ; a a Α ( pou ) P u a P a a a a a a a a 3 3 P P ; ; P ; u µ 6

Corrigés des exercices du chapitre 25

Corrigés des exercices du chapitre 25 MPSI Corrigés des exercices du chapitre 5 Exercice I- () () Si deg P =, alors ;, P = Doc, (P,P ',P",,P ) est ue famille écheloée e degrés doc libre Comme elle cotiet + élémets et dim K [X] = + : () (P,P

Detaljer

DYNAMIQUE. Etude des mouvements de tangage d une transmission de puissance d hélicoptère. x r 2. y r 2. x 1. y r y r

DYNAMIQUE. Etude des mouvements de tangage d une transmission de puissance d hélicoptère. x r 2. y r 2. x 1. y r y r e Cycle - ème année 8 Juin 5 DYNAIQUE Devoi de synhèse Elémens de coecions y y Eude des mouvemens de angage d une ansmission de puissance d hélicopèe. x y y x y y x, x,, x,, x cinémaique : Equaion de liaison

Detaljer

Oppgave 1 a) I det generelle tilfelle kan man ta utgangspunkt i uttrykket D( E)

Oppgave 1 a) I det generelle tilfelle kan man ta utgangspunkt i uttrykket D( E) Løsigsfoslag, eksae 8. desebe 998 Oppgave a) I det geeelle tilfelle ka a ta utgagspukt i uttykket D ( ) d k ( ( k) ) ( π) δ Me ut fa geoetiske betaktige av atall tilstade ello og + d se vi at di: πk D(

Detaljer

Oppgave 1 OPPGAVER OG LØSNINGSFORSLAG KONTINUASJONSEKSAMEN I FAG SMN 6147 OG SMN 6195 KOMPLEKS ANALYSE STED: HØGSKOLEN I NARVIK. KLASSE:4EL,4RTog5ID

Oppgave 1 OPPGAVER OG LØSNINGSFORSLAG KONTINUASJONSEKSAMEN I FAG SMN 6147 OG SMN 6195 KOMPLEKS ANALYSE STED: HØGSKOLEN I NARVIK. KLASSE:4EL,4RTog5ID OPPGAVER OG LØSNINGSFORSLAG KONTINUASJONSEKSAMEN I FAG SMN 647 OG SMN 695 KOMPLEKS ANALYSE STED: HØGSKOLEN I NARVIK KLASSE:4EL,4RTog5ID DATO: 8 januar 004 TID: 9.00-.00 ANTALL SIDER: 0 (inklusiv formler)

Detaljer

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ÿ Œ œ ˆ ˆ Š Œ. .. ³μ. μ ± Ë ²Ó Ò Ö Ò Í É Å ˆˆ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö Œ Œ ˆˆ 79 ˆ Š ˆ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ÿ Œ œ ˆ ˆ Š Œ. .. ³μ. μ ± Ë ²Ó Ò Ö Ò Í É Å ˆˆ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö Œ Œ ˆˆ 79 ˆ Š ˆ ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 01.. 4.. 1 Ÿ Œ œ ˆ ˆ Š Œ ˆˆ ˆÄ ˆƒƒ Œˆ Œ Š.. ³μ μ ± Ë ²Ó Ò Ö Ò Í É Å ˆˆ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö ˆ 70 Ÿ Œ œ ˆ ˆ Š Œ ˆˆ ˆÄ 7 ˆ ˆ IFW- ˆˆ ˆ Œ Œ Œ ˆˆ 79 Š ˆ 80 ˆ Š ˆ 81 E-mail: neznamov@vniief.ru

Detaljer

Løysingsframlegg/skisse Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem 24. mai 2011

Løysingsframlegg/skisse Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem 24. mai 2011 Løysingsframlegg/skisse Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem 24. mai 2011 May 24, 2011 Oppgave 1 1) Ein global fasetransformasjon er på forma ψ ψe iα ψ ψ e iα, (1) der α er ein konstant.

Detaljer

1. Intégrales définies et indéfinies I. (a) Soit b > 0. Montrer que pour tout x > 0 la fonction. 2 b. F (x) = arctan bx. 1 (1 + bx) x. f(x) = x t dt.

1. Intégrales définies et indéfinies I. (a) Soit b > 0. Montrer que pour tout x > 0 la fonction. 2 b. F (x) = arctan bx. 1 (1 + bx) x. f(x) = x t dt. Chpitre 6 Clcul intégrl 6. Eercices. Intégrles définies et indéfinies I. () Soit b >. Montrer que pour tout > l fonction F () = b rctn b est une primitive de f() = ( + b). (b) Pour R clculer (c) Pour R

Detaljer

10 6 (for λ 500 nm); minste størrelse av

10 6 (for λ 500 nm); minste størrelse av Sensorveiledning Eksamen FYS130 Oppgave 1 ( poeng) a) Brytningdeksen er forholdet mellom lyshastigheten i vakuum og lyshastigheten i mediet; siden lyshastigheten i et medium er alltid mindre enn i vakuum,

Detaljer

Eksamen i TFY4205 Kvantemekanikk Mandag 8. august :00 13:00

Eksamen i TFY4205 Kvantemekanikk Mandag 8. august :00 13:00 NTNU Side 1 av 9 Institutt fo fysikk Faglig kontakt unde eksamen: Pofesso Ane Bataas Telefon: 73593647 Eksamen i TFY405 Kvantemekanikk Mandag 8. august 005 9:00 13:00 Tillatte hjelpemidle: Altenativ C

Detaljer

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Séries de Fourier Exercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr Exercice ** * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I

Detaljer

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003 Norges teknisk naturvitenskapelige universitet NTNU Side 1 av 9 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003

Detaljer

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Eksamen i AST5220/9420 Kosmologi II Eksamensdag: Fredag 11. juni 2010 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 4 sider. Vedlegg:

Detaljer

Formelsamling Bølgefysikk Desember 2006

Formelsamling Bølgefysikk Desember 2006 Vedlegg 1 av 9 Formelsamling Bølgefysikk Desember 2006 Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighet og symbolenes betydning antas å være kjent. Harmonisk

Detaljer

En partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial

En partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 9755 EKSAMEN I TFY45 ATOM- OG MOLEKYLFYSIKK

Detaljer

Probema di Marek. (Problema dei quattro punti inaccessibili).

Probema di Marek. (Problema dei quattro punti inaccessibili). ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI "In Meoria dei Morti per La Patria" Viale Enrico Millo, 1-16043 Chiavari Laboratorio di Topografia - G.P.S. - G.I.S Anno scolastico 2009-2010 Soario

Detaljer

EKSAMENSOPPGAVE. Fys-1002 Elektromagnetisme. Adm.bygget B154 Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling

EKSAMENSOPPGAVE. Fys-1002 Elektromagnetisme. Adm.bygget B154 Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Elektromagnetisme Dato: Onsdag 26. september 2018 Klokkeslett: Kl. 9:00-13:00 Sted: Tillatte hjelpemidler: Adm.bygget B154 Kalkulator

Detaljer

Konstanter og formelsamling for kurset finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side enn selve oppgaven

Konstanter og formelsamling for kurset finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side enn selve oppgaven UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Avsluttende eksamen i AST2000, 13. desember 2017, 14.30 18.30 Oppgavesettet inkludert formelsamling er på 8 sider Tillatte hjelpemidler:

Detaljer

Matematik, LTH Kontinuerliga system vt Formelsamling. q t. + j = k. u t. (Allmännare ρ 2 u. t2 Svängningar i gaser (ljud) t 2 c2 2 u

Matematik, LTH Kontinuerliga system vt Formelsamling. q t. + j = k. u t. (Allmännare ρ 2 u. t2 Svängningar i gaser (ljud) t 2 c2 2 u Matematik, LH Kontinuerliga system vt 7 Formelsamling Formelsamligen utgör bara ett stöd för minnet. Beteckningar förklaras sålunda ej. Ej heller anges förutsättningar för formlernas giltighet. Fysikaliska

Detaljer

Nivåtettheten for ulike spinn i 44 Ti

Nivåtettheten for ulike spinn i 44 Ti 7. september 2009 1 Hva er et nukleonpar? Et par brytes 2 3 Nivåtettheten for ulike lave spinn Hva er et nukleonpar? Et par brytes I en like-like kjerne er det hensiktsmessig for nukleonene å danne par.

Detaljer

Løsningsforslag Eksamen 7. august 2006 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 7. august 2006 TFY4250 Atom- og molekylfysikk Eksme TFY450 7. ugust 006 - løsigsforslg Oppgve Løsigsforslg Eksme 7. ugust 006 TFY450 Atom- og molekylfysikk. Grutilstde ψ (x hr ige ullpukter. Første eksiterte tilstd ψ (x hr ett ullpukt. Når potesilet

Detaljer

1 OA i = f. OA o. 1 < 1 OA o. f 1. O 2 A i O 2 A 1 = = f 2 O 2 A i. f 2O 2 A i 5 `c mffl `a vfle c O 2 A i = 20 `c mffl `eˇt f 2 = 20 `c mffl

1 OA i = f. OA o. 1 < 1 OA o. f 1. O 2 A i O 2 A 1 = = f 2 O 2 A i. f 2O 2 A i 5 `c mffl `a vfle c O 2 A i = 20 `c mffl `eˇt f 2 = 20 `c mffl . B L`affl r`e l åtˇi`o nffl `d`e `c o n jˇu`g åi sfi`o nffl `d`o n n`e OA i = + f P`o u rffl u n`e l e n tˇi l l e m i n`c e `c o n vfleˇr`g e n t e, < f `d`o n`c L i m`àg e `eṡfi t r`é e l l e. f > 0.

Detaljer

De viktigste formlene i KJ1042

De viktigste formlene i KJ1042 De viktigste formlene i KJ1042 Kollisjonstall Midlere fri veilengde Z AB = πr2 AB u A 2 u 2 B 1/2 N A N B 2πd 2 V 2 Z A = A u A N A V λ A = u A z A = V 2πd 2 A N A Ideell gasslov. Antar at gassmolekylene

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 og TFY4160 BØLGEFYSIKK Onsdag 20. desember 2006 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 og TFY4160 BØLGEFYSIKK Onsdag 20. desember 2006 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY1002 og TFY4160

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det ateatisk-aturviteskapelige fakultet Eksae i: FY 105 - Svigiger og bølger Eksaesdag: 11. jui 003 Tid for eksae: Kl. 0900-1500 Tillatte hjelpeidler: Øgri og Lia: Størrelser og eheter

Detaljer

HANDELSHØGSKOLEN I TROMSØ SENTRUM OG PERIFERI. Dixit-Stiglitz-Krugman modellen. Åge Haugslett. Vedlegg til Masteroppgave i - Samfunnsøkonomi (30 stp)

HANDELSHØGSKOLEN I TROMSØ SENTRUM OG PERIFERI. Dixit-Stiglitz-Krugman modellen. Åge Haugslett. Vedlegg til Masteroppgave i - Samfunnsøkonomi (30 stp) HANDELSHØGSKOLEN I TROMSØ SENTRUM OG PERIFERI Dixit-Stiglitz-Krugman modellen Åge Haugslett Vedlegg til Masteroppgave i - Samfunnsøkonomi ( stp) Vedlegg kap,.. VEDLEGG KAPITTEL KapModATilf.mcd. Den enklestet

Detaljer

Løsningsforslag, eksamen FY desember 2017

Løsningsforslag, eksamen FY desember 2017 1 Løsninsforsla, eksamen FY1001 14. desember 017 1 3 områder av t = 4 s, a konstant i hvert omrde. 1 : a 1 = 0; v 0 = 5m/s = x 1 = v 0 t; v 1 = v 0 : a = v/ t = 1.5 m/s = x = x 1 + v 1 t + a t = v 0 t

Detaljer

Formelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk

Formelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk Formelsamling Side 7 av 15 Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighet og symbolenes betydning antas å være kjent. Harmonisk plan bølge: Bølgeligning:

Detaljer

Eksamen FSP5020/PSP5013 Fransk nivå I Elevar og privatistar / Elever og privatister. Nynorsk/Bokmål

Eksamen FSP5020/PSP5013 Fransk nivå I Elevar og privatistar / Elever og privatister.  Nynorsk/Bokmål Eksamen 19.11.2013 FSP5020/PSP5013 Fransk nivå I Elevar og privatistar / Elever og privatister Nynorsk/Bokmål Oppgåve 1 Comment tu dépenses ton argent? Skriv ein liten tekst på to til fire setningar om

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TEP4145 KLASSISK MEKANIKK Mandag 21. mai 2007 kl Løsningsforslaget er på i alt 9 sider.

LØSNINGSFORSLAG TIL EKSAMEN I TEP4145 KLASSISK MEKANIKK Mandag 21. mai 2007 kl Løsningsforslaget er på i alt 9 sider. NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I TEP4145

Detaljer

Løsningsforslag til eksamen i FY3464 KVANTEFELTTEORI Torsdag 26. mai 2005

Løsningsforslag til eksamen i FY3464 KVANTEFELTTEORI Torsdag 26. mai 2005 NTNU Side av 5 Institutt or ysikk Fakultet or ysikk, inormatikk og matematikk Eksamen gitt av Kåre Olaussen Dette løsningsorslaget er på 5 sider. Løsningsorslag til eksamen i FY3464 KVANTEFELTTEORI Torsdag

Detaljer

ST1201 Statistiske metoder

ST1201 Statistiske metoder ST20 Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember 2005 Oppgave a Ma beyttet radomisert blokkdesig. I situasjoe har ma k =

Detaljer

FORMELSAMLING TIL STK1100 OG STK1110

FORMELSAMLING TIL STK1100 OG STK1110 FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål

Detaljer

Ó³ Ÿ , º 6Ä7(176Ä177).. 823Ä Œ. Œ ²±μ,,.. É ²,.. μ ²Ó,.. Íμ,.. ŠÊÉÊ μ,.. μ ±μ,.. ÒÏ

Ó³ Ÿ , º 6Ä7(176Ä177).. 823Ä Œ. Œ ²±μ,,.. É ²,.. μ ²Ó,.. Íμ,.. ŠÊÉÊ μ,.. μ ±μ,.. ÒÏ Ó³ Ÿ. 2012.. 9, º 6Ä7(176Ä177).. 823Ä837 Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ Š Œ ƒ Š Š Š ˆŒ ˆ ˆ. Œ. Œ ²±μ,,.. É ²,.. μ ²Ó,.. Íμ,.. ŠÊÉÊ μ,.. μ ±μ,.. ÒÏ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μë ± Ê É É ³.. Š² ³ É Ì ±μ μ, μë Ö μ Éμ É μ μ

Detaljer

EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl

EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl NORSK TEKST Side av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 97355 EKSAMEN I FY45 KVANTEFYSIKK Onsdag 3.

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 7 59 6 6 / 45 45 55 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag.

Detaljer

Formelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk

Formelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk Formelsamling Side 7 av 16 Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighet og symbolenes betydning antas å være kjent. Harmonisk plan bølge: Bølgeligning:

Detaljer

EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl

EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1110 FASIT. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider. Vedlegg: Tillatte

Detaljer

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME

Detaljer

Šˆ Ÿ Š Œ ˆˆ Ÿ ˆ Š ˆ Ÿ

Šˆ Ÿ Š Œ ˆˆ Ÿ ˆ Š ˆ Ÿ ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2018.. 49.. 2.. 476Ä581 Œ ƒ ˆŠ Šˆ Ÿ Š Œ ˆˆ Ÿ ˆ Š ˆ Ÿ.. ƒê μ 1, 2,.. Êϱ 2,. ƒ. Ê±μ ± 1,,.. ÒÏ 2 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± ˆ 477 Œ ˆŸ Š ˆ Šˆ Š 480

Detaljer

Løsning, eksamen TFY4205 Kvantemekanikk II Torsdag 8. desember 2011

Løsning, eksamen TFY4205 Kvantemekanikk II Torsdag 8. desember 2011 Løsning, eksamen TFY45 Kvantemekanikk II Torsdag 8. desember a) Et kort og fullgodt svar er at en stasjonær tilstand ψ er en løsning av den tidsuavhengige Schrödingerligningen H ψ E ψ, () der H er Hamilton-operatoren

Detaljer

Stona, Filipe. Efeito das instabilidades financeiras nas dinâmicas da economia brasileira ( ) / Filipe Stona f. : il. ; 30 cm.

Stona, Filipe. Efeito das instabilidades financeiras nas dinâmicas da economia brasileira ( ) / Filipe Stona f. : il. ; 30 cm. S877e Stona, Filipe. Efeito das instabilidades financeiras nas dinâmicas da economia brasileira (2000-2015) / Filipe Stona. 2016. 44 f. : il. ; 30 cm. Dissertação (mestrado) Universidade do Vale do Rio

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME

Detaljer

ØVING 4: DIMENSJONERING AV AKSLINGER OG ROTORER. M w. er tangentavsettet ved pkt B i forhold til tangenten ved opplagring A.

ØVING 4: DIMENSJONERING AV AKSLINGER OG ROTORER. M w. er tangentavsettet ved pkt B i forhold til tangenten ved opplagring A. SK10 askinkonstruksjon Kap. Oppgae.1. ØVING : DIENSJONERING AV AKSLINGER OG ROTORER Oppgae.1 a) aks. øyespenningen regnes fra: σ _ max ) Nedøyningen ed punkt C (der aften F angriper) er gitt ed δ C CC

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG

Detaljer

Energie et corrélation. Systèmes de Traitement du Signal Polytech Marseille INFO 2016

Energie et corrélation. Systèmes de Traitement du Signal Polytech Marseille INFO 2016 Energie et corrélation Systèmes de raitement du Signal Polytech Marseille INFO 016 Densité spectrale d énergie Signau à énergie finie E E (t) X y dν Densité spectrale d énergie : Densité spectrale d énergie

Detaljer

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCouseWae http://ocw.mt.edu 6.641 Electomagnetc Felds, Foces, and Moton, Spng 5 Please use the followng ctaton fomat: Maus Zahn, 6.641 Electomagnetc Felds, Foces, and Moton, Spng 5. (Massachusetts

Detaljer

Løysingsframlegg øving 1

Løysingsframlegg øving 1 FY6/TFY425 Innføring i kvantefysikk Løysingsframlegg øving Oppgåve Middelverdien er x = x Ω X xp (x) = 2 + 2 = 2. (.) Tilsvarande har vi x 2 = x Ω X x 2 P (x) = 2 2 + 2 2 = 2. (.2) Dette gjev variansen

Detaljer

CCD kamera. Analysator. Strålesplitter. Bilde forsterker. Pinhole. Objektiv (NA 1.2) Filterkube/ dikroiske speil. Polarisator.

CCD kamera. Analysator. Strålesplitter. Bilde forsterker. Pinhole. Objektiv (NA 1.2) Filterkube/ dikroiske speil. Polarisator. S av 8 NOGS TKNSK-NATUVTNSKAPLG UNVSTT NSTTUTT O SKK al oa sam: Nav: Bø To So Tl: 75 9 KSAMN MN T65 BOSSK MKOTKNKK a 5. smb T: l. 9. Tlla lpml: C- Tpo allao m om m. O. Ja o K.J. Ks: omlsaml mama K. oma:

Detaljer

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ ± É,. ˆ. ˆ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ ± É,. ˆ. ˆ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2004.. 35.. 2 Š 621.039.5; 550.837 ƒ ˆŸ Š Œ.. ± É,. ˆ. ˆ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê ˆ 349 Š ƒ ƒˆ Šˆ Œ ˆ ˆ ƒ ˆ Šˆ Š ˆ 350 Ÿ œ Œ Š Œˆ ˆ ˆ ˆ ŠˆŒˆ Œˆ ƒ ˆ Œ ˆ 366 ˆ œ ˆ Š ƒ - ˆ ˆˆ Œ ƒ ƒˆˆ ˆ ƒ

Detaljer

FYS 3120: Klassisk mekanikk og elektrodynamikk

FYS 3120: Klassisk mekanikk og elektrodynamikk FYS 3120: Klassisk mekanikk og elektrodynamikk 1 Analytisk mekanikk Lagrangefunksjonen Formelsamling (nynorsk) L = L(q, q, t), (1) til eit fysisk system er ein funksjon av dei generaliserte koordinatane

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i STK2120 Statistiske metoder og dataaalyse 2 Eksamesdag: Madag 6. jui 2011. Tid for eksame: 09.00 13.00. Oppgavesettet er på 5 sider.

Detaljer

Midtveis hjemmeeksamen. Fys Brukerkurs i fysikk Høsten 2018

Midtveis hjemmeeksamen. Fys Brukerkurs i fysikk Høsten 2018 Midtveis hjemmeeksamen Fys-0001 - Brukerkurs i fysikk Høsten 2018 Praktiske detaljer: Utlevering: Mandag 29. oktober kl. 15:00 Innleveringsfrist: Torsdag 1. november kl. 15:00 Besvarelse leveres i pdf-format

Detaljer

Flervalgsoppgaver i bølgefysikk

Flervalgsoppgaver i bølgefysikk Institutt for fysikk, NTNU FY1002/TFY4160 Bølgefysikk Høst 2010 Flervalgsoppgaver i bølgefysikk Tillatte hjelpemidler: C K. Rottmann: Matematisk formelsamling. (Eller tilsvarende.) O. Øgrim og B. E. Lian:

Detaljer

Løsningsforslag. MOT 110 Matematisk statistikk og stokastiske prosesser B, høst Oppgave 1

Løsningsforslag. MOT 110 Matematisk statistikk og stokastiske prosesser B, høst Oppgave 1 MOT 110 Matematisk statistikk og stokastiske prosesser B, høst 2004. Løsningsforslag Oppgave 1 a) Autokovariansen for en tidsrekke X t } er: γ(t + h, t) Cov(X t+h, X t ). Tidsrekken X t } er stasjonær

Detaljer

Høgskolen i Bergen. Formelsamling. for. ingeniørutdanningen. FOA150 høsten 2006 fellespensum. 3.utgave

Høgskolen i Bergen. Formelsamling. for. ingeniørutdanningen. FOA150 høsten 2006 fellespensum. 3.utgave Høgskolen i Bergen Formelsmling for ingeniørutdnningen FOA5 høsten 6 fellespensum. 3.utgve Funksjoner. Elementære regneregler og funksjoner: y = y, ( ) =, y y =,, =, = ) = ) = = log = ln ln c) ln y = y

Detaljer

KONTINUASJONSEKSAMEN TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl

KONTINUASJONSEKSAMEN TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 15 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 KONTINUASJONSEKSAMEN TFY4160 BØLGEFYSIKK

Detaljer

FYS 3120: Klassisk mekanikk og elektrodynamikk

FYS 3120: Klassisk mekanikk og elektrodynamikk FYS 3120: Klassisk mekanikk og elektrodynamikk 1 Analytisk mekanikk Lagrangefunksjonen Formelsamling (bokmål) L = L(q, q, t), (1) er en funksjon av systemets generaliserte koordinater q = {q i ; i = 1,

Detaljer

EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute

EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne

Detaljer

FYS 3120: Klassisk mekanikk og elektrodynamikk

FYS 3120: Klassisk mekanikk og elektrodynamikk FYS 3120: Klassisk mekanikk og elektrodynamikk Formelsamling (bokmål) Våren 2014 1 Analytisk mekanikk Lagrangefunksjonen L = L(q, q, t), (1) er en funksjon av systemets generaliserte koordinater q = {q

Detaljer

Eksamen i fag FY8104 Symmetri i fysikken Fredag 7. desember 2007 Tid:

Eksamen i fag FY8104 Symmetri i fysikken Fredag 7. desember 2007 Tid: Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Lørdag 22. desember

Detaljer

Eksamen i FY3403/TFY4290 PARTIKKELFYSIKK Mandag 12. desember :00 13:00

Eksamen i FY3403/TFY4290 PARTIKKELFYSIKK Mandag 12. desember :00 13:00 NTNU Side 1 av 6 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 9 36 5 eller 45 43 71 70 Eksamen i FY3403/TFY490 PARTIKKELFYSIKK Mandag 1. desember 005 09:00 13:00

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG

Detaljer

Løysingsforslag (Skisse) Eksamen FY3452 Gravitasjon og Kosmologi Våren 2007

Løysingsforslag (Skisse) Eksamen FY3452 Gravitasjon og Kosmologi Våren 2007 Løysingsforslag (Skisse) Eksamen FY3452 Gravitasjon og Kosmologi Våren 2007 May 24, 2007 Oppgave 1 a) Lorentztransformasjonane er x = γ(x V t), t = γ(t V x), der γ = 1/ 1 V 2 Vi tar differensiala av desse

Detaljer

145± ±175 St 52 S ± ±225

145± ±175 St 52 S ± ±225 SNG V VKTG GNNG, DT, TB OG GU KP.. NNDNNG Pll: l o 5,, og. 5:, 6, 5,, 6,. :,.5, 6,, 5,.5,, 5, 6, 8,. :,..5,, 6, 8,,., 5, 8,.5, 5.5,, 5, 5, 56, 6, 7, 8, 9,. :,.6,.,.8,.5,.,, 5, 6, 7, 8, 9,,.,.,.6, 5, 6.5,

Detaljer

Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012

Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012 NTNU Fakultet for Naturvitskap og Teknologi Institutt for fysikk Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012 Faglærar: Førsteamanuensis John Ove Fjærestad Institutt for fysikk Telefon:

Detaljer

Gauss og konforme kartprojeksjoner

Gauss og konforme kartprojeksjoner Gauss og konforme kartprojeksjoner Hvor kommer km-rutenettet på kartet fra? Harald Hanche-Olsen 12. januar 2004 Gauss / Ski og matematikk 2004 01 10 En flat jord? Gauss / Ski og matematikk 2004 01 10 1

Detaljer

Interferensmodell for punktformede kilder

Interferensmodell for punktformede kilder Interferensmodell for punktformede kilder Hensikt Oppsettet pa bildet besta r av to transparenter med identiske sirkelmønstre, og brukes til a illustrere interferens mellom to koherente punktkilder. 1

Detaljer

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max.

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max. EKSAMENSOPPGAVE Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max. Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann: Matematisk Formelsamling Oppgavesettet

Detaljer

Løsningsforslag til eksamen i FY3404 RELATIVISTISK KVANTEMEKANIKK Tirsdag 30. november 2004

Løsningsforslag til eksamen i FY3404 RELATIVISTISK KVANTEMEKANIKK Tirsdag 30. november 2004 NTNU Side av 7 Institutt for fysikk Løsningsforslag til eksamen i FY30 RELATIVISTISK KVANTEMEKANIKK Tirsdag 30. november 200 Dette løsningsforslaget er på 7 sider. Oppgave. Prosesser i QED Tegn, i de tilfeller

Detaljer

Litt GRUPPETEORI for Fys4170

Litt GRUPPETEORI for Fys4170 Litt GRUPPETEORI for Fys4170 GRUPPER: Ei gruppe G = {g i } er ei samling element med disse egenskapene: * multiplikasjon slik at g i g j G ; * et enhetselement g 0 = 1 slik at g i g 0 = g 0 g i = g i ;

Detaljer

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud.

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud. EKSAMENSOPPGAVE Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud.max og B154 Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann:

Detaljer

EKSAMENSOPPGAVE. Karl Rottmann: Matematisk formelsamling Kalkulator med tomt dataminne

EKSAMENSOPPGAVE. Karl Rottmann: Matematisk formelsamling Kalkulator med tomt dataminne Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-0100 Generell fysikk Dato: 21. februar 2017 Klokkeslett: kl. 09:00-13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Karl Rottmann:

Detaljer

R2 kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka

R2 kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka R kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka 1.A a Punktet P har koordinatene P = (,, 5). Det gir PQ = [1,, 3 5] = [1,, 8] b PQ = [1,, 8] = 1 + ( ) + ( 8) = 69 8, 3 c OR = OQ + QR = [1,,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS240 Kvantefysikk Eksamensdag: 3. juni 206 Tid for eksamen: 09.00 4 timer) Oppgavesettet er på fem 5) sider Vedlegg: Ingen

Detaljer

Løsningsforslag til eksamen i SIF4022 Fysikk 2 Tirsdag 3. desember 2002

Løsningsforslag til eksamen i SIF4022 Fysikk 2 Tirsdag 3. desember 2002 NTNU Side 1 av 6 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i SIF40 Fysikk Tirsdag 3. desember 00 Dette løsningsforslaget er på 6 sider. Oppgave 1. a) Amplituden

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS14, Kvantefysikk Eksamensdag: 17. august 17 4 timer Lovlige hjelpemidler: Rottmann: Matematisk formelsamling, Øgrim og Lian:

Detaljer

EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling.

EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling. EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: Mandag 4. juni, 2018 Klokkeslett: 9:00 13:00 Sted: ADM B154 Tillatte hjelpemidler: Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling. Eksamenoppgaven

Detaljer

Løysingsframlegg TFY 4104 Fysikk Kontinuasjonseksamen august 2010

Løysingsframlegg TFY 4104 Fysikk Kontinuasjonseksamen august 2010 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY 404 Fysikk Kontinuasjonseksamen august 200 Faglærar: Professor Jens O Andersen Institutt for Fysikk, NTNU Telefon:

Detaljer

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ï Ìμ μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ï Ìμ μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 1 Š ˆ Š Š Š.. Ï Ìμ μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ 167 Œ 168 Šμ É Ê±Í Ö 168 μ É Ò Ì ±É É ± 171 ˆ ˆ Šˆ 172 ˆμ Í Ö μ, μ μ Ê ² 172 Í É Ö 173 ³Ò μéò 178 ƒ μ Ò ³ 180 ² Ö ³ É μ μ± Ê ÕÐ

Detaljer

Løsning, eksamen TFY4205 Kvantemekanikk II Onsdag 8. desember 2010

Løsning, eksamen TFY4205 Kvantemekanikk II Onsdag 8. desember 2010 Løsning, eksamen TFY45 Kvantemekanikk II Onsdag 8. desember 1 1a) Det elektriske feltet er [ E = ωk Im ( e x a x + e y a y )e i(kz ωt)] [ = ωk Im ( e + a + + e a )e i(kz ωt)]. Et viktig poeng: E er reell,

Detaljer

Ã Ô ½ Ë Ð Ô Ø Ô Ø Ð ØÖÙ ØÙÖ

Ã Ô ½ Ë Ð Ô Ø Ô Ø Ð ØÖÙ ØÙÖ Ã Ô ½ Ë Ð Ô Ø Ô Ø Ð ØÖÙ ØÙÖ Ò Ø Ø Ê ÒØ ØØ ÓÖ Ð Ò Î Ö Ò Ú Ö ÒØ ØØ ÓÖ Ð Ò Ê Ô Ø Ð Ö Ò ÓÖ Ò ÓÔÔ ÊË È Ö ÓÒ ØØ Ö ÌÓÐ ØÒ Ò ÇÔØ Ñ Ð Ô Ø Ð ØÖÙ ØÙÖ Ñ ØØ Ö Ê ÒØ ØØ ÓÖ Ð Ò Ø ÐØ Ö ÒØ Ö Ö Ö ÒØ Ö Ö Á ÓÐ ÖØ Ö ØØ Ø Ò

Detaljer

7 Global Linkages and Economic Growth

7 Global Linkages and Economic Growth 7 Global Linkages and Economic Growth Y t = F(K t,e t L t ), (1) Y t C t = S t = sf(k t, E t L t ). (2) K t+1 K t = sf(k t, E t L t ) δk t, (3) Foundations of International Macroeconomics (297) Chapter

Detaljer

Løsningsforslag til øving 5

Løsningsforslag til øving 5 FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2009. Løsningsforslag til øving 5 Oppgave 1 a) var C er korrekt. Fasehastigheten er gitt ved v ω k og vi ser fra figuren at dette forholdet

Detaljer

MAT1110. Obligatorisk oppgave 1 av 2

MAT1110. Obligatorisk oppgave 1 av 2 30. mai 2017 Innleveringsfrist MAT1110 Obligatorisk oppgave 1 av 2 Torsdag 23. FEBRUAR 2017, klokken 14:30 i obligkassen, som står i gangen utenfor ekspedisjonen i 7. etasje i Niels Henrik Abels hus. Instruksjoner

Detaljer

Hvis formlene i Γ og er lukkede, vil sannhetsverdiene til formlene under M være uavhengig av variabeltilordning.

Hvis formlene i Γ og er lukkede, vil sannhetsverdiene til formlene under M være uavhengig av variabeltilordning. Forelesning 12: Automatisk bevissøk III fri-variabel kompletthet og repetisjon av sunnhet Christian Mahesh Hansen - 30. april 2007 1 Kompletthet av fri-variabel LK Teorem 1.1 (Kompletthet). Hvis Γ er gyldig,

Detaljer

Tegn og tekst. Et representert tegn kan vises på flere måter. Noen definisjoner. Enda noen definisjoner. \yvind og ]se N{rb}? a a a.

Tegn og tekst. Et representert tegn kan vises på flere måter. Noen definisjoner. Enda noen definisjoner. \yvind og ]se N{rb}? a a a. o o {rb} rprr på r år o prpp rpro r r rr rpro o r o or α r o or bor brp or b rr på ppr r r r r r rrr år på o oroooro o r or o br å r r pår r r orør p o b b år r å r o o o rprrr o p o rprrr o or op r r

Detaljer

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5) Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er

Detaljer

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I FY2045 KVANTEFYSIKK Mandag

Detaljer

13 Oppsummering til Ch. 5.1, 5.2 og 8.5

13 Oppsummering til Ch. 5.1, 5.2 og 8.5 3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne

Detaljer

Konstanter og formelsamling for kurset finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side enn selve oppgaven

Konstanter og formelsamling for kurset finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side enn selve oppgaven UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Avsluttende eksamen i AST2000, 17. desembe 2018, 09.00 13.00 Oppgavesettet inkludet fomelsamling e på 8 side Tillatte hjelpemidle: 1) Angel/Øgim

Detaljer

EKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205)

EKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205) Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren 93064 EKSAMEN I NUMERISK LINEÆR ALGEBRA TMA405 Fredag 5 desember

Detaljer

EKSAMENSOPPGAVE. Aud. Max Administrasjonsbygget Karl Rottmann: Matematisk formelsamling Kalkulator

EKSAMENSOPPGAVE. Aud. Max Administrasjonsbygget Karl Rottmann: Matematisk formelsamling Kalkulator Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-0100 Generell fysikk Dato: 28. februar 2018 Klokkeslett: 09:00-13:00 Sted: Tillatte hjelpemidler: Aud. Max Administrasjonsbygget

Detaljer

Finite Elements Methods. Formulary for Prof. Estor's exam

Finite Elements Methods. Formulary for Prof. Estor's exam Finite Elements Methods Formulary for Prof. Estor's exam Finite Element Method in General One wants to obtain the equilibrium eqautions for the body, discretized by nite elements in the form M Ü + C U

Detaljer

a) Vis at startvolumet er V 0 = 1, 04m 3 Gassen presses deretter sammen til et volum på V 1 = 0, 80m 3 mens temperaturen i gassen holdes konstant.

a) Vis at startvolumet er V 0 = 1, 04m 3 Gassen presses deretter sammen til et volum på V 1 = 0, 80m 3 mens temperaturen i gassen holdes konstant. NB: Alle deloppgavene teller like mye i vurderingen. Dvs. oppgave 1a teller like mye som oppgave 4. Oppgave 1 I en beholder er 50,0 mol luft avstengt av et stempel som kan bevege seg uten friksjon mot

Detaljer

ƒ ˆ Š Ÿ PT - ˆŒŒ ˆ Ÿ Š Ÿ ˆŸ Œ Š ˆŒ œ Œ

ƒ ˆ Š Ÿ PT - ˆŒŒ ˆ Ÿ Š Ÿ ˆŸ Œ Š ˆŒ œ Œ ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 016.. 47.. ƒ ˆ Š Ÿ PT - ˆŒŒ ˆ Ÿ Š Ÿ ˆŸ Œ Š ˆŒ œ Œ.. μ μ μ 1,, ƒ.. Š Íμ, 1 μ ± Ô±μ μ³ Î ± Ê É É ³. ƒ.. ² Ì μ, Œμ ± Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± ˆ 5 ˆ ƒ Œ ˆ Š ˆ ƒ ˆ Œ. Š Ÿ

Detaljer

Løsningsforslag til eksamen i FY8306 KVANTEFELTTEORI Fredag 9. juni 2006

Løsningsforslag til eksamen i FY8306 KVANTEFELTTEORI Fredag 9. juni 2006 NTNU Side av 3 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk Løsningsforslag til eksamen i FY836 KVANTEFELTTEORI Fredag 9. juni 6 Dette løsningsforslaget er på 3 sider, pluss et vedlegg

Detaljer

pdf

pdf FILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 4 Oppgave 1 a) D = D 0 [ cos (kx ωt) + sin (kx ωt) ] 1/ = D 0 for alle x og t. Med andre ord, vi har overalt

Detaljer