UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet"

Transkript

1 UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Eksamen i AST5220/9420 Kosmologi II Eksamensdag: Fredag 11. juni 2010 Tid for eksamen: Oppgavesettet er på 4 sider. Vedlegg: Ingen Tillatte hjelpemidler: Ingen. Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Merk at AST5220-studenter skal besvare oppgavene 1)-4), mens AST9420-studenter skal besvare oppgavene 1)-3) og 5), men ikke oppgave 4). Hver oppgave teller 25% av endelig resultat. 1

2 Oppgave 1 Oppvarming (AST5220 og AST9420) Besvar hvert spørsmål med tre-fire linjer. a) Hva er den fysiske tolkningen av konform tid? b) Hvordan skalerer den fysiske tettheten av baryoner som funksjon av skalafaktoren, a? Og hvordan skalerer energitettheten av fotoner? Hva er forskjellen på disse? c) Skriv ned Boltzmann-likningen på skjematisk form. Hva beskrives av henholdsvis venstre og høyre side? d) Omtrent ved hvilken rødforskyvning inntreffer rekombinasjonen? Og ved hvilken temperatur? e) Hva er den fysiske tolkningen av temperatur-monopolen θ 0 (k, η)? f) Hva er grunnen(e) til at man må løse Einstein-Boltzmann likningene separat i tett-koblings-området og ved senere tider? g) Hva måler CMB power spekteret, C l? 2

3 Oppgave 2 Fysisk tolkning (AST5220 og AST9420) log X Time, x Figur 1: En funksjon X plottet for 100 forskjellige verdier av bølgetallet k, som funksjon av tid, x. Figur 1 viser en størrelse, X, som inngår i løsningen av Einstein- Boltzmann-likningene, plottet for 100 forskjellige verdier av k (mellom 0.1 og 1000 H 0 /c) og som funksjon av tid, x, der x = lna. a) Hvilken funksjon er plottet her? b) Hvilke hovedfaser kan man se? c) Forklar fysisk den generelle oppførselen til funksjonene. 3

4 Oppgave 3 Tensor-perturbasjoner (AST5220 og AST9420) Metrikken for tensor-perturbasjoner er gitt ved g 00 = 1 og 1 + h + h 0 g ij = a 2 h 1 h + 0, (1) der h + og h er små størrelser. Denne metrikken beskriver gravitasjonsbølger som propagerer langs z-aksen. Vi definerer så h + h 0 H ij = h h + 0, (2) slik at den romlige metrikken kan skrives g ij = a 2 (δ ij + H ij ). De eneste Christoffel-symbolene forskjellige fra null for denne metrikken er og Ricci-tensor-elementene er Γ 0 ij =? (3) Γ i 0j = Hδ ij H ij,0 (4) Γ i jk = i 2 [k kh ij + k j H ik k i H jk ] (5) R 00 =? (6) ( ) d 2 a dt R ij = g 2 ij a + 2H a2 HH ij,0 + a 2H ij 2 + k2 2 H ij (7) a) Regn ut Γ 0 ij. b) Regn ut Ricci-tensor-elementet R 00. 4

5 Oppgave 4 Initialbetingelser for Θ 0 (AST5220) I denne oppgaven skal du utlede initial-betingelsen for Θ 0 gitt Φ. Utgangspunktet for dette er de fulle Boltzmann-likningene listet opp i appendikset, som så skal forenkles. Det første steget på denne prosessen er å fjerne alle ledd som multipliseres med k. a) Hvorfor er dette en gyldig tilnærming? b) Vis at den korrekte initialbetingelsen for Θ 0 er fra Boltzmann-likningene. Θ 0 = 1 2 Φ (8) Oppgave 5 Einstein-likningen for tensor-perturbasjoner (AST9420) Utled første-ordens Einstein-likning for h (= h + og h ) for tensor-perturbasjoner. Hvordan type likning er dette? Skisser løsningene for noen forskjellige relevante verdier av k. 5

6 1 Appendix 1.1 General relativity Suppose that the structure of spacetime is described by some metric g µν. The Christoffel symbols are Γ µ αβ = gµν 2 [ gαν x + g βν β x g αβ α x ν ] (9) The Ricci tensor reads R µν = Γ α µν,α Γ α µα,ν + Γ α βαγ β µν Γ α βνγ β µα (10) The Einstein equations reads R µν 1 2 g µνr = 8πGT µν (11) where R R µ µ is the Ricci scalar, and T µν is the energymomentum tensor. For a perfect fluid, the energy-momentum tensor is ρ T ν µ = 0 p p 0, (12) p where ρ is the density of the fluid and p is the pressure. 6

7 1.2 Background cosmology Four time variables: t = physical time, η = t 0 a 1 (t)dt = conformal time, a = scale factor, x = lna Friedmann-Robertson-Walker metric for flat space: ds 2 = dt 2 + a 2 (t)δ ij dx i dx j = a 2 (η)( dη 2 + δ ij dx i dx j ) Friedmann s equations: H 1 da a dt = H 0 (Ωm + Ω b )a 3 + Ω r a 4 + Ω Λ (13) H 1 da a dη = H 0 (Ωm + Ω b )a 1 + Ω r a 2 + Ω Λ a 2 (14) Conformal time as a function of scale factor: η(a) = a 0 da a H(a ) (15) 7

8 1.3 The perturbation equations Einstein-Boltzmann equations: Θ 0 = k H Θ 1 Φ, (16) Θ 1 = k 3H Θ 0 2k 3H Θ 2 + k [ 3H Ψ + τ Θ ] 3 v b, (17) [ Θ lk l = (2l + 1)H Θ (l + 1)k l 1 (2l + 1)H Θ l+1 + τ Θ l 1 ] 10 Θ lδ l,2, l 2 (18) Θ l+1 = k H Θ l 1 l + 1 Hη(x) Θ l + τ Θ l, l = l max (19) δ = k H v 3Φ (20) v = v k H Ψ (21) δ b = k H v b 3Φ (22) v b = v b k H Ψ + τ R(3Θ 1 + v b ) (23) Φ = Ψ k2 3H 2Φ + H2 0 2H 2 [ Ωm a 1 δ + Ω b a 1 δ b + 4Ω r a 2 Θ 0 ] (24) Ψ = Φ 12H2 0 k 2 a 2 Ω rθ 2 (25) 8

9 1.4 Initial conditions Φ = 1 (26) δ = δ b = 3 2 Φ (27) v = v b = k 2H Φ (28) Θ 0 = 1 2 Φ (29) Θ 1 = k 6H Φ (30) Θ 2 = 8k 15Hτ Θ 1 (31) Θ l = l k 2l + 1 Hτ Θ l 1 (32) 1.5 Recombination and the visibility function Optical depth Visibility function: η0 0 τ(η) = η0 η τ = n eσ T a H n e σ T adη (33) (34) g(η) = τe τ(η) = Hτ e τ(x) = g(x) (35) g(x) = τ e τ = g(x) H, (36) g(η)dη = 0 g(x)dx = 1. (37) 9

10 The Saha equation, X 2 e 1 X e = 1 n b ( ) 3/2 me T b e ǫ 0/T b, (38) 2π where n b = Ω bρ c m h a, ρ 3 c = 3H2 0 8πG, T b = T r = T 0 /a = 2.725K/a, and ǫ 0 = eV. The Peebles equation, dx e dx = C r(t b ) [ ] β(t b )(1 X e ) n H α (2) (T b )Xe 2, (39) n b where Λ 2s 1s + Λ α C r (T b ) = Λ 2s 1s + Λ α + β (2) (T b ), (40) Λ 2s 1s = 8.227s 1 (41) Λ α = H (3ǫ 0) 3 (8π) 2 n 1s (42) n 1s = (1 X e )n H (43) β (2) (T b ) = β(t b )e 3ǫ 0/4T b (44) ( ) 3/2 β(t b ) = α (2) me T b (T b ) e ǫ 0/T b (45) 2π α (2) (T b ) = 64π α 2 ǫ0 φ 27π m 2 2 (T b ) (46) e T b φ 2 (T b ) = ln(ǫ 0 /T b ) (47) 10

11 1.6 The CMB power spectrum 1. The source function:» S(k, x) = g Θ 0 + Ψ Θ 2 + e τ ˆΨ + Φ 1 k d dx (H gv b) + 3» d 4k 2 H d dx dx (H gθ 2)» d H d dx dx (H gθ 2) = d(hh ) gθ 2 + 3HH ( gθ 2 + gθ dx 2) + H 2 ( g Θ g Θ 2 + gθ 2), (49) Θ 2 = 2k» H 5H H Θ 1 + Θ ˆτ Θ 2 + τ Θ 3k 10 2» H 5H H Θ 3 + Θ 3 (50) 2. The transfer function: (48) Θ l (k,x = 0) = 0 S(k,x)j l [k(η 0 η(x))]dx (51) 3. The CMB spectrum: C l = 0 ( k H 0 ) n 1 Θ 2 l (k) dk k (52) 11

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003 Norges teknisk naturvitenskapelige universitet NTNU Side 1 av 9 Institutt for fysikk Fakultet for naturvitenskap og teknologi Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Onsdag 28. mai 2003

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte

Detaljer

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 19. mai :00 13:00

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 19. mai :00 13:00 NTNU Side 1 av 2 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 45 43 71 70 Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 19. mai 2012 09:00 13:00 Tillatte hjelpemidler:

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m

Eksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Eksamensdag: Torsdag 2. juni 24 Tid for eksamen: 4.3 8.3 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler: STK429

Detaljer

En kort introduksjon til generell relativitetsteori

En kort introduksjon til generell relativitetsteori En kort introduksjon til generell relativitetsteori Generell relativitetsteori (GR) representerer vår mest fundamentale forståelse av tid, rom og gravitasjon, og er helt nødvendig for å formulere konsistente

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS240 Kvantefysikk Eksamensdag: 3. juni 206 Tid for eksamen: 09.00 4 timer) Oppgavesettet er på fem 5) sider Vedlegg: Ingen

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF2200 Eksamensdag: 4. Juni 2015 Tid for eksamen: 14.30-17.30 Oppgavesettet er på X sider + Vedlegg 1 (1 side) Vedlegg 1: Sondediagram

Detaljer

Løysingsforslag (Skisse) Eksamen FY3452 Gravitasjon og Kosmologi Våren 2007

Løysingsforslag (Skisse) Eksamen FY3452 Gravitasjon og Kosmologi Våren 2007 Løysingsforslag (Skisse) Eksamen FY3452 Gravitasjon og Kosmologi Våren 2007 May 24, 2007 Oppgave 1 a) Lorentztransformasjonane er x = γ(x V t), t = γ(t V x), der γ = 1/ 1 V 2 Vi tar differensiala av desse

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS4 Kvantefysikk Eksamensdag: 8. juni 5 Tid for eksamen: 9. (4 timer) Oppgavesettet er på fem (5) sider Vedlegg: Ingen

Detaljer

Eksamen i Klassisk feltteori, fag TFY 4270 Onsdag 26. mai 2004 Løsninger

Eksamen i Klassisk feltteori, fag TFY 4270 Onsdag 26. mai 2004 Løsninger Eksamen i Klassisk feltteori, fag TFY 470 Onsdag 6. mai 004 Løsninger 1a) Sammenhengen mellom koordinattiden t og egentiden τ er at Den relativistiske impulsen er Hamiltonfunksjonen er Siden har vi at

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: Eksamensdag: Tid fo eksamen: 14.30 18.30 Oppgavesettet e på 5 side. Vedlegg: Tillatte hjelpemidle: MEK3230 Fluidmekanikk 6. Juni,

Detaljer

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 11. august :00 13:00

Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 11. august :00 13:00 NTNU Side 1 av 3 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 45 43 71 70 Eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Lørdag 11. august 2012 09:00 13:00 Tillatte hjelpemidler:

Detaljer

Konstanter og formelsamling finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side en selve oppgaven

Konstanter og formelsamling finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side en selve oppgaven UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Konteeksamen i AST1100, 8.januar 2009, 14.30 17.30 Oppgavesettet inkludert formelsamling er på 10 sider Tillatte hjelpemidler: medbrakt

Detaljer

Eksamen i fag RELATIVISTISK KVANTEMEKANIKK Fredag 26. mai 2000 Tid: 09:00 14:00

Eksamen i fag RELATIVISTISK KVANTEMEKANIKK Fredag 26. mai 2000 Tid: 09:00 14:00 Side 1 av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Navn: Kåre Olaussen Telefon: 9 36 52 Eksamen i fag 74327 RELATIVISTISK KVANTEMEKANIKK Fredag

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 1100 Feltteori og vektoranalyse. Eksamensdag: Fredag 29 mai 2009. Tid for eksamen: 14:30 17:30. Oppgavesettet er på 6 sider.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT1100 Kalkulus Eksamensdag: Fredag 14. oktober 2016 Tid for eksamen: 13.00 15.00 Oppgavesettet er på 5 sider. Vedlegg: Svarark,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Fredag 7. desember 27. Tid for eksamen: 9: 12:. Oppgavesettet er på 8 sider.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 29. mars 2007 Tid for eksamen: 09.00 2.00 Oppgavesettet er på 5 sider. Vedlegg: INF 3470 / INF 4470 Digital Signalbehandling

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2120 Statistiske metoder og dataanalyse 2. Eksamensdag: Fredag 7. juni 2013. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212)

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren (964) EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER

Detaljer

INF3170 Logikk. Ukeoppgaver oppgavesett 7

INF3170 Logikk. Ukeoppgaver oppgavesett 7 INF3170 Logikk Ukeoppgaver oppgavesett 7 Unifisering I forelesning 10 så vi på en unifiseringsalgoritme som finner en mest generell unifikator for to termer. I automatisk bevissøk har vi imidlertid bruk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte

Detaljer

Eksamen i AST2110 Universet Eksamensdag: Fredag 9. juni 2006 Tid for eksamen: Løsningsforslag. Oppgave 1

Eksamen i AST2110 Universet Eksamensdag: Fredag 9. juni 2006 Tid for eksamen: Løsningsforslag. Oppgave 1 UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Eksamen i AST2110 Universet Eksamensdag: Fredag 9. juni 2006 Tid for eksamen: 09.00 12.00 Løsningsforslag Oppgave 1 Robertson-Walker metrikken

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 22 mars 2017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO NIVERSIEE I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys60 Eksamensdag: Fredag 6. desember 03 id for eksamen: 430 830 Oppgavesettet er på: 4 sider Vedlegg: ingen ilatte hjelpemidler Godkjente

Detaljer

Det matetmatisk-naturvitenskapelige fakultet Prøveeksamen i AST1100 Oppgavesettet inkludert formelsamling er på 13 sider

Det matetmatisk-naturvitenskapelige fakultet Prøveeksamen i AST1100 Oppgavesettet inkludert formelsamling er på 13 sider UNIVERSITETET I OSLO Det matetmatisk-naturvitenskapelige fakultet Prøveeksamen i AST1100 Oppgavesettet inkludert formelsamling er på 13 sider Konstanter og formelsamling finner du bakerst Vær nøye med

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FY 5 - Svingninger og bølger Eksamensdag: 5. januar 4 Tid for eksamen: Kl. 9-5 Tillatte hjelpemidler: Øgrim og Lian: Størrelser

Detaljer

Eksamen i FY3403/TFY4290 PARTIKKELFYSIKK Mandag 12. desember :00 13:00

Eksamen i FY3403/TFY4290 PARTIKKELFYSIKK Mandag 12. desember :00 13:00 NTNU Side 1 av 6 Institutt for fysikk Faglig kontakt under eksamen: Professor Kåre Olaussen Telefon: 9 36 5 eller 45 43 71 70 Eksamen i FY3403/TFY490 PARTIKKELFYSIKK Mandag 1. desember 005 09:00 13:00

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.

Detaljer

Løsningsforslag til eksamen i FY3464 KVANTEFELTTEORI Torsdag 26. mai 2005

Løsningsforslag til eksamen i FY3464 KVANTEFELTTEORI Torsdag 26. mai 2005 NTNU Side av 5 Institutt or ysikk Fakultet or ysikk, inormatikk og matematikk Eksamen gitt av Kåre Olaussen Dette løsningsorslaget er på 5 sider. Løsningsorslag til eksamen i FY3464 KVANTEFELTTEORI Torsdag

Detaljer

Eksamen i SIF5036 Matematisk modellering Onsdag 12. desember 2001 Kl

Eksamen i SIF5036 Matematisk modellering Onsdag 12. desember 2001 Kl Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Harald E Krogstad, tlf: 9 35 36/ mobil:416 51 817 Sensur: uke 1, 2002 Tillatte hjelpemidler:

Detaljer

Matematikk 3MX AA6524 og AA6526 Elever og privatister 8. desember 2003

Matematikk 3MX AA6524 og AA6526 Elever og privatister 8. desember 2003 E K S A M E N LÆRINGSSENTERET Matematikk 3MX AA6524 og AA6526 Elever og privatister Bokmål 8. desember 2003 Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: MEK3220/MEK4220 Kontinuumsmekanikk Eksamensdag: Onsdag 2. desembe 2015. Tid fo eksamen: 09.00 13.00. Oppgavesettet e på 7 side.

Detaljer

Konstanter og formelsamling finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side en selve oppgaven

Konstanter og formelsamling finner du bakerst Merk: Figurene til oppgavene er ofte på en annen side en selve oppgaven UNIVERSITETET I OSLO Det matetmatisk-naturvitenskapelige fakultet Midtveis -eksamen i AST1100, 7. oktober 2008, 15.00 18.00 Oppgavesettet inkludert formelsamling er på 8 sider Konstanter og formelsamling

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MoD200 Eksamensdag: 15. desember 2003 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Eksamen i GEOF330 Dynamisk Oseanografi. Oppgave 1: Stående svingninger

Eksamen i GEOF330 Dynamisk Oseanografi. Oppgave 1: Stående svingninger Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i GEOF330 Dynamisk Oseanografi 15. Desember 2006, kl 0900-1400 Tillatte hjelpemiddel: Kalkulator og matematisk formelsamling Oppgave

Detaljer

TMA4265 Stokastiske prosesser

TMA4265 Stokastiske prosesser Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Bokmål Faglig kontakt under eksamen: Øyvind Bakke Telefon: 73 59 81 26, 990 41 673 TMA4265 Stokastiske prosesser

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: MENA3100 Eksamensdag: mandag 2. juni 2008 Tid for eksamen: 9:00-12:00 Oppgavesettet er på 5 sider inkludert periodisk

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TEP4145 KLASSISK MEKANIKK Mandag 21. mai 2007 kl Løsningsforslaget er på i alt 9 sider.

LØSNINGSFORSLAG TIL EKSAMEN I TEP4145 KLASSISK MEKANIKK Mandag 21. mai 2007 kl Løsningsforslaget er på i alt 9 sider. NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I TEP4145

Detaljer

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.

Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

vekt. vol bruk

vekt. vol bruk UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: 10. desember 2010. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1110 FASIT. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider. Vedlegg: Tillatte

Detaljer

EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute

EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne

Detaljer

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Lørdag 26. mai 2001

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Lørdag 26. mai 2001 Norges teknisk naturvitenskapelige universitet NTNU Side 1 av 8 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk Løsningsforslag til eksamen i SIF407 KLASSISK FELTTEORI Lørdag 6. mai

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/Utsatt eksamen i: MAT1001 Matematikk 1 Eksamensdag: Torsdag 15 januar 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MA2710 Spillteori Eksamensdag: 25. mai 2007. Tid for eksamen: 14.30 17.30. Oppgavesettet er på 5 sider. Vedlegg: Ingen Tillatte

Detaljer

UNIVERSITETET I OSLO. Konstanter og formelsamling finner du bakerst

UNIVERSITETET I OSLO. Konstanter og formelsamling finner du bakerst UNIVERSITETET I OSLO Det matetmatisk-naturvitenskapelige fakultet Avsluttende eksamen i AST1100, 4 desember 2007, 14.30 17.30 Oppgavesettet inkludert formelsamling er på 14 sider Konstanter og formelsamling

Detaljer

EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl

EKSAMEN I FY2045 KVANTEFYSIKK Onsdag 30. mai 2007 kl NORSK TEKST Side av 3 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 97355 EKSAMEN I FY45 KVANTEFYSIKK Onsdag 3.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 1100 Feltteori og vektoranalyse. Eksamensdag: Torsdag 11 desember 2008. Tid for eksamen: 14:30 17:30. Oppgavesettet er på

Detaljer

Initialbetingelser: I begynnelsen var φ

Initialbetingelser: I begynnelsen var φ Initialbetingelser: I begynnelsen var φ I fysikken er diffligninger og initialbetingelser som wienerpølser og rekesalat: de trenger hverandre. Vi har etter mye slit satt opp diffligningene som styrer tidsutviklingen

Detaljer

UNIVERSITETET I OSLO. Løsningsforslag

UNIVERSITETET I OSLO. Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 14 juni 2004 Tid for eksamen: 9.00 12.00 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler: INF-MAT2350

Detaljer

FYS307 - V03 OPPGAVEARK A. Oppgave A1: Tidekraftpendel

FYS307 - V03 OPPGAVEARK A. Oppgave A1: Tidekraftpendel FYS307 - V03 OPPGAVEARK A Oppgave A1: Tidekraftpendel a) Utled uttrykket for perioden til en matematisk pendel med lengde l i et område der tyngdens akselerasjon er g. Hva er perioden til en matematisk

Detaljer

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5 INSTITUTT FOR TELETEKNIKK + 2 sider vedlegg Signalbehandling Faglig kontakt under eksamen: Navn: Anna Kim Tlf.: 50214 KONTINUASJONSEKSAMEN I

Detaljer

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212)

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Navn: Bård Skaflestad (946867) EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER

Detaljer

Løysingsframlegg/skisse Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem 24. mai 2011

Løysingsframlegg/skisse Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem 24. mai 2011 Løysingsframlegg/skisse Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem 24. mai 2011 May 24, 2011 Oppgave 1 1) Ein global fasetransformasjon er på forma ψ ψe iα ψ ψ e iα, (1) der α er ein konstant.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: GEG2210 Eksamensdag: Onsdag 8. juni 2005 Tid for eksamen: 3 timer Oppgavesettet er på 3 sider Vedlegg: 1 vedlegg (2 sider)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 2. juni 2006 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 5 sider. Vedlegg: INF-MAT 3370/INF-MAT 4370 Lineær

Detaljer

Løsningsforslag nr.1 - GEF2200

Løsningsforslag nr.1 - GEF2200 Løsningsforslag nr.1 - GEF2200 i.h.h.karset@geo.uio.no Oppgave 1: Bølgelengder og bølgetall a) Jo større bølgelengde, jo lavere bølgetall. b) ν = 1 λ Tabell 1: Oversikt over hvor skillene går mellom ulike

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: Torsdag 10 januar 2008 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 6

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK

Detaljer

Løsningsforslag til eksamen i FY8306 KVANTEFELTTEORI Fredag 9. juni 2006

Løsningsforslag til eksamen i FY8306 KVANTEFELTTEORI Fredag 9. juni 2006 NTNU Side av 3 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk Løsningsforslag til eksamen i FY836 KVANTEFELTTEORI Fredag 9. juni 6 Dette løsningsforslaget er på 3 sider, pluss et vedlegg

Detaljer

MAT-INF 2360: Obligatorisk oppgave 2

MAT-INF 2360: Obligatorisk oppgave 2 6. mars, 13 MAT-INF 36: Obligatorisk oppgave Innleveringsfrist: 4/4-13, kl. 14:3 Informasjon Den skriftlige besvarelsen skal leveres i obligkassa som står i gangen utenfor ekspedisjonen i 7. et. i Niels

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1 Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30 18.00. Oppgavesettet

Detaljer

Eksamen i STK4500 Vår 2007

Eksamen i STK4500 Vår 2007 Eksamen STK4500 Vår 2007 Prosjektoppgave. Det matematisk-naturvitenskapelige fakultet. Utlevering fredag 15. juni kl. 09.00. Innlevering mandag 18. juni kl. 15.00. Oppgaven skal innen fristen leveres pr.

Detaljer

TMA4265 Stokastiske prosesser ST2101 Stokastisk simulering og modellering

TMA4265 Stokastiske prosesser ST2101 Stokastisk simulering og modellering Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Bokmål Faglig kontakt under eksamen: Øyvind Bakke Telefon: 73 9 8 26, 99 4 673 TMA426 Stokastiske prosesser ST2 Stokastisk

Detaljer

OBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME

OBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME ide 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon OBLIGATORIK MIDTEMETERØVING I EMNE TFE

Detaljer

Formelsamling Bølgefysikk Desember 2006

Formelsamling Bølgefysikk Desember 2006 Vedlegg 1 av 9 Formelsamling Bølgefysikk Desember 2006 Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighet og symbolenes betydning antas å være kjent. Harmonisk

Detaljer

1. På figur 1 ser du den observerte rotasjonskurven til en galakse. Hva er egenhastigheten (peculiar velocity) til denne galaksen?

1. På figur 1 ser du den observerte rotasjonskurven til en galakse. Hva er egenhastigheten (peculiar velocity) til denne galaksen? UNIVERSITETET I OSLO Det matetmatisk-naturvitenskapelige fakultet Midtveis -eksamen i AST1100, 6. oktober 2009, 15.00 18.00 Oppgavesettet inkludert formelsamling er på 8 sider Konstanter og formelsamling

Detaljer

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl

EKSAMEN I FY2045 KVANTEFYSIKK Mandag 2. juni 2008 kl NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I FY2045 KVANTEFYSIKK Mandag

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 7 59 6 6 / 45 45 55 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag.

Detaljer

EKSAMEN. Oppgavesettet består av 3 oppgaver. Alle spørsmål på oppgavene skal besvares, og alle spørsmål teller likt til eksamen.

EKSAMEN. Oppgavesettet består av 3 oppgaver. Alle spørsmål på oppgavene skal besvares, og alle spørsmål teller likt til eksamen. EKSAMEN Emnekode: ITD12011 Emne: Fysikk og kjemi Dato: 29. April 2015 Eksamenstid: kl.: 9:00 til kl.: 13:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kommuniserende kalkulator. Gruppebesvarelse,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus

Detaljer

HANDELSHØGSKOLEN I TROMSØ SENTRUM OG PERIFERI. Dixit-Stiglitz-Krugman modellen. Åge Haugslett. Vedlegg til Masteroppgave i - Samfunnsøkonomi (30 stp)

HANDELSHØGSKOLEN I TROMSØ SENTRUM OG PERIFERI. Dixit-Stiglitz-Krugman modellen. Åge Haugslett. Vedlegg til Masteroppgave i - Samfunnsøkonomi (30 stp) HANDELSHØGSKOLEN I TROMSØ SENTRUM OG PERIFERI Dixit-Stiglitz-Krugman modellen Åge Haugslett Vedlegg til Masteroppgave i - Samfunnsøkonomi ( stp) Vedlegg kap,.. VEDLEGG KAPITTEL KapModATilf.mcd. Den enklestet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF1100 Eksamensdag: 11. oktober Tid for eksamen: 15.00-18.00 Oppgavesettet er på sider Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF1 Eksamensdag: 3. November 9 Tid for eksamen: 9.-1. Oppgavesettet er på 5 sider Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 27 Tid for eksamen: 14.3 17.3 Oppgavesettet er på 5 sider. Vedlegg: INF 347 / INF 447 Digital Signalbehandling

Detaljer

OBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME

OBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME ide 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon OBLIGATORIK MIDTEMETERØVING I EMNE TFE

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Torsdag 9. oktober 2008. Tid for eksamen: 15:00 17:00. Oppgavesettet er på

Detaljer

Institutt for fysikk Fakultet for fysikk, informatikk og matematikk. Løsningsforslag til eksamen i FY3403 PARTIKKELFYSIKK Torsdag 31.

Institutt for fysikk Fakultet for fysikk, informatikk og matematikk. Løsningsforslag til eksamen i FY3403 PARTIKKELFYSIKK Torsdag 31. NTNU Side av 7 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i FY3403 PARTIKKELFYSIKK Torsdag 3. mai 007 Oppgave.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: 11. desember 006 Tid for eksamen: 15.30 18.30 Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 11L Programmering, modellering, og beregninger. Eksamensdag: Fredag 5. Desember 214. Tid for eksamen: 9: 13:. Oppgavesettet

Detaljer

EKSAMEN I: TFY4300 Energi og miljøfysikk FY2201 Energi og miljøfysikk Fredag 12. desember 2003 TID:

EKSAMEN I: TFY4300 Energi og miljøfysikk FY2201 Energi og miljøfysikk Fredag 12. desember 2003 TID: 1 NTNU Institutt for fysikk Kontaktperson ved eksamen: Professor Berit Kjeldstad 735 91995 NORSK EKSAMEN I: TFY4300 Energi og miljøfysikk FY2201 Energi og miljøfysikk Fredag 12. desember 2003 TID: 09.00-14.00

Detaljer

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Deleksamen i: KJM1060 Struktur og spektroskopi Eksamensdag: 14 oktober 2004 Tid for eksamen: kl. 15:00 17:00 Oppgavesettet er på 2sider.

Detaljer

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Side av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tlf 73 59 8 67, eller 9702355 EKSAMEN I TFY4250 ATOM- OG MOLEKYLFYSIKK

Detaljer

Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012

Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012 NTNU Fakultet for Naturvitskap og Teknologi Institutt for fysikk Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem, våren 2012 Faglærar: Førsteamanuensis John Ove Fjærestad Institutt for fysikk Telefon:

Detaljer

Det matetmatisk-naturvitenskapelige fakultet Konteeksamen i AST1100, 11 januar 2008, Oppgavesettet inkludert formelsamling er på 13 sider

Det matetmatisk-naturvitenskapelige fakultet Konteeksamen i AST1100, 11 januar 2008, Oppgavesettet inkludert formelsamling er på 13 sider UNIVERSITETET I OSLO Det matetmatisk-naturvitenskapelige fakultet Konteeksamen i AST1100, 11 januar 200, 9.00 12.00 Oppgavesettet inkludert formelsamling er på 13 sider Konstanter og formelsamling finner

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 12. oktober 2016. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Oppgavesett 5, s. 1. Oppgave 1. Oppgave 2. Oppgave 3

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Oppgavesett 5, s. 1. Oppgave 1. Oppgave 2. Oppgave 3 Matematisk statistikk og stokastiske prosesser B, høsten 2006 Oppgavesett 5, s. 1 Oppgave 1 For AR(2)-modellen: X t = 0.4X t 1 + 0.45X t 2 + Z t (der {Z t } er hvit søy med varians 1), finn γ(3), γ(4)

Detaljer

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I

Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I Eksamen FY2045/TFY4250 14. desember 2011 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 14.desember 2011 FY2045/TFY4250 Kvantemekanikk I a. For E < 3V 0 /4 er området x > a klassisk forbudt, og

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK2120 Skisse til løsning/fasit. Eksamensdag: Torsdag 5. juni 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider.

Detaljer