FORMELSAMLING TIL STK1100 OG STK1110

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "FORMELSAMLING TIL STK1100 OG STK1110"

Transkript

1 FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål P er en funksjon fra delmengder av utfallsrommet Ω til de reelle tall som tilfredsstiller b) P(A c ) = 1 P(A) c) P( ) = 0 P(Ω) = 1 P(A) 0 P(A 1 A 2 ) = P(A 1 ) + P(A 2 ) hvis A 1 A 2 = ( ) P A i = P(A i ) hvis A i A j = for i j d) A B P(A) P(B) e) Addisjonsetningen: f) Betinget sannsynlighet: P(A B) = P(A) + P(B) P(A B) P(A B) = P(A B) P(B) hvis P(B) > 0 g) Total sannsynlighet: P(A) = P(A B i )P(B i ) hvis n B i = Ω og B i B j = for i j h) Bayes setning: P(B j A) = P(A B j)p(b j ) n P(A B i)p(b i ) under samme betingelser som i g) i) A og B er uavhengige begivenheter hvis P(A B) = P(A)P(B) 1

2 j) A 1,...,A n er uavhengige begivenheter dersom P(A i1 A im ) = P(A i1 )P(A i2 ) P(A im ) for alle delmengder av indekser i 1, i 2,...,i m k) Produktsetningen: P(A 1 A n ) = P(A 1 )P(A 2 A 1 )P(A 3 A 1 A 2 ) P(A n A 1 A 2 A n 1 ) 2. Kombinatorikk a) To operasjoner som kan gjøres på henholdsvis n og m måter kan kombineres på n m måter. b) Antall ordnete utvalg med tilbakelegging av r elementer fra en mengde med n elementer er n r c) Antall ordnete utvalg uten tilbakelegging av r elementer fra en mengde med n elementer er n(n 1) (n r + 1) d) Antall måter n elementer kan ordnes i rekkefølge på (permuteres) er n! = (n 1) n e) Antall ikke-ordete utvalg av r elementer fra en mengde med n elementer er ( ) n n(n 1) (n r + 1) n! = = r r! r! (n r)! f) Antall måter en mengde med n elementer kan deles inn i r delmengder med n i elementer i den i-te delmengden er ( ) n n! = n 1 n 2 n r n 1! n 2! n r! 2

3 3. Sannsynlighetsfordelinger a) For en stokastisk variabel X (diskret eller kontinuerlig) er den kumulative fordelingsfunksjonen F(x) = P(X x) b) For en diskret stokastisk variabel X som kan anta verdiene x 1, x 2, x 3,... har vi p(x j ) = P(X = x j ) F(x) = x j xp(x j ) Betingelsene for at p(x j ) skal være en punktsannsynlighet er p(x j ) 0 for alle j p(x j ) = 1 c) For en kontinuerlig stokastisk variabel X har vi j P(a < X < b) = F(x) = x f(x) = F (x) b a f(u)du f(x)dx Betingelsene for at f(x) skal være en sannsynlighetstetthet er f(x) 0 f(x)dx = 1 d) For to stokastiske variabler X og Y (diskrete eller kontinuerlige) er den simultane kumulative fordelingsfunksjonen F(x, y) = P(X x, Y y) e) For diskrete stokastiske variabler X og Y som kan anta henholdsvis verdiene x 1, x 2,... og y 1, y 2,... har vi p(x i, y j ) = P(X = x i, Y = y j ) F(x, y) = p(x i, y j ) x i x y j y Betingelsene for at p(x i, y j ) skal være en simultan punktsannsynlighet er analoge til betingelsene i b) 3

4 f) For kontinuerlige stokastiske variabler X og Y har vi P ( (X, Y ) A ) = f(u, v)dvdu F(x, y) = x y f(x, y) = 2 F(x, y) x y A f(u, v)dvdu Betingelsene for at f(x, y) skal være en simultan sannsynlighetstetthet er analoge til betingelsene i c) g) Marginale punktsannsynligheter: p X (x i ) = j p Y (y j ) = i p(x i, y j ) (for X) p(x i, y j ) (for Y ) h) Marginale sannsynlighetstettheter: f X (x) = f(x, y)dy (for X) f Y (y) = f(x, y)dx (for Y ) i) Uavhengighet: De stokastiske variablene X og Y er uavhengige dersom p(x i, y j ) = p X (x i )p Y (y j ) f(x, y) = f X (x)f Y (y) (diskret) (kontinuerlig) j) Betingete punktsannsynligheter: p X Y (x i y j ) = p(x i, y j ) p Y (y j ) p Y X (y j x i ) = p(x i, y j ) p X (x i ) (for X gitt Y = y j ) (for Y gitt X = x i ) Det forutsettes at p Y (y j ) > 0 og p X (x i ) > 0, henholdsvis. De betingete punktsannsynlighetene kan behandles som vanlige punktsannsynligheter. 4

5 k) Betingete sannsynlighetstettheter: f X Y (x y) = f Y X (y x) = f(x, y) f Y (y) f(x, y) f X (x) (for X gitt Y = y) (for Y gitt X = x) Det forutsettes at f Y (y) > 0 og f X (x) > 0, henholdsvis. De betingete sannsynlighetstetthetene kan behandles som vanlige synlighetstettheter. 4. Forventning a) Forventningsverdien til en stokastisk variabel X er definert ved E(X) = j x j p(x j ) (diskret) E(X) = xf(x)dx (kontinuerlig) b) For en reell funksjon g(x) av en stokastisk variabel X er E[g(X)] = j g(x j )p(x j ) (diskret) E[g(X)] = g(x)f(x)dx (kontinuerlig) c) E(a + bx) = a + be(x) d) For en reell funksjon g(x, Y ) av to stokastiske variabler X og Y er E [ g(x, Y ) ] = g(x i, y j )f(x i, y j ) (diskret) i j E [ g(x, Y ) ] = g(x, y)f(x, y)dydx (kontinuerlig) e) Hvis X og Y er uavhengige er E [ g(x)h(y ) ] = E [ g(x) ] E [ h(y ) ] f) Hvis X og Y er uavhengige er E(XY ) = E(X) E(Y ) ( ) g) E a + n b i X i = a + n b i E(X i ) 5

6 h) Betinget forventning: E(Y X = x i ) = j y j p Y X (y j x i ) (diskret) E(Y X = x) = yf Y X (y x)dy (kontinuerlig) 5. Varians og standardavvik a) Variansen og standardavviket til en stokastisk variabel X er definert ved Var(X) = E[(X µ) 2 ] sd(x) = Var(X) b) Var(X) = E(X 2 ) ( E(X) ) 2 c) Var(a + bx) = b 2 Var(X) d) Hvis X 1,...,X n er uavhengige har vi ( ) Var a + b i X i = b 2 i Var(X i ) e) Var ( a + ) b i X i = b 2 i Var(X i ) + b i b j Cov(X i, X j ) j i f) Chebyshev s ulikhet: La X være en stokastisk variabel med µ = E(X) og σ 2 = Var(X). For alle t > 0 har vi P( X µ > t) σ2 t 2 6. Kovarians og korrelasjon a) La X og Y være stokastiske variabler med µ X = E(X), σx 2 = Var(X), µ Y = E(Y ) og σy 2 = Var(Y ). Da er kovariansen og korrelasjonen til X og Y definert ved Cov(X, Y ) = E [ (X µ X )(Y µ Y ) ] ρ = Corr(X, Y ) = Cov(X, Y ) σ X σ Y 6

7 b) Cov(X, X) = Var(X) c) Cov(X, Y ) = E(XY ) E(X)E(Y ) d) X, Y uavhengige Cov(X, Y ) = 0 e) Cov ( a + ) m b i X i, c + d j Y j = j=1 m b i d j Cov(X i, Y j ) j=1 f) 1 Corr(X, Y ) 1 og Corr(X, Y ) = ±1 hvis og bare hvis det finnes to tall a, b slik at Y = a + bx (bortsett, eventuelt, på et område med sannsynlighet 0) 7. Momentgenererende funksjoner a) For en stokastisk variabel X (diskret eller kontinuerlig) er den momentgenererende funksjonen M X (t) = E(e tx ) b) Hvis den momentgenererende funksjonen M X (t) eksisterer for t i et åpent intervall som inneholder null, så bestemmer den entydig fordelingen til X c) Hvis den momentgenererende funksjonen M X (t) eksisterer for t i et åpent intervall som inneholder null, så eksisterer alle momenter til X, og vi kan finne det r-te momentet ved E(X r ) = M (r) X (0) d) M a+bx (t) = e at M X (bt) e) Hvis X og Y er uavhengige er M X+Y (t) = M X (t)m Y (t) 8. Noen diskrete sannsynlighetsfordelinger a) Binomisk fordeling: Punktsannsynlighet: P(X = k) = ( n k) p k (1 p) n k k = 0, 1,..., n Momentgenererende funksjon : M X (t) = (1 p + pe t ) n E(X) = np Varians : Var(X) = np(1 p) Tilnærmelse 1: Z = X np np(1 p) er tilnærmet standard normalfordelt når np og n(1 p) begge er tilstrekkelig store (minst 10) Tilnærmelse 2: X er tilnærmet Poisson fordelt med parameter λ = np når n er stor og p er liten 7

8 Addisjonsregel: X binomisk (n, p), Y binomisk (m, p) b) Geometrisk fordeling: og X, Y uavhengige X + Y binomisk (n + m, p) Punktsannsynlighet: P(X = k) = (1 p) k 1 p k = 1, 2,... Momentgenererende funksjon : M X (t) = e t p/[1 (1 p)e t ] E(X) = 1/p Varians: Var(x) = (1 p)/p 2 Addisjonsregel: Summen av r uavhengige geometriske fordelte variabler er negativt binomisk fordelt c) Negativ binomisk fordeling: Punktsannsynlighet: P(X = k) = ( ) k+r 1 r 1 p r (1 p) k k = 0, 1, 2,... Momentgenererende funksjon : M X (t) = {p/[1 (1 p)e t ]} r E(X) = r(1 p)/p Varians: Var(X) = r(1 p)/p 2 Addisjonsregel: d) Hypergeometrisk fordeling: Punktsannsynlighet: Varians: Tilnærmelse: e) Poisson fordelingen: Punktsannsynlighet: E(X) = m r n P(X = k) = k)( m k) (r n r ( m) n Var(X) = m r n (1 r n )n m n 1 X negativ binomisk (r 1, p), Y negativt binomisk (r 2, p) og X, Y uavhengige X + Y negativt binomisk (r 1 + r 2, p) X er tilnærmet binomisk (m, r ) når m er mye mindre enn n n P(X = k) = λk k! e λ k = 0, 1,... Momentgenererende funksjon : M X (t) = e λ(et 1) Varians: Tilnærmelse: E(X) = λ Var(X) = λ Z = X λ er tilnærmet standard normalfordelt λ når λ er tilstrekkelig stor (minst 10) 8

9 Addisjonsregel: X Poisson (λ 1 ), Y Poisson (λ 2 ) e) Multinomisk fordeling: og X, Y uavhengige X + Y Poisson (λ 1 + λ 2 ) Punktsannsynlighet: P(N 1 = n 1,...,N r = n r ) = n! n 1! n pn 1 r! 1 pnr r Her er r p i = 1 og r n i = n Marginalfordeling: N i binomisk (n, p i ) 9. Noen kontinuerlige sannsynlighetsfordelinger a) Normalfordelingen: Tetthet: f(x) = 1 2πσ e (x µ)2 /2σ 2 < x < Momentgenererende funksjon : M X (t) = e µt e σ2 t 2 /2 E(X) = µ Varians: Var(X) = σ 2 Transformasjon: X N(µ, σ 2 ) a + bx N(a + bµ, b 2 σ 2 ) X N(µ, σ 2 ) Z = X µ N(0, 1) σ Addisjonsregel: X N(µ X, σx 2 ), Y N(µ Y, σy 2 ), X, Y uavhengige X + Y N(µ X + µ Y, σx 2 + σ2 Y ) b) Eksponentialfordelingen: Tetthet: f(x) = λe λx x > 0 Momentgenererende funksjon : E(X) = 1/λ Varians: Var(X) = 1/λ 2 M X (t) = λ/(λ t) for t < λ Addisjonsregel: X exp(λ), Y exp(λ), X og Y uavhengige X + Y gamma(2, 1/λ) c) Gammafordelingen: Tetthet: f(x) = 1 β α Γ(α) xα 1 e x/β x > 0 Gammafunksjonen: Momentgenererende funksjon : E(X) = αβ Γ(α) = 0 u α 1 e u du Γ(α + 1) = αγ(α) Γ(n) = (n 1)! når n er et helt tall Γ(1/2) = π, Γ(1) = 1 M X (t) = [1/(1 βt)] α 9

10 Varians: Var(X) = αβ 2 Addisjonsregel: X gamma(α, β), Y gamma(δ, β), X og Y uavhengige X + Y gamma(α + δ, β) d) Kji-kvadratfordelingen: Tetthet: f(v) = 1 2 n/2 Γ(n/2) v(n/2) 1 e v/2 v > 0 n er antall frihetsgrader Varians: Addisjonsregel: E(V ) = n Var(V ) = 2n U χ 2 n, V χ2 m, U og V uavhengige U + V χ 2 n+m Resultat: Z N(0, 1) Z 2 χ 2 1 e) Students t-fordeling: Tetthet: f(t) = Γ[(n+1)/2] nπγ(n/2) (1 + t2 n ) (n+1)/2 n er antall frihetsgrader E(T) = 0 (n 2) Varians: Var(T) = n/(n 2) (n 3) < t < Resultat: Z N(0, 1), U χ 2 n, Z, U uavhengige Z/ U/n t n f) Binormal fordeling: Tetthet: f(x, y) = { 1 exp 1 2πσ X σ Y 1 ρ 2 2(1 ρ 2 ) [ (x µx ) 2 σ 2 X + (y µ Y ) 2 σ 2 Y 2ρ (x µ X)(y µ Y ] } ) σ X σ Y Marginalfordeling: X N(µ X, σ 2 X ), Y N(µ Y, σ 2 Y ) Korrelasjon: Betinget fordeling: Corr(X, Y ) = ρ Gitt X = x er Y normalfordelt med forventning E(Y X = x) = µ Y + ρ σ Y σ X (x µ X ) og varians Var(Y X = x) = σy 2 (1 ρ2 ) 10. Ett normalfordelt utvalg Hvis X 1, X 2,...,X n er uavhengige og N(µ, σ 2 )-fordelte så har vi at: a) X = 1 n b) X N(µ, σ 2 /n) X i og S 2 = 1 n 1 (X i X) 2 er uavhengige 10

11 c) (n 1)S 2 /σ 2 χ 2 n 1 d) X µ S/ n t n To normalfordelte utvalg La X 1, X 2,...,X n være uavhengige og N(µ X, σ 2 )-fordelte, og Y 1, Y 2,...,Y m uavhengige og N(µ Y, σ 2 )-fordelte. De to utvalgene er uavhengige av hverandre. La X, Y, SX 2 og SY 2 være definert i henhold til 10a). Da har vi at: a) Sp 2 = [(n 1)S2 X + (m 1)S2 Y ]/(m + n 2) er en vektet estimator for σ2 b) X Y N ( µ X µ Y, σ 2 ( 1 n + 1 m )) c) (n + m 2)S 2 p /σ2 χ 2 m+n 2 d) X Y (µ X µ Y ) S p 1 n + 1 m t m+n Regresjonsanalyse Anta at Y i = β 0 + β 1 x i + ǫ i ; i = 1, 2,...,n; hvor x i -ene er kjente tall og ǫ i -ene er uavhengige og N(0, σ 2 )-fordelte. Da har vi at: a) Minste kvadraters estimatorer for β 0 og β 1 er ˆβ 0 = Y ˆβ 1 x og ˆβ1 = n (x i x)(y i Y ) n (x i x) 2 b) Estimatorene i a) er normalfordelte og forventningsrette, og Var(ˆβ 0 ) = σ2 n x2 i n n (x i x) 2 og Var(ˆβ 1 ) = σ 2 n (x i x) 2 c) La SSE= n (Y i ˆβ 0 ˆβ 1 x i ) 2. Da er S 2 = SSE/(n 2) en forventningsrett estimator for σ 2, og (n 2)S 2 /σ 2 χ 2 n 2 11

Kapittel 2: Hendelser

Kapittel 2: Hendelser Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en

Detaljer

To-dimensjonale kontinuerlige fordelinger

To-dimensjonale kontinuerlige fordelinger To-dimensjonale kontinuerlige fordelinger Noen resultater for diskrete fordelinger Vi har tidligere definert punktsannsynligheten p(x, y) for en todimensjonal variabel (X, Y ) som p(x, y) = P ({X = x}

Detaljer

TMA4240 Statistikk Høst 2008

TMA4240 Statistikk Høst 2008 TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har

Detaljer

Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4

Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4 3 Tyngdepunkt Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4240 H2006: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF

Detaljer

Oppfriskning av blokk 1 i TMA4240

Oppfriskning av blokk 1 i TMA4240 Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for

Detaljer

STK Oppsummering

STK Oppsummering STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter

Detaljer

Kap. 6, Kontinuerlege Sannsynsfordelingar

Kap. 6, Kontinuerlege Sannsynsfordelingar Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform I går Normal I går Eksponensial I dag Gamma I dag Kji-kvadrat I dag Nokre eigenskapar

Detaljer

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter Observatorer STK00 - Observatorer - Kap 6 Geir Storvik 4. april 206 Så langt: Sannsynlighetsteori Stokastiske modeller Nå: Data Knytte data til stokastiske modeller Utgangspunkt Eksempel høyde Oxford studenter

Detaljer

Regneøvelse 22/5, 2017

Regneøvelse 22/5, 2017 Regneøvelse 22/5, 217 Arne Bang Huseby Eksamen STK11 212: oppgave 1 og 2 Eksamen STK11 28: oppgave 1) og 2 Eksamen 212, oppgave 1 Ved en bestemt butikk i en større dagligvarekjede viser langvarige data

Detaljer

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene

Detaljer

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a

Detaljer

Kontinuerlige sannsynlighetsfordelinger.

Kontinuerlige sannsynlighetsfordelinger. Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x) er sannsynlighetstettheten til en kontinuerlig X dersom: 1. f(x) 0 for alle x R 2. f(x)dx =1 3. P (a

Detaljer

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik. Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:

Detaljer

Formelsamling V MAT110 Statistikk 1. Per Kristian Rekdal

Formelsamling V MAT110 Statistikk 1. Per Kristian Rekdal Formelsamling V-2016 MAT110 Statistikk 1 Per Kristian Rekdal Figur 1: Statistikk. 3 Innhold 1 Beskrivende statistikk 9 1.1 Populasjon og utvalg.................................. 9 1.2 Statistiske mål

Detaljer

Foreleses onsdag 8. september 2010

Foreleses onsdag 8. september 2010 TMA4240 Statistikk H200 4.2: Varians (univariat del) 4.4: Chebyshevs teorem 3.4: Simultanfordelinger Mette Langaas Foreleses onsdag 8. september 200 Mette.Langaas@math.ntnu.no, TMA4240H200 2 4.2 Varians

Detaljer

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4245 V2007: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF 4.1: La X være

Detaljer

6.5 Normalapproksimasjon til. binomisk fordeling

6.5 Normalapproksimasjon til. binomisk fordeling ....3.4.5..5..5..5...4.6.8....4.6.8....3.4..5..5 Kaittel 6: Kontinuerlige sannsynsfordelingar TMA445 Statistikk Ka 6.5-6.8. 6.5: Normal aroksimasjon til binomisk fordeling, 6.6-6.8: Eksonensialfordeling,

Detaljer

Gammafordelingen og χ 2 -fordelingen

Gammafordelingen og χ 2 -fordelingen Gammafordelingen og χ 2 -fordelingen Gammafunksjonen Gammafunksjonen er en funksjon som brukes ofte i sannsynlighetsregning. I mange fordelinger dukker den opp i konstantleddet. Hvis man plotter n-fakultet

Detaljer

6 x P (X = x) = x=1 = P (X 2 = 6)P (X 2 = 6)P (X 3 = 6) =

6 x P (X = x) = x=1 = P (X 2 = 6)P (X 2 = 6)P (X 3 = 6) = Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 4, blokk I Løsningsskisse Oppgave 1 a) Utfallsrommet til X 1 er {1, 2,, 4, 5, }. Sannsynlighetsfordelingen

Detaljer

Kap. 6, Kontinuerlege Sannsynsfordelingar

Kap. 6, Kontinuerlege Sannsynsfordelingar Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform I går Normal I går Eksponensial I dag Gamma I dag Kji-kvadrat I dag Nokre eigenskapar

Detaljer

Forventning og varians.

Forventning og varians. Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.1) Forventningsverdi = gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: x xf(x),x

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: STK Sannsynlighetsregning og statistisk modellering Eksamensdag: Mandag 4. mars 26 Tid for eksamen: 5. 7. Oppgavesettet er

Detaljer

6.1 Kontinuerlig uniform fordeling

6.1 Kontinuerlig uniform fordeling Kapittel 6 Noen kontinuerlige sannsynlighetsfordelinger TMA4240 H2006: Eirik Mo 2 6.1 Kontinuerlig uniform fordeling Kontinuerlig uniform fordeling: Sannsynlighetstettheten til den kontinuerlige uniforme

Detaljer

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Oppgave 1: Pengespill a) For hver deltaker har vi følgende situasjon: Deltakeren får en serie oppgaver. Hver runde har to mulige utfall: Deltakeren

Detaljer

Om fordelingen tilx +Y

Om fordelingen tilx +Y Variansen til X +Y Om fordelingen til X +Y Vi viste at generelt, dvs. også når X og Y er avhengige gjelder E[X +Y] = E[X]+E[Y] Med µ X og µ Y forventningen til X og Y har vi da STK1100 V11 1. Variansen

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren

Detaljer

Forventning og varians.

Forventning og varians. Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.) Forventningsverdi gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: E(X) f(),x diskret

Detaljer

Stokastisk variabel. Eksempel augefarge

Stokastisk variabel. Eksempel augefarge Dagens tekst Kap 3: Stokastiske variable og sannsynsfordelingar Stokastisk variabel: Diskret sannsynsfordeling: Kontinuerleg sannsynsfordeling: Kummulativ sannsynsfordeling: Diskret simultanfordeling Kontinuerleg

Detaljer

Notasjon. Løsninger. Problem. Kapittel 7

Notasjon. Løsninger. Problem. Kapittel 7 3 Notasjon Kapittel 7 Funksjoner av stokastiske variabler Har n stokastiske variabler, X 1, X 2,..., X n, med kjent fordeling f( 1, 2,..., n ) og kumulativ fordeling F( 1, 2,..., n ). Ser på Y = u(x 1,

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger

Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger f(x,y) NTNU Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger TMA4240 Statistikk (F2 og E7) 3.4: Foreleses mandag 30.august y=hoyde x=vekt Ole.Petter.Lodoen@math.ntnu.no p.1/18 Oppsummering

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA44 Statistikk Høst 9 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b Løsningsskisse Oppgave X er en stokastisk variabel med sannsynlighetstetthet { f(x),

Detaljer

Statistikk 1 kapittel 4

Statistikk 1 kapittel 4 Statistikk 1 kapittel 4 Nico Keilman ECON 2130 Vår 2017 Kapittel 4 Stokastiske (tilfeldige) variabler Anta 1) Vi kjenner sannsynligheter for ulike utfall knyttet til et forsøk 2) Hvert utfall har en (meningsfull)

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

Funksjoner av stokastiske variable.

Funksjoner av stokastiske variable. Funksjoner av stokastiske variable. Dekkes av pensumsidene i kap. 7 I ulike sammenhenger, blant annet for å finne fordelingen til estimatorer, er vi interesserte i fordelingen til funksjoner av stokastiske

Detaljer

Høgskoleni østfold EKSAMEN

Høgskoleni østfold EKSAMEN et) Høgskoleni østfold EKSAMEN Emnekode:Emne: SFB10711Metode 1 Statistikkdel Dato: 5. feb. 2016Eksamenstid: kl. 1400 Hjelpemidler: Kalkulator Utlevert formelsamling til kl. 1800 Faglærer: Nils Ingar Arvidsen

Detaljer

Funksjoner av stokastiske variable.

Funksjoner av stokastiske variable. Funksjoner av stokastiske variable. Dekkes av pensumsidene i kap. 7 I ulike sammenhenger, blant annet for å finne fordelingen til estimatorer, er vi interesserte i fordelingen til funksjoner av stokastiske

Detaljer

Forelesning 7. mars, 2017

Forelesning 7. mars, 2017 Forelesning 7. mars, 2017 AVSNITT 5.1 Eksempel: Miljøkonturer AVSNITT 5.2 Forventningen til en funksjon av flere variable Kovariansen mellom to variable Eksempel: Miljøkonturer Miljøvariable som karakteriserer

Detaljer

FORMELSAMLING STATISTIKK, HiG

FORMELSAMLING STATISTIKK, HiG FORMELSAMLING STATISTIKK, HiG Hans Petter Hornæs hans.hornaes@hig.no Versjon per 18. februar 2004 Innhold 1 EMPIRISKE STATISTISKE MÅL 1 1.1 Forventningsverdi, varians og standardavvik.....................

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA1081 EKSAMENSDATO: 11. juni 2007. KLASSE: Ingeniørklasser. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.

Detaljer

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden.

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden. Estimeringsmetoder Momentmetoden La X, X 2,..., X n være uavhengige variable som er rektangulært fordelte på intervallet [0, θ]. Vi vet da at forventningsverdiene til hver observasjon og forventningen

Detaljer

TMA4240 Statistikk. Øving nummer 7. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4240 Statistikk. Øving nummer 7. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Vår 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave Blandet drops a) Tippekupong På en tippekupong er det gitt 2 fotballkamper.

Detaljer

La U og V være uavhengige standard normalfordelte variable og definer

La U og V være uavhengige standard normalfordelte variable og definer Binormalfordelingen Definisjon Noe av hensikten med å innføre begrepet betinget sannsynlighet er at kompliserte modeller ofte kan bygges ut fra enkle betingede modeller. Når man spesifiserer betingelser

Detaljer

Høgskoleni Øs fold EKSAMEN. Om noe er uklart eller mangelfullt i oppgaven inngår det som en del av oppgaven å ta de nødvendige forutsetninger.

Høgskoleni Øs fold EKSAMEN. Om noe er uklart eller mangelfullt i oppgaven inngår det som en del av oppgaven å ta de nødvendige forutsetninger. Høgskoleni Øs fold EKSAMEN Emnekode: Emne: SFB10711 Metodekurs 1: Grunnleggende matematikk og statistikk Deleksameni statistikk Dato: 3. januar 2014 Eksamenstid: kl. 0900 til kl. 1300 Hjelpemidler: Faglærer:

Detaljer

Eksempel: kast med to terninger

Eksempel: kast med to terninger Kapittel 3 TMA4245 V2007: Eirik Mo 2 Eksempel: kast med to terninger I et eksperiment kaster vi to terninger og registerer antall øyne på hver terning. Utfallsrom S={(,),(,2),(,3),...,(,), (2,),...,(2,),...,(,)}

Detaljer

TMA4245 Statistikk Vår 2007

TMA4245 Statistikk Vår 2007 TMA4245 Statistikk Vår 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har lært.

Detaljer

Hogskoleni Østfold EKSAMEN. Eksamenstid: kl til k

Hogskoleni Østfold EKSAMEN. Eksamenstid: kl til k Hogskoleni Østfold EKSAMEN Emnekode: SFB10711 Dato: 5. jan 2015 Hjelpemidler: Kalkulator Utlevert formelsamling Emne: Metodekurs I: Grunnleggende matematikk og statistikk (Statistikk, ny og utsatt eksamen)

Detaljer

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Oppgave 1 X er kontinuerlig fordelt med sannsynlighetstetthet f(x) = 2xe

Detaljer

FORMELSAMLING STATISTIKK, HiG

FORMELSAMLING STATISTIKK, HiG Høgskolen i Gjøvik Avdeling for ingeniørfag Versjon fra mai 2007 FORMELSAMLING STATISTIKK, HiG Hans Petter Hornæs hans.hornaes@hig.no ISSN:??????? Innledning. Denne formelsamlingen er skrevet for bruk

Detaljer

Om eksamen. Never, never, never give up!

Om eksamen. Never, never, never give up! Plan vidare Onsdag Gjere ferdig kap 11 + repetisjon Fredag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

Midtveiseksamen i STK1100 våren 2017

Midtveiseksamen i STK1100 våren 2017 Midtveiseksamen i STK1100 våren 2017 Denne midtveiseksamenen består av 20 oppgaver. Det er ett riktig svaralternativ for hvert spørsmål. Hvis svaret er oppgitt som et desimaltall, er det rundet av til

Detaljer

ÅMA 110 (TE 199) Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 2005, s. 1. Oppgave 1

ÅMA 110 (TE 199) Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 2005, s. 1. Oppgave 1 ÅMA 0 (TE 99) Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 005, s. Oppgave a) P (X 0) 0.04 + 0.04 + 0.06 + 0.06 + 0. + 0. + 0. 0.6 P (0 X 40) 0.0 + 0.0 + 0.04 + 0.04 + 0.06 0.0 P

Detaljer

statistikk, våren 2011

statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 011 Kp. 3 Diskrete tilfeldige variable 1 Diskrete tilfeldige variable, innledning Hva er en tilfeldig variabel (stokastisk variabel)? Diskret tilfeldig

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

j=1 (Y ij Ȳ ) 2 kan skrives som SST = i=1 (J i 1) frihetsgrader.

j=1 (Y ij Ȳ ) 2 kan skrives som SST = i=1 (J i 1) frihetsgrader. FORMELSAMLING TIL STK2120 (Versjon av 30. mai 2012) 1 Enveis variansanalyse Anta at Y ij = µ + α i + ɛ ij ; j = 1, 2,..., J i ; i = 1, 2,..., I ; der ɛ ij -ene er uavhengige og N(0, σ 2 )-fordelte. Da

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 8, blokk II Løsningsskisse Oppgave 1 Da komponentene danner et parallellsystem, vil systemet fungere dersom minst

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Kapittel 5: Noen diskrete sannsynlighetsfordelinger 5.4 Geometrisk og negativ binomisk fordeling 5.5 Poisson-prosess og -fordeling Mette Langaas Institutt for matematiske fag,

Detaljer

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Oppgave 1 a) En god estimator er forventningsrett og har liten varians. Vi tester forventningsretthet: E[ˆµ] E[Y ] µ E[ µ] E[ 1 2 X + 1 2 Y ] 1 2 E[X]

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlege stokastiske variabelen X ha fordelingsfunksjon (sannsynstettleik

Detaljer

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner STK1100 våren 2017 Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner Svarer til avsnittene 4.1 og 4.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i

Detaljer

Denne veka. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon

Denne veka. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Denne veka Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Notat: Ordningsvariable og ekstremvariable Ordnings variable Maksimum Minumum Transformasjon

Detaljer

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko

Detaljer

Emnenavn: Eksamenstid: Faglærer: Hans Kristian Bekkevard

Emnenavn: Eksamenstid: Faglærer: Hans Kristian Bekkevard Høgskoleni østfold EKSAMEN Emnekode: SFB10711 Emnenavn: Metodekurs 1: statistikk, deleksamen Dato: Eksamenstid: 4. januar 2017 4 timer Hjelpemidler: Kalkulator og vedlagt formelsamling m/tabeller Faglærer:

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (fra til): 09:00

Detaljer

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Oppgave 1 a Forventet antall dødsulykker i år i er E(X i λ i. Dermed er θ i λ i E(X i forventet antall dødsulykker per 100

Detaljer

TMA4240 Statistikk Høst 2007

TMA4240 Statistikk Høst 2007 TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,

Detaljer

Forelesning 27. mars, 2017

Forelesning 27. mars, 2017 Forelesning 27. mars, 2017 AVSNITT 5.5 Ordningsobservatorene AVSNITT 6.1 Observatorer og deres fordelinger Ordningsobservatorene La X 1,..., X n være n uavhengige stokastiske variable som alle har samme

Detaljer

x λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3

x λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 7 Løsningsskisse Oppgave 1 a) Regner først ut den kumulative fordelingsfunksjonen til X: F X (x) = x λe λt dt

Detaljer

UNIVERSITETET I OSLO Matematisk Institutt

UNIVERSITETET I OSLO Matematisk Institutt UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent

Detaljer

Eksamensoppgåve i ST1201/ST6201 Statistiske metoder

Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Fagleg kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (frå til): 09:00

Detaljer

Oppgavesettet består av 11 sider inklusiv denne forsiden, hvorav de 7 siste er formelsamling og tabeller.

Oppgavesettet består av 11 sider inklusiv denne forsiden, hvorav de 7 siste er formelsamling og tabeller. Høgskoleni østfold EKSAMEN Emnekode: Emnenavn: SFB10711 Metode 1, statistikk deleksamen Dato: Eksamenstid: 18. mai 2016 4 timer Hjelpemidler: Faglærer: Kalkulator og vedlagt Hans Kristian Bekkevard formelsamling

Detaljer

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar

Detaljer

Høgskoleni østfold EKSAMEN. SFB10711 Metodekurs 1: Grunnleggende matematikk og statistikk Skriftlig eksamen, vår, statistikk

Høgskoleni østfold EKSAMEN. SFB10711 Metodekurs 1: Grunnleggende matematikk og statistikk Skriftlig eksamen, vår, statistikk Høgskoleni østfold EKSAMEN Emnekode: Emne: SFB10711 Metodekurs 1: Grunnleggende matematikk og statistikk Skriftlig eksamen, vår, statistikk Dato: 4. mai 2015 Eksamenstid: kl. 09.00 til kl. 13.00 Hjelpemidler:

Detaljer

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. FORMELSAMLING TIL STK2100 (Versjon Mai 2017) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)

Detaljer

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma.

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. TMA4240 Statistikk H2010 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. Mette Langaas Foreleses mandag 27. september 2010 2

Detaljer

TMA4245 Statistikk Høst 2016

TMA4245 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 4 Løsningsskisse Oppgave 1 Mureren La X være mengden mørtel mureren bruker i løpet av en tilfeldig valgt arbeidsdag.

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Oppgave 1 Oljeleting a) Siden P(A

Detaljer

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - "Fornuftig verdi"

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - Fornuftig verdi Inferens STK1110 - Repetisjon av relevant stoff fra STK1100 Geir Storvik 12. august 2015 Data x 1,..., x n evt også y 1,..., y n Ukjente parametre θ kan være flere Vi ønsker å si noe om θ basert på data.

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5 Løsningsskisse Oppgave 1 En lottorekke kan oppfattes som et ikke-ordnet utvalg på

Detaljer

Kontinuerlige sannsynlighetsfordelinger.

Kontinuerlige sannsynlighetsfordelinger. Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x er sannsynlighetstettheten til en kontinuerlig X dersom:. f(x 0 for alle x R 2. f(xdx = 3. P (a

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 11. juni 2007. KLASSE: HIS 05 08. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 5 (innkl. forside)

Detaljer

Forelening 1, kapittel 4 Stokastiske variable

Forelening 1, kapittel 4 Stokastiske variable Forelening 1, kapittel 4 Stokastiske variable Eksempel X = "antall kron på kast med to mynter (før de er kastet)" Uniformt utfallsrom {MM, MK, KM, KK}. X = x beskriver hendelsen "antall kron på kast med

Detaljer

Tilleggsoppgaver for STK1110 Høst 2015

Tilleggsoppgaver for STK1110 Høst 2015 Tilleggsoppgaver for STK0 Høst 205 Geir Storvik 22. november 205 Tilleggsoppgave Anta X,..., X n N(µ, σ) der σ er kjent. Vi ønsker å teste H 0 : µ = µ 0 mot H a : µ µ 0 (a) Formuler hypotesene som H 0

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST0 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Torsdag 9. mai 994. Tid for eksamen: 09.00 5.00. Oppgavesettet

Detaljer

Ekstraoppgaver for STK2120

Ekstraoppgaver for STK2120 Ekstraoppgaver for STK2120 Geir Storvik Vår 2011 Ekstraoppgave 1 Anta X 1 og X 2 er uavhengige med X 1 N(1.0, 1.0) og X 2 N(2.0, 1.5). La X = (X 1, X 2 ) T. Definer c = ( ) 2.0 3.0, A = ( ) 1.0 0.5 0.0

Detaljer

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser. ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35

Detaljer

EKSAMEN I EMNE TTM4110 PÅLITELIGHET OG YTELSE MED SIMULERING. Mandag 14. desember 2005 Tid: 09:00 13:00

EKSAMEN I EMNE TTM4110 PÅLITELIGHET OG YTELSE MED SIMULERING. Mandag 14. desember 2005 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for telematikk Side 1 av 12 Faglig kontakt under eksamen: Poul Heegaard (73 594321) EKSAMEN I EMNE TTM4110 PÅLITELIGHET OG YTELSE MED SIMULERING

Detaljer

Statistikk 1 kapittel 4

Statistikk 1 kapittel 4 Statistikk 1 kapittel 4 Nico Keilman ECON 2130 Vår 2015 Kapittel 4 Stokastiske (tilfeldige) variabler Anta 1) Vi kjenner sannsynligheter for ulike utfall knyttet til et forsøk 2) Hvert utfall har en (meningsfull)

Detaljer

Løsningsforslag oblig 1 STK1110 høsten 2014

Løsningsforslag oblig 1 STK1110 høsten 2014 Løsningsforslag oblig STK høsten 4 Oppgave I forbindelse med en studie av antioksidanter og antocyanider, ble innholdet av antocyan i 5 beger med blåbær målt. De målte verdiene var (i mg per gram): 55

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 5 jui 2015 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5, blokk I Løsningsskisse Oppgave 1 X og Y er uavhengige Poisson-fordelte stokastiske variable, X p(x;5 og Y p(y;1.

Detaljer

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling Kapittel 8 Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling TMA4240 H2006: Eirik Mo 2 Til nå... Definert sannsynlighet og stokastiske variabler (kap. 2 & 3).

Detaljer

Transformasjoner av stokastiske variabler

Transformasjoner av stokastiske variabler Transformasjoner av stokastiske variabler Notasjon merkelapper på fordelingene Sannsynlighetstettheten og den kumulative fordelingen til en stokastisk variabel X betegnes hhv. f X og F X. Indeksen er altså

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 19 des. 2014 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi

Detaljer