Equations fondamentales de la mécanique linéaire de la rupture
|
|
- Karoline Møller
- 7 år siden
- Visninger:
Transkript
1 //5 Aee A Equatios fodaetales de la écaique liéaie de la uptue A. Zeghloul MMAE appels d élasticité plae octio d Ai e vaiables coplees epésetatio des déplaceets et des cotaites Epessio du toseu des effots Potetiels coplees das u doaie oé et ultipleet oee Potetiels coplees das u doaie ifii et ultipleet oee Plaque copotat u petit tou ciculaie Méthode utilisat l itégale de auch Plaque copotat u petit tou elliptique Méthode de Westegaad pou les fissues
2 //5 f appels d élasticité Equatios de copoteet Equatios d équilibe Equatios de copatibilité olutios véifiat les L Equatios de copoteet (loi de Hooe) υ υ E E ( tace ) µ λ( tace) E µ v λ Ev v v λ v bλ µ g v λ 3 E E µ λ µ µ b3λ µ g λ µ Etats plas : : L NM L NM µ λ λ µ µ λ λ µ c h QP c h QP µ λ λ e défoatios plaes λ µ λ e cotaites plaes λ µ Pa la suite, état de défoatios plaes : :
3 //5 ésolutio pa la éthode d Ai - Equatios d équilibe div f f X Y,,,, X Y H G K J b Vg,,, V, f gad V où V V (, ) V A V A A,,, V X V Y A foctio dai - Equatios de copatibilité i, l l, i il,, il ( il ) ( ),( 3) P EA PLAN,,,,,, µ b Αg λ µ V oces de volue foces de la pesateu µ b Αg λ µ V f ρ g ρ g b Αg V (, ) V ( ) g V ρ olutio d u poblèe d élasticité plae octio bihaoique A oces de volue égligées Α Α, Α, b Αg 3
4 //5 Eeple : Etude d u baage poids α H γ e γ b ol A alcule le chap de cotaites e foctio de γ e, γ b et α Pou quelles valeus de α le baage e se soulève pas e supposat : a- pas d ifiltatio sous le baage b- ifiltatio sous le baage α H ol A
5 //5 octio d Ai e vaiables coplees - octios holoophes (ou aaltiques) M(,) i i i (, ) Pla g g(, ) (, ) (, ) g g(, ) P P(, ) Q Q(, ) g g g,,, g i( g g ),,, g P iq g g, g, ig, g, g, ig, g est holoophe si E g g g( ) i Popiétés des foctios aaltiques dg g g g P iq i d P Q P Q i i Les paties éelle et iagiaie due foctio aaltique, sot haoiquesw U V E P Q P Q P Q veseet, si P(, ) et Q(, ) véifiet les coditios de auch g P iq est aaltique - i g est aaltique, sa déivée et so itégale le sot aussi 5
6 //5 - Epessios de la foctio d Ai i P A alos P P est haoique Α f P iq est aaltique P Q P Q alcul de Q(, ) Q dq d Q d P Q dq d P d p q ϕ f d p iq est aaltique P i p Α p q alos p χ( ) p iq est aaltique A p q p Α e ϕ χ Α ϕ χ ϕ χ Epessio des déplaceets λ µ λ µ λ µ λ µ λ µ λ µ λ µ λ µ λ µ du iu i b p iqg dα, iα, i p q A P µ λ µ λ µ µ U iu λ µ ϕ λ µ µ U p Α, α λ µ λ µ µ U q Α, β λ µ λ µ µ Α Α, λ µ λ µ µ Α Α, λ µ g, g, ig, g, g, ig, di di d i di di µ U iu ϕ ϕ ψ Α λ µ λ µ ϕ ϕ ϕ ψ α c d β c d A Α, iα, λ 3µ 3 v e DP λ µ ψ () χ() 6
7 //5 Α Α,, Α, Epessio des cotaites g g g,,, g i( g g ),,, c h c h di di di c,, h c,,, h di di di i Α iα i Α iα i Α Α Α,,,,,,,, i ϕ ϕ ϕ ψ g, g, ig, g, g, ig, ( ) ( ) Α ϕ χ ϕ χ i Α iα Α iα Α Α Α,,,, i ϕ ϕ ϕ ψ e di c h i d ϕ ψ i ϕ ϕ e ϕ e Φ i Φ Ψ ch d i Φ() ϕ() Ψ() ψ () e hageet de epèe e e cos. si. e si. cos. H G e e H G K J P P : u cos u si u si u cos cos si i u iu e ( u iu ) µ u iu i e ϕ ϕ ψ h h t P P e, e, u u u u P b g di di e i i e i d i i i i e ϕ ψ e Φ Ψ d i d i si cos 7
8 //5 P Epessio du toseu des effots α P X Y H, K, P α α d ds d H G cosα K J : et siα d cosα ds d siα ds t X.. cosα si α Α, cos α Α, siα t Y.. cosα si α Α, cos α Α, siα Vecteu cotaite ésultate pa uité d épaisseu su H P, K ds X Y X ds Y ds Y X d H G d H G Α ds Α ds X Y X ds Y ds Α ϕ χ ϕ χ Α Α Α Α Α X iy X iy ds d i i i i QP ( ) ( ) L NM X iy i ϕ ϕ ψ di di Moet pa uité d épaisseu e u poit M P P ds M H, K (,, ) M Y X ds L d Α b g M H G Α Α Α Α e i i L NM Α Α PP M Α L N M Q P L Α N M e QP e { ϕ ψ ϕdi } QP N L N M Q P d H G Α Q P M e χ ψ ϕ 8
9 //5 Epessios des foctios ϕ( ) et ψ ( ) das u doaie boé et ultipleet coee Doaie sipleet coee D D Doaie ultipleet coee D L Doaie doubleet coee Doaie ultipleet coee - Le chap des cotaites est solutio de e Φ i Φ Ψ ch d i - L uifoité de la solutio ipose su tout cotou feé de D eφ - ette coditio est satisfaite si o ped Φ() de la foe : Φ Α log Φ A, les poits situés à litéieu de et Φ ( ) uifoe das D _ coee Véificatio su la coube feée L - e i Φ πiα e Φ L L L Doaie ultipleet coee 9
10 //5 Φ Α logb g Φ Φ() ϕ() Φ d logb g foctio uifoe das D ϕ Α logb g b A glogb g b g ϕ Φ d cste Α log Φ d cste foctio uifoe das D ialeet ϕ Α γ log ϕ A γ b A g ϕ b g f. u. e Φ i Φ Ψ ch d i Ψ() ψ () - La coditio d uifoité de la solutio ipose Ψ() uifoe, c.a.d. ψ() de la foe : ψ γ log ψ ψ oséqueces su le chap des déplaceets? di di γ uifoe das D λ 3µ µ U iu ϕ ϕ ψ e DP λ µ µ U iu πi γ γ L Α ϕ Α γ log ϕ Α γ γ,
11 //5 alcul de la ésultate du toseu des effots su L ésultate des effots su L X iy i ϕ ϕ ψ di di L L oietée ves litéieu du cotou X iy i π iγ π iγ X iy πdγ γ i Α chageet de sige γ γ Doaie ultipleet coee X iy γ π X iy γ J π ialeet, les epessios de ϕ() et ψ() seot : ϕ X iy log ϕ π ψ X iy ψ πb g b glogb g Epessios des foctios ϕ( ) et ψ ( ) das u doaie ifii et ultipleet coee se place à l etéieu d u cecle de ao tès gad tel que :, < < log log log log K J H G K J X iy ϕ log ϕ π X iy ψ b g log ψ π uifoe das ( D- ) Développeet e séie de Lauet ϕ X iy log ϕ π ψ X iy ψ πb g b glogb g ϕ et ψ uifoes das D - X X et Y Y ϕ ψ a a
12 //5 ϕ ϕ i ϕ ψ e di d i X iy ϕ log ϕ π X iy ψ b g log ψ π ϕ ψ a a Les cotaites doivet este fiies à l ifii L N M X iy X iy π π a e i ϕ ψ i ϕ boée ψ boée a pou d a Q P e a a a a pou L epessio fiale des foctios ϕ() et ψ() est doc : X iy ϕ log Γ ϕ πb g X iy ψ log Γ ψ π d d Γ ϕ et Γ i d d ψ alcul des éels, et e foctio du chageet à l ifii α α α ϕ Li e Γ i Li ϕ ψ d i Γ - E foctio des cotaites o picipales - E foctio des cotaites picipales ϕ e Γ i i e Lid ϕ ψ i e Γ Γ c he α α i α c h
13 //5 Applicatio : plaque copotat u petit tou ciculaie de ao Au voisiage du tou coodoées polaies X iy d d ϕ log Γ πb g X iy d d ψ log Γ π X iy Φ a a Γ, a, π ϕ ϕ i i e ϕ ψ X iy d d Φ Γ 3 πb g X iy d d Ψ Γ 3 π X iy Ψ a a Γ, a, a d π a d di i - u le tou () o a : i Φ Φ e Φ Ψ e e i i i a e a e a e a a i i i i i e e - i le chageet su le tou () est cou, le tee de gauche est cou i Α e i a a ( ) Α a a a a a Γ ees e e ees e e i i a a Α a a ees e e i a Α a a Γ a i pou 3 Α ees e e pou a a Α a Γ ; a Γ ; a Γ Α ; a A Γ A Α a ; a a A ( pou 3) ; a a Α ( pou ) 3
14 //5 Eeple : chageet de tactio siple - oditios Liites (L) à l ifii - L su le tou (tou libe) Α d i Γ Γ a Γ ; a Γ ; a Γ Α ; a A Γ A Α a ; a a A ( pou 3) ; a a Α ( pou ) a Γ, a Γ, a a a Γ, a Γ, a3 a3 a 3 a b ga a - Déteiatio des foctios ϕ() et ψ() a, a, a a a, a, a3 a3 a 3 a Φ Ψ 3 ϕ ψ 3 - alcul des cotaites au voisiage du tou e Φ i i e Φ Ψ c h Au bod du tou, o a d i a π 3 K J 3 cos 3 cos 3 si a Le coefficiet de cocetatio des cotaites K Τ 3
15 //5 - alcul du chap des déplaceets di di i e du iu i µ ϕ ϕ ψ ϕ ψ 3 u cos 8µ u L NM U V W si µ QP U V W Eeple : chageet de tactio équibiaiale - oditios Liites (L) à l ifii - L su le tou (tou libe) Α d i Γ Γ a Γ ; a Γ ; a Γ Α ; a A Γ A Α a ; a a A ( pou 3) ; a b ga Α ( pou ) a Γ, a Γ, a a a Γ, a Γ, a a, a a 3 3 5
16 //5 - Déteiatio des foctios ϕ() et ψ() a, a a a a a a a a 3 3 Φ, Ψ ϕ, ψ - alcul des cotaites au voisiage du tou e Φ i i e Φ Ψ c h d i et Au bod du tou, o a a a KΤ Eeple 3 : ou sous pessio hdostatique P P - oditios Liites (L) à l ifii Γ Γ - L su le tou P, A P et A Φ d où ϕ Ψ i Α e i P d où ψ a Γ ; a Γ ; a Γ Α ; a A Γ A Α a ; a a A ( pou 3) ; a a Α ( pou ) P u a P a a a a a a a a 3 3 P P ; ; P ; u µ 6
Corrigés des exercices du chapitre 25
MPSI Corrigés des exercices du chapitre 5 Exercice I- () () Si deg P =, alors ;, P = Doc, (P,P ',P",,P ) est ue famille écheloée e degrés doc libre Comme elle cotiet + élémets et dim K [X] = + : () (P,P
DetaljerDYNAMIQUE. Etude des mouvements de tangage d une transmission de puissance d hélicoptère. x r 2. y r 2. x 1. y r y r
e Cycle - ème année 8 Juin 5 DYNAIQUE Devoi de synhèse Elémens de coecions y y Eude des mouvemens de angage d une ansmission de puissance d hélicopèe. x y y x y y x, x,, x,, x cinémaique : Equaion de liaison
DetaljerOppgave 1 a) I det generelle tilfelle kan man ta utgangspunkt i uttrykket D( E)
Løsigsfoslag, eksae 8. desebe 998 Oppgave a) I det geeelle tilfelle ka a ta utgagspukt i uttykket D ( ) d k ( ( k) ) ( π) δ Me ut fa geoetiske betaktige av atall tilstade ello og + d se vi at di: πk D(
DetaljerOppgave 1 OPPGAVER OG LØSNINGSFORSLAG KONTINUASJONSEKSAMEN I FAG SMN 6147 OG SMN 6195 KOMPLEKS ANALYSE STED: HØGSKOLEN I NARVIK. KLASSE:4EL,4RTog5ID
OPPGAVER OG LØSNINGSFORSLAG KONTINUASJONSEKSAMEN I FAG SMN 647 OG SMN 695 KOMPLEKS ANALYSE STED: HØGSKOLEN I NARVIK KLASSE:4EL,4RTog5ID DATO: 8 januar 004 TID: 9.00-.00 ANTALL SIDER: 0 (inklusiv formler)
Detaljerˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ÿ Œ œ ˆ ˆ Š Œ. .. ³μ. μ ± Ë ²Ó Ò Ö Ò Í É Å ˆˆ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö Œ Œ ˆˆ 79 ˆ Š ˆ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 01.. 4.. 1 Ÿ Œ œ ˆ ˆ Š Œ ˆˆ ˆÄ ˆƒƒ Œˆ Œ Š.. ³μ μ ± Ë ²Ó Ò Ö Ò Í É Å ˆˆ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö ˆ 70 Ÿ Œ œ ˆ ˆ Š Œ ˆˆ ˆÄ 7 ˆ ˆ IFW- ˆˆ ˆ Œ Œ Œ ˆˆ 79 Š ˆ 80 ˆ Š ˆ 81 E-mail: neznamov@vniief.ru
DetaljerLøysingsframlegg/skisse Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem 24. mai 2011
Løysingsframlegg/skisse Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem 24. mai 2011 May 24, 2011 Oppgave 1 1) Ein global fasetransformasjon er på forma ψ ψe iα ψ ψ e iα, (1) der α er ein konstant.
Detaljer1. Intégrales définies et indéfinies I. (a) Soit b > 0. Montrer que pour tout x > 0 la fonction. 2 b. F (x) = arctan bx. 1 (1 + bx) x. f(x) = x t dt.
Chpitre 6 Clcul intégrl 6. Eercices. Intégrles définies et indéfinies I. () Soit b >. Montrer que pour tout > l fonction F () = b rctn b est une primitive de f() = ( + b). (b) Pour R clculer (c) Pour R
Detaljer10 6 (for λ 500 nm); minste størrelse av
Sensorveiledning Eksamen FYS130 Oppgave 1 ( poeng) a) Brytningdeksen er forholdet mellom lyshastigheten i vakuum og lyshastigheten i mediet; siden lyshastigheten i et medium er alltid mindre enn i vakuum,
DetaljerEksamen i TFY4205 Kvantemekanikk Mandag 8. august :00 13:00
NTNU Side 1 av 9 Institutt fo fysikk Faglig kontakt unde eksamen: Pofesso Ane Bataas Telefon: 73593647 Eksamen i TFY405 Kvantemekanikk Mandag 8. august 005 9:00 13:00 Tillatte hjelpemidle: Altenativ C
Detaljer* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Exo7 Séries de Fourier Exercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr Exercice ** * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I
DetaljerLøsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003
Norges teknisk naturvitenskapelige universitet NTNU Side 1 av 9 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003
DetaljerUNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Eksamen i AST5220/9420 Kosmologi II Eksamensdag: Fredag 11. juni 2010 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 4 sider. Vedlegg:
DetaljerFormelsamling Bølgefysikk Desember 2006
Vedlegg 1 av 9 Formelsamling Bølgefysikk Desember 2006 Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighet og symbolenes betydning antas å være kjent. Harmonisk
DetaljerEn partikkel med masse m befinner seg i et éndimensjonalt, asymmetrisk brønnpotensial
NORSK TEKST Side av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 7 59 8 67, eller 9755 EKSAMEN I TFY45 ATOM- OG MOLEKYLFYSIKK
DetaljerProbema di Marek. (Problema dei quattro punti inaccessibili).
ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI "In Meoria dei Morti per La Patria" Viale Enrico Millo, 1-16043 Chiavari Laboratorio di Topografia - G.P.S. - G.I.S Anno scolastico 2009-2010 Soario
DetaljerEKSAMENSOPPGAVE. Fys-1002 Elektromagnetisme. Adm.bygget B154 Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Elektromagnetisme Dato: Onsdag 26. september 2018 Klokkeslett: Kl. 9:00-13:00 Sted: Tillatte hjelpemidler: Adm.bygget B154 Kalkulator
DetaljerKonstanter og formelsamling for kurset finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side enn selve oppgaven
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Avsluttende eksamen i AST2000, 13. desember 2017, 14.30 18.30 Oppgavesettet inkludert formelsamling er på 8 sider Tillatte hjelpemidler:
DetaljerMatematik, LTH Kontinuerliga system vt Formelsamling. q t. + j = k. u t. (Allmännare ρ 2 u. t2 Svängningar i gaser (ljud) t 2 c2 2 u
Matematik, LH Kontinuerliga system vt 7 Formelsamling Formelsamligen utgör bara ett stöd för minnet. Beteckningar förklaras sålunda ej. Ej heller anges förutsättningar för formlernas giltighet. Fysikaliska
DetaljerNivåtettheten for ulike spinn i 44 Ti
7. september 2009 1 Hva er et nukleonpar? Et par brytes 2 3 Nivåtettheten for ulike lave spinn Hva er et nukleonpar? Et par brytes I en like-like kjerne er det hensiktsmessig for nukleonene å danne par.
DetaljerLøsningsforslag Eksamen 7. august 2006 TFY4250 Atom- og molekylfysikk
Eksme TFY450 7. ugust 006 - løsigsforslg Oppgve Løsigsforslg Eksme 7. ugust 006 TFY450 Atom- og molekylfysikk. Grutilstde ψ (x hr ige ullpukter. Første eksiterte tilstd ψ (x hr ett ullpukt. Når potesilet
Detaljer1 OA i = f. OA o. 1 < 1 OA o. f 1. O 2 A i O 2 A 1 = = f 2 O 2 A i. f 2O 2 A i 5 `c mffl `a vfle c O 2 A i = 20 `c mffl `eˇt f 2 = 20 `c mffl
. B L`affl r`e l åtˇi`o nffl `d`e `c o n jˇu`g åi sfi`o nffl `d`o n n`e OA i = + f P`o u rffl u n`e l e n tˇi l l e m i n`c e `c o n vfleˇr`g e n t e, < f `d`o n`c L i m`àg e `eṡfi t r`é e l l e. f > 0.
DetaljerDe viktigste formlene i KJ1042
De viktigste formlene i KJ1042 Kollisjonstall Midlere fri veilengde Z AB = πr2 AB u A 2 u 2 B 1/2 N A N B 2πd 2 V 2 Z A = A u A N A V λ A = u A z A = V 2πd 2 A N A Ideell gasslov. Antar at gassmolekylene
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1002 og TFY4160 BØLGEFYSIKK Onsdag 20. desember 2006 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY1002 og TFY4160
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det ateatisk-aturviteskapelige fakultet Eksae i: FY 105 - Svigiger og bølger Eksaesdag: 11. jui 003 Tid for eksae: Kl. 0900-1500 Tillatte hjelpeidler: Øgri og Lia: Størrelser og eheter
DetaljerHANDELSHØGSKOLEN I TROMSØ SENTRUM OG PERIFERI. Dixit-Stiglitz-Krugman modellen. Åge Haugslett. Vedlegg til Masteroppgave i - Samfunnsøkonomi (30 stp)
HANDELSHØGSKOLEN I TROMSØ SENTRUM OG PERIFERI Dixit-Stiglitz-Krugman modellen Åge Haugslett Vedlegg til Masteroppgave i - Samfunnsøkonomi ( stp) Vedlegg kap,.. VEDLEGG KAPITTEL KapModATilf.mcd. Den enklestet
DetaljerLøsningsforslag, eksamen FY desember 2017
1 Løsninsforsla, eksamen FY1001 14. desember 017 1 3 områder av t = 4 s, a konstant i hvert omrde. 1 : a 1 = 0; v 0 = 5m/s = x 1 = v 0 t; v 1 = v 0 : a = v/ t = 1.5 m/s = x = x 1 + v 1 t + a t = v 0 t
DetaljerFormelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk
Formelsamling Side 7 av 15 Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighet og symbolenes betydning antas å være kjent. Harmonisk plan bølge: Bølgeligning:
DetaljerEksamen FSP5020/PSP5013 Fransk nivå I Elevar og privatistar / Elever og privatister. Nynorsk/Bokmål
Eksamen 19.11.2013 FSP5020/PSP5013 Fransk nivå I Elevar og privatistar / Elever og privatister Nynorsk/Bokmål Oppgåve 1 Comment tu dépenses ton argent? Skriv ein liten tekst på to til fire setningar om
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I TEP4145 KLASSISK MEKANIKK Mandag 21. mai 2007 kl Løsningsforslaget er på i alt 9 sider.
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I TEP4145
DetaljerLøsningsforslag til eksamen i FY3464 KVANTEFELTTEORI Torsdag 26. mai 2005
NTNU Side av 5 Institutt or ysikk Fakultet or ysikk, inormatikk og matematikk Eksamen gitt av Kåre Olaussen Dette løsningsorslaget er på 5 sider. Løsningsorslag til eksamen i FY3464 KVANTEFELTTEORI Torsdag
DetaljerST1201 Statistiske metoder
ST20 Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember 2005 Oppgave a Ma beyttet radomisert blokkdesig. I situasjoe har ma k =
DetaljerFORMELSAMLING TIL STK1100 OG STK1110
FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål
DetaljerÓ³ Ÿ , º 6Ä7(176Ä177).. 823Ä Œ. Œ ²±μ,,.. É ²,.. μ ²Ó,.. Íμ,.. ŠÊÉÊ μ,.. μ ±μ,.. ÒÏ
Ó³ Ÿ. 2012.. 9, º 6Ä7(176Ä177).. 823Ä837 Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ Š Œ ƒ Š Š Š ˆŒ ˆ ˆ. Œ. Œ ²±μ,,.. É ²,.. μ ²Ó,.. Íμ,.. ŠÊÉÊ μ,.. μ ±μ,.. ÒÏ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μë ± Ê É É ³.. Š² ³ É Ì ±μ μ, μë Ö μ Éμ É μ μ
DetaljerEKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl
NORSK TEKST Side av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 97355 EKSAMEN I FY45 KVANTEFYSIKK Onsdag 3.
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 7 59 6 6 / 45 45 55 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag.
DetaljerFormelsamling. ξ(r, t) = ξ 0 sin(k r ωt + φ) 2 ξ(x, t) = 1 2 ξ(x, t) t 2. 2 ξ. x ξ. z 2. y ξ. v = ω k. v g = dω dk
Formelsamling Side 7 av 16 Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighet og symbolenes betydning antas å være kjent. Harmonisk plan bølge: Bølgeligning:
DetaljerEKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
DetaljerUNIVERSITETET I OSLO
Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1110 FASIT. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider. Vedlegg: Tillatte
DetaljerKONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME
DetaljerŠˆ Ÿ Š Œ ˆˆ Ÿ ˆ Š ˆ Ÿ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2018.. 49.. 2.. 476Ä581 Œ ƒ ˆŠ Šˆ Ÿ Š Œ ˆˆ Ÿ ˆ Š ˆ Ÿ.. ƒê μ 1, 2,.. Êϱ 2,. ƒ. Ê±μ ± 1,,.. ÒÏ 2 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± ˆ 477 Œ ˆŸ Š ˆ Šˆ Š 480
DetaljerLøsning, eksamen TFY4205 Kvantemekanikk II Torsdag 8. desember 2011
Løsning, eksamen TFY45 Kvantemekanikk II Torsdag 8. desember a) Et kort og fullgodt svar er at en stasjonær tilstand ψ er en løsning av den tidsuavhengige Schrödingerligningen H ψ E ψ, () der H er Hamilton-operatoren
DetaljerStona, Filipe. Efeito das instabilidades financeiras nas dinâmicas da economia brasileira ( ) / Filipe Stona f. : il. ; 30 cm.
S877e Stona, Filipe. Efeito das instabilidades financeiras nas dinâmicas da economia brasileira (2000-2015) / Filipe Stona. 2016. 44 f. : il. ; 30 cm. Dissertação (mestrado) Universidade do Vale do Rio
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
DetaljerØVING 4: DIMENSJONERING AV AKSLINGER OG ROTORER. M w. er tangentavsettet ved pkt B i forhold til tangenten ved opplagring A.
SK10 askinkonstruksjon Kap. Oppgae.1. ØVING : DIENSJONERING AV AKSLINGER OG ROTORER Oppgae.1 a) aks. øyespenningen regnes fra: σ _ max ) Nedøyningen ed punkt C (der aften F angriper) er gitt ed δ C CC
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG
DetaljerEnergie et corrélation. Systèmes de Traitement du Signal Polytech Marseille INFO 2016
Energie et corrélation Systèmes de raitement du Signal Polytech Marseille INFO 016 Densité spectrale d énergie Signau à énergie finie E E (t) X y dν Densité spectrale d énergie : Densité spectrale d énergie
DetaljerNote: Please use the actual date you accessed this material in your citation.
MIT OpenCouseWae http://ocw.mt.edu 6.641 Electomagnetc Felds, Foces, and Moton, Spng 5 Please use the followng ctaton fomat: Maus Zahn, 6.641 Electomagnetc Felds, Foces, and Moton, Spng 5. (Massachusetts
DetaljerLøysingsframlegg øving 1
FY6/TFY425 Innføring i kvantefysikk Løysingsframlegg øving Oppgåve Middelverdien er x = x Ω X xp (x) = 2 + 2 = 2. (.) Tilsvarande har vi x 2 = x Ω X x 2 P (x) = 2 2 + 2 2 = 2. (.2) Dette gjev variansen
DetaljerCCD kamera. Analysator. Strålesplitter. Bilde forsterker. Pinhole. Objektiv (NA 1.2) Filterkube/ dikroiske speil. Polarisator.
S av 8 NOGS TKNSK-NATUVTNSKAPLG UNVSTT NSTTUTT O SKK al oa sam: Nav: Bø To So Tl: 75 9 KSAMN MN T65 BOSSK MKOTKNKK a 5. smb T: l. 9. Tlla lpml: C- Tpo allao m om m. O. Ja o K.J. Ks: omlsaml mama K. oma:
Detaljerˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ ± É,. ˆ. ˆ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2004.. 35.. 2 Š 621.039.5; 550.837 ƒ ˆŸ Š Œ.. ± É,. ˆ. ˆ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê ˆ 349 Š ƒ ƒˆ Šˆ Œ ˆ ˆ ƒ ˆ Šˆ Š ˆ 350 Ÿ œ Œ Š Œˆ ˆ ˆ ˆ ŠˆŒˆ Œˆ ƒ ˆ Œ ˆ 366 ˆ œ ˆ Š ƒ - ˆ ˆˆ Œ ƒ ƒˆˆ ˆ ƒ
DetaljerFYS 3120: Klassisk mekanikk og elektrodynamikk
FYS 3120: Klassisk mekanikk og elektrodynamikk 1 Analytisk mekanikk Lagrangefunksjonen Formelsamling (nynorsk) L = L(q, q, t), (1) til eit fysisk system er ein funksjon av dei generaliserte koordinatane
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i STK2120 Statistiske metoder og dataaalyse 2 Eksamesdag: Madag 6. jui 2011. Tid for eksame: 09.00 13.00. Oppgavesettet er på 5 sider.
DetaljerMidtveis hjemmeeksamen. Fys Brukerkurs i fysikk Høsten 2018
Midtveis hjemmeeksamen Fys-0001 - Brukerkurs i fysikk Høsten 2018 Praktiske detaljer: Utlevering: Mandag 29. oktober kl. 15:00 Innleveringsfrist: Torsdag 1. november kl. 15:00 Besvarelse leveres i pdf-format
DetaljerFlervalgsoppgaver i bølgefysikk
Institutt for fysikk, NTNU FY1002/TFY4160 Bølgefysikk Høst 2010 Flervalgsoppgaver i bølgefysikk Tillatte hjelpemidler: C K. Rottmann: Matematisk formelsamling. (Eller tilsvarende.) O. Øgrim og B. E. Lian:
DetaljerLøsningsforslag. MOT 110 Matematisk statistikk og stokastiske prosesser B, høst Oppgave 1
MOT 110 Matematisk statistikk og stokastiske prosesser B, høst 2004. Løsningsforslag Oppgave 1 a) Autokovariansen for en tidsrekke X t } er: γ(t + h, t) Cov(X t+h, X t ). Tidsrekken X t } er stasjonær
DetaljerHøgskolen i Bergen. Formelsamling. for. ingeniørutdanningen. FOA150 høsten 2006 fellespensum. 3.utgave
Høgskolen i Bergen Formelsmling for ingeniørutdnningen FOA5 høsten 6 fellespensum. 3.utgve Funksjoner. Elementære regneregler og funksjoner: y = y, ( ) =, y y =,, =, = ) = ) = = log = ln ln c) ln y = y
DetaljerKONTINUASJONSEKSAMEN TFY4160 BØLGEFYSIKK Torsdag 9. august 2007 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 15 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 KONTINUASJONSEKSAMEN TFY4160 BØLGEFYSIKK
DetaljerFYS 3120: Klassisk mekanikk og elektrodynamikk
FYS 3120: Klassisk mekanikk og elektrodynamikk 1 Analytisk mekanikk Lagrangefunksjonen Formelsamling (bokmål) L = L(q, q, t), (1) er en funksjon av systemets generaliserte koordinater q = {q i ; i = 1,
DetaljerEKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne
DetaljerFYS 3120: Klassisk mekanikk og elektrodynamikk
FYS 3120: Klassisk mekanikk og elektrodynamikk Formelsamling (bokmål) Våren 2014 1 Analytisk mekanikk Lagrangefunksjonen L = L(q, q, t), (1) er en funksjon av systemets generaliserte koordinater q = {q
DetaljerEksamen i fag FY8104 Symmetri i fysikken Fredag 7. desember 2007 Tid:
Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Lørdag 22. desember
DetaljerEksamen i FY3403/TFY4290 PARTIKKELFYSIKK Mandag 12. desember :00 13:00
NTNU Side 1 av 6 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 9 36 5 eller 45 43 71 70 Eksamen i FY3403/TFY490 PARTIKKELFYSIKK Mandag 1. desember 005 09:00 13:00
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG
DetaljerLøysingsforslag (Skisse) Eksamen FY3452 Gravitasjon og Kosmologi Våren 2007
Løysingsforslag (Skisse) Eksamen FY3452 Gravitasjon og Kosmologi Våren 2007 May 24, 2007 Oppgave 1 a) Lorentztransformasjonane er x = γ(x V t), t = γ(t V x), der γ = 1/ 1 V 2 Vi tar differensiala av desse
Detaljer145± ±175 St 52 S ± ±225
SNG V VKTG GNNG, DT, TB OG GU KP.. NNDNNG Pll: l o 5,, og. 5:, 6, 5,, 6,. :,.5, 6,, 5,.5,, 5, 6, 8,. :,..5,, 6, 8,,., 5, 8,.5, 5.5,, 5, 5, 56, 6, 7, 8, 9,. :,.6,.,.8,.5,.,, 5, 6, 7, 8, 9,,.,.,.6, 5, 6.5,
DetaljerEksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012
NTNU Fakultet for Naturvitskap og Teknologi Institutt for fysikk Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012 Faglærar: Førsteamanuensis John Ove Fjærestad Institutt for fysikk Telefon:
DetaljerGauss og konforme kartprojeksjoner
Gauss og konforme kartprojeksjoner Hvor kommer km-rutenettet på kartet fra? Harald Hanche-Olsen 12. januar 2004 Gauss / Ski og matematikk 2004 01 10 En flat jord? Gauss / Ski og matematikk 2004 01 10 1
DetaljerInterferensmodell for punktformede kilder
Interferensmodell for punktformede kilder Hensikt Oppsettet pa bildet besta r av to transparenter med identiske sirkelmønstre, og brukes til a illustrere interferens mellom to koherente punktkilder. 1
DetaljerEKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max.
EKSAMENSOPPGAVE Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max. Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann: Matematisk Formelsamling Oppgavesettet
DetaljerLøsningsforslag til eksamen i FY3404 RELATIVISTISK KVANTEMEKANIKK Tirsdag 30. november 2004
NTNU Side av 7 Institutt for fysikk Løsningsforslag til eksamen i FY30 RELATIVISTISK KVANTEMEKANIKK Tirsdag 30. november 200 Dette løsningsforslaget er på 7 sider. Oppgave. Prosesser i QED Tegn, i de tilfeller
DetaljerLitt GRUPPETEORI for Fys4170
Litt GRUPPETEORI for Fys4170 GRUPPER: Ei gruppe G = {g i } er ei samling element med disse egenskapene: * multiplikasjon slik at g i g j G ; * et enhetselement g 0 = 1 slik at g i g 0 = g 0 g i = g i ;
DetaljerEKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud.
EKSAMENSOPPGAVE Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud.max og B154 Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann:
DetaljerEKSAMENSOPPGAVE. Karl Rottmann: Matematisk formelsamling Kalkulator med tomt dataminne
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-0100 Generell fysikk Dato: 21. februar 2017 Klokkeslett: kl. 09:00-13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Karl Rottmann:
DetaljerR2 kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka
R kapittel 1 Vektorer Løsninger til kapitteltesten i læreboka 1.A a Punktet P har koordinatene P = (,, 5). Det gir PQ = [1,, 3 5] = [1,, 8] b PQ = [1,, 8] = 1 + ( ) + ( 8) = 69 8, 3 c OR = OQ + QR = [1,,
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS240 Kvantefysikk Eksamensdag: 3. juni 206 Tid for eksamen: 09.00 4 timer) Oppgavesettet er på fem 5) sider Vedlegg: Ingen
DetaljerLøsningsforslag til eksamen i SIF4022 Fysikk 2 Tirsdag 3. desember 2002
NTNU Side 1 av 6 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i SIF40 Fysikk Tirsdag 3. desember 00 Dette løsningsforslaget er på 6 sider. Oppgave 1. a) Amplituden
DetaljerLØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x
LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS14, Kvantefysikk Eksamensdag: 17. august 17 4 timer Lovlige hjelpemidler: Rottmann: Matematisk formelsamling, Øgrim og Lian:
DetaljerEKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling.
EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: Mandag 4. juni, 2018 Klokkeslett: 9:00 13:00 Sted: ADM B154 Tillatte hjelpemidler: Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling. Eksamenoppgaven
DetaljerLøysingsframlegg TFY 4104 Fysikk Kontinuasjonseksamen august 2010
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY 404 Fysikk Kontinuasjonseksamen august 200 Faglærar: Professor Jens O Andersen Institutt for Fysikk, NTNU Telefon:
Detaljerˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ï Ìμ μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 1 Š ˆ Š Š Š.. Ï Ìμ μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ 167 Œ 168 Šμ É Ê±Í Ö 168 μ É Ò Ì ±É É ± 171 ˆ ˆ Šˆ 172 ˆμ Í Ö μ, μ μ Ê ² 172 Í É Ö 173 ³Ò μéò 178 ƒ μ Ò ³ 180 ² Ö ³ É μ μ± Ê ÕÐ
DetaljerLøsning, eksamen TFY4205 Kvantemekanikk II Onsdag 8. desember 2010
Løsning, eksamen TFY45 Kvantemekanikk II Onsdag 8. desember 1 1a) Det elektriske feltet er [ E = ωk Im ( e x a x + e y a y )e i(kz ωt)] [ = ωk Im ( e + a + + e a )e i(kz ωt)]. Et viktig poeng: E er reell,
DetaljerÃ Ô ½ Ë Ð Ô Ø Ô Ø Ð ØÖÙ ØÙÖ
Ã Ô ½ Ë Ð Ô Ø Ô Ø Ð ØÖÙ ØÙÖ Ò Ø Ø Ê ÒØ ØØ ÓÖ Ð Ò Î Ö Ò Ú Ö ÒØ ØØ ÓÖ Ð Ò Ê Ô Ø Ð Ö Ò ÓÖ Ò ÓÔÔ ÊË È Ö ÓÒ ØØ Ö ÌÓÐ ØÒ Ò ÇÔØ Ñ Ð Ô Ø Ð ØÖÙ ØÙÖ Ñ ØØ Ö Ê ÒØ ØØ ÓÖ Ð Ò Ø ÐØ Ö ÒØ Ö Ö Ö ÒØ Ö Ö Á ÓÐ ÖØ Ö ØØ Ø Ò
Detaljer7 Global Linkages and Economic Growth
7 Global Linkages and Economic Growth Y t = F(K t,e t L t ), (1) Y t C t = S t = sf(k t, E t L t ). (2) K t+1 K t = sf(k t, E t L t ) δk t, (3) Foundations of International Macroeconomics (297) Chapter
DetaljerLøsningsforslag til øving 5
FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2009. Løsningsforslag til øving 5 Oppgave 1 a) var C er korrekt. Fasehastigheten er gitt ved v ω k og vi ser fra figuren at dette forholdet
DetaljerMAT1110. Obligatorisk oppgave 1 av 2
30. mai 2017 Innleveringsfrist MAT1110 Obligatorisk oppgave 1 av 2 Torsdag 23. FEBRUAR 2017, klokken 14:30 i obligkassen, som står i gangen utenfor ekspedisjonen i 7. etasje i Niels Henrik Abels hus. Instruksjoner
DetaljerHvis formlene i Γ og er lukkede, vil sannhetsverdiene til formlene under M være uavhengig av variabeltilordning.
Forelesning 12: Automatisk bevissøk III fri-variabel kompletthet og repetisjon av sunnhet Christian Mahesh Hansen - 30. april 2007 1 Kompletthet av fri-variabel LK Teorem 1.1 (Kompletthet). Hvis Γ er gyldig,
DetaljerTegn og tekst. Et representert tegn kan vises på flere måter. Noen definisjoner. Enda noen definisjoner. \yvind og ]se N{rb}? a a a.
o o {rb} rprr på r år o prpp rpro r r rr rpro o r o or α r o or bor brp or b rr på ppr r r r r r rrr år på o oroooro o r or o br å r r pår r r orør p o b b år r å r o o o rprrr o p o rprrr o or op r r
Detaljer12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)
Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er
DetaljerEKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl
NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I FY2045 KVANTEFYSIKK Mandag
Detaljer13 Oppsummering til Ch. 5.1, 5.2 og 8.5
3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne
DetaljerKonstanter og formelsamling for kurset finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side enn selve oppgaven
UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Avsluttende eksamen i AST2000, 17. desembe 2018, 09.00 13.00 Oppgavesettet inkludet fomelsamling e på 8 side Tillatte hjelpemidle: 1) Angel/Øgim
DetaljerEKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205)
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren 93064 EKSAMEN I NUMERISK LINEÆR ALGEBRA TMA405 Fredag 5 desember
DetaljerEKSAMENSOPPGAVE. Aud. Max Administrasjonsbygget Karl Rottmann: Matematisk formelsamling Kalkulator
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-0100 Generell fysikk Dato: 28. februar 2018 Klokkeslett: 09:00-13:00 Sted: Tillatte hjelpemidler: Aud. Max Administrasjonsbygget
DetaljerFinite Elements Methods. Formulary for Prof. Estor's exam
Finite Elements Methods Formulary for Prof. Estor's exam Finite Element Method in General One wants to obtain the equilibrium eqautions for the body, discretized by nite elements in the form M Ü + C U
Detaljera) Vis at startvolumet er V 0 = 1, 04m 3 Gassen presses deretter sammen til et volum på V 1 = 0, 80m 3 mens temperaturen i gassen holdes konstant.
NB: Alle deloppgavene teller like mye i vurderingen. Dvs. oppgave 1a teller like mye som oppgave 4. Oppgave 1 I en beholder er 50,0 mol luft avstengt av et stempel som kan bevege seg uten friksjon mot
Detaljerƒ ˆ Š Ÿ PT - ˆŒŒ ˆ Ÿ Š Ÿ ˆŸ Œ Š ˆŒ œ Œ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 016.. 47.. ƒ ˆ Š Ÿ PT - ˆŒŒ ˆ Ÿ Š Ÿ ˆŸ Œ Š ˆŒ œ Œ.. μ μ μ 1,, ƒ.. Š Íμ, 1 μ ± Ô±μ μ³ Î ± Ê É É ³. ƒ.. ² Ì μ, Œμ ± Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± ˆ 5 ˆ ƒ Œ ˆ Š ˆ ƒ ˆ Œ. Š Ÿ
DetaljerLøsningsforslag til eksamen i FY8306 KVANTEFELTTEORI Fredag 9. juni 2006
NTNU Side av 3 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk Løsningsforslag til eksamen i FY836 KVANTEFELTTEORI Fredag 9. juni 6 Dette løsningsforslaget er på 3 sider, pluss et vedlegg
DetaljerFILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf
DetaljerLøsningsforslag til øving 4
1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 4 Oppgave 1 a) D = D 0 [ cos (kx ωt) + sin (kx ωt) ] 1/ = D 0 for alle x og t. Med andre ord, vi har overalt
Detaljer