Unik4590/Unik9590/TTK Mønstergjenkjenning

Størrelse: px
Begynne med side:

Download "Unik4590/Unik9590/TTK Mønstergjenkjenning"

Transkript

1 Sammendrag og eksempler Universitetssenteret på Kjeller Høsten 2016 (17. august 2016)

2 Hva er mønstergjenkjenning? Formålet med mønstergjenkjenning Gjenkjenne objekter - tilordne objekter til én av flere mulige klasser eller kategorier (klassifisering) Beskrive sammensatte objekter eller hele scener består av mange objekter/delobjekter.

3 Hva er mønstergjenkjenning? Eksempler på anvendelser Fjernanalyse (vegetasjonstyper, overvåking) Automatisk inspeksjon (f.eks. flaskeautomater) Medisin (EEG, EKG, blodlegemer, kromosomer) Seismisk analyse (oljeleting, kjernefysiske prøver) Talegjenkjenning Karaktergjenkjenning (f.eks. lesing av håndskrift) Maskinsyn (robotsyn) Overvåkingssensorer Økonomi, Psykologi (gjenkjenning av tilstander) Arkeologi...

4 Hva er mønstergjenkjenning? Inngangsdata Digitale bilder Tidsrekker (éndimensjonale signaler) Enkle (manuelle) målinger.

5 Hva er mønstergjenkjenning? Metoder Beslutningsteoretiske (statistiske) metoder: Bayesisk beslutningsteori (desisjonsteori) Klassifisering (tilordning av objekter til én av flere mulige klasser) Numerisk informasjon. Strukturelle (syntaktiske) metoder: Syntaktisk angrepsmåte Beskrivelse og klassifisering Symbolsk informasjon, hierarkisk beskrivelse, grammatikk.

6 Metoder Statistiske metoder - eksempel Tallmessig representasjon av objekter basert på f.eks.: Kamera lysstyrke farge form Samlebånd Tilordning av objekter til et endelig antall mulige klasser. Eksempel på bruk av bildeanalyse og mønstergjenkjenning til å skille mellom to typer produkter i en produksjonsprosess, dvs. diskriminering mellom to klasser.

7 Metoder Strukturelle metoder - eksempel Syntaktisk beskrivelse av skipskontur i form av en streng av primitiver (til venstre), hierarkisk beskrivelse (øverst til høyre) og regelverket (grammatikken) som angir hvilke sammenhenger som er tillatt mellom de ulike elementene (nederst til høyre).

8 Klassifiseringsproblemet Klassifisering - eksempel på klassifiseringssystem Eksempel på klassifiseringssystem for å skille mellom trestykker fra de to klassene bjørk og ask.

9 Klassifiseringsproblemet Egenskapsvektor, egenskapsrom og desisjonsgrenser Egenskapsrom: Egenskapsvektor: 2 x 1 x 2 x = x d 3 R 1 R 3 R 2 Egenskapsvektor med d komponenten (t.v.) og todimensjonalt egenskapsrom (t.h.) inndelt i desisjonsregioner R 1,R 2 og R 3 for et problem med tre klasser. Det ukjente objektet (svart kvadrat) blir her klassifisert til klasse 2.

10 Klassifiseringsproblemet Metodikk - Ledet læring Treningssett X Trening Beslutningsregel Treningsfasen Bruksfasen Ukjent objekt x Klassifisering Klasse Illustrasjon av prinsippet for ledet læring. I treningsfasen (analysefasen) brukes et sett av sampler med kjent klassetilhørighet (treningssettet) som input til en av mange mulige treningsmetoder for å generere en beslutningsregel. Denne regelen inngår i klassifikatoren som i bruksfasen (gjenkjenningsfasen) foretar klassifisering av ukjente sampler til (forhåpentligvis) riktig klasse.

11 Klassifiseringsproblemet Klassifiseringssystem Sensor Egenskapsuttrekker Klassifikator i Typisk klassifiseringssystem. En sensor henter inn rådata fra objekter i omverdenen. Egenskapsuttrekkeren bearbeider rådataene og henter ut informasjon om de ukjente objektene i form av et sett av egenskaper for hvert objekt. Egenskapsvektorene sendes deretter til klassifikatoren, som tilordner objektene til én av flere mulig klasser. Systemet foretar en stor grad av datareduksjon på veien fra rådata til klasse.

12 Grunnleggende begreper Beslutningsteori - grunnleggende begreper Objekter skal tilordnes klasser/tilstander: w 1,w 2,...,w c der c er antall klasser i problemet. Til hver klasse hører en ápriorisannsynlighet: P(w 1 ),P(w 2 ),...,P(w c ) som er sannsynligheten for at hver klasse skal opptre (før målinger er foretatt). Til hver klasse hører også klassebetingede sannsynlighetstetthetsfunksjoner: p(x w i ), i = 1,...,c. Her er vektoren: x =[x 1,x 2,...,x d ] t en målt egenskapsvektor for det aktuelle objektet.

13 Grunnleggende begreper Sannsynlighetstetthetsfunksjoner (klassebetingede) Klassebetingede tetthetsfunksjoner for to klasser. Det grønne arealet tilsvarer sannsynligheten for at et vilkårlig sample fra (i dette tilfellet) w 2 skal opptre med egenskapsverdi x i intervallet mellom a og b.

14 Grunnleggende begreper Bayes regel Bayes regel for áposteriorisannsynlighet: P(w i x)= p(x w i)p(w i ) c p(x w j )P(w j ) Â j=1, i = 1,...,c knytter sammen á priori sannsynligheter og klassebetingede tetthetsfunksjoner. P(w i x) er sannsynligheten for at klasse w i skal opptre, gitt den målte egenskapsvektoren x.

15 Desisjonsregler Áposteriorisannsynlighet-minimumfeilrateklassifisering 0.5 Optimal desisjonsgrense (x 0 ) der de á posteriori sannsynlighetene for klassene er like (P(w 1 x)=p(w 2 x)=0,5).

16 Desisjonsregioner Univariat toklasseproblem - optimale desisjonsregioner Tetthetsfunksjoner for to klasser, veiet med á priori sannsynlighet. Den stiplede linjen markerer terskelen der de veiede tetthetene er like.

17 Desisjonsregioner Univariat toklasseproblem - minimum feilrate Tetthetsfunksjoner for to klasser, veiet med á priori sannsynlighet. Det grønne arealet viser feilraten med den optimale desisjonsgrensen (stiplet linje).

18 Desisjonsregioner Feilrate med suboptimal desisjonsgrense Tetthetsfunksjoner for to klasser, veiet med á priori sannsynlighet. Det røde arealet tilsvarer den ekstra feilraten ved et suboptimalt valg av desisjonsgrense.

19 Normalfordelingen - eksempler på diskriminantfunksjoner Univariat normalfordeling Klassebetinget normalfordeling for klasse w i, der forventningsverdien er µ i og standardavviket er s i.

20 Handlinger, kostnader og risiko Handlinger Handlinger (events): a 1,a 2,...,a a er noe som utføres på bakgrunn av den målte egenskapsvektoren. Hvor mange handlinger? Vanligvis er a = c, dvs. én-til-én sammenheng mellom klasser og handlinger (handlingen a i består i å klassifisere til klasse w i ), Generelt er a 6= c, f.eks. a = c + 1derhandlinga c+1 tilsvarer forkasting (ingen klassifisering). Desisjonsfunksjonen: a(x)! a 1,a 2,...,a a er en funksjon av egenskapsvektoren x, som har én av de mulige handlingene som utfall.

21 Handlinger, kostnader og risiko Kostnader knyttet til handlinger Kostfunksjonen: l(a i w j ), der i = 1,...,a og j = 1,...,c, angir kostnaden (tapet) ved å velge handlingen a i når w j er sann klasse. Det kan f.eks. være et større tap forbundet ved å klassifisere bjørk som ask enn omvendt, slik at kostnadene for disse tilfellene kan være: l(velg bjørk ask)=1 l(velg ask bjørk)=10 mens kostnadene for riktig valg av handling som oftest vil settes til null, dvs. l(velg bjørk bjørk)=l(velg ask ask)=0.

22 Handlinger, kostnader og risiko Risiko knyttet til handlinger Betinget risk (forventet tap) er kostnaden forbundet ved en gitt handling, gitt en måling (dvs. egenskapsvektoren for et ukjent objekt): Total risk er gitt ved: R(a i x)= c  j=1 l(a i w j )P(w j x), i=1,...,a. Z R = R(a(x) x)p(x)dx R d for en gitt desisjonsfunksjon a(x) med utfallene a 1,a 2,...,a a. Den totale risken skal minimaliseres ved å velge a i slik at den betingede risken R(a(x) x) er minimum for enhver x.

TEK5020/TEK Mønstergjenkjenning

TEK5020/TEK Mønstergjenkjenning Sammendrag og eksempler Innledning UiO : Institutt for teknologisystemer Høsten 2018 (18. august 2018) Hva er mønstergjenkjenning? Formålet med mønstergjenkjenning Gjenkjenne objekter - tilordne objekter

Detaljer

Unik4590/Unik9590/TTK Mønstergjenkjenning

Unik4590/Unik9590/TTK Mønstergjenkjenning Sammendrag og eksempler UiO : Institutt for teknologisystemer Høsten 2017 (14. august 2017) Hva er mønstergjenkjenning? Formålet med mønstergjenkjenning ˆ Gjenkjenne objekter - tilordne objekter til én

Detaljer

Innledning Beslutningsteori Parametriske metoder Ikke-parametriske metoder Diskriminantfunksjoner Evaluering Ikke-ledet læring Klyngeanalyse Oversikt

Innledning Beslutningsteori Parametriske metoder Ikke-parametriske metoder Diskriminantfunksjoner Evaluering Ikke-ledet læring Klyngeanalyse Oversikt Oversikt Innhold i kurset Beslutningsteori (desisjonsteori) Parametriske metoder Ikke-parametriske metoder Lineære og generaliserte diskriminantfunksjoner Feilrateestimering og evaluering av klassifikatorer

Detaljer

Generalisering til mange klasser - feilrettingsmetodene

Generalisering til mange klasser - feilrettingsmetodene Mange klasser Generalisering til mange klasser - feilrettingsmetodene Kesslers konstruksjon - omskriving av c-klasseproblemet til et toklasseproblem. Her innføres en sammensatt vektvektor a og et sett

Detaljer

Dimensjonalitetsproblemer (3)

Dimensjonalitetsproblemer (3) Dimensjonalitetsproblemer Dimensjonalitetsproblemer (3) Ved å inkludere flere uavhengige egenskaper der µ i1 6= µ i2 i egenskapsvektoren vil r 2 øke og P(e) avta, slik at: P d+1 (e) apple P d (e). Dette

Detaljer

Innledning Beslutningsteori Parametriske metoder Ikke-parametriske metoder Diskriminantfunksjoner Evaluering Ikke-ledet læring Klyngeanalyse Oversikt

Innledning Beslutningsteori Parametriske metoder Ikke-parametriske metoder Diskriminantfunksjoner Evaluering Ikke-ledet læring Klyngeanalyse Oversikt Oversikt Innhold i kurset Beslutningsteori (desisjonsteori) Parametriske metoder Ikke-parametriske metoder Lineære og generaliserte diskriminantfunksjoner Feilrateestimering og evaluering av klassifikatorer

Detaljer

Normalfordelingen. Univariat normalfordeling (Gaussfordelingen): der µ er forventningsverdien og σ 2 variansen. Multivariat normalfordeling:

Normalfordelingen. Univariat normalfordeling (Gaussfordelingen): der µ er forventningsverdien og σ 2 variansen. Multivariat normalfordeling: Normalfordelingen Univariat normalfordeling (Gaussfordelingen): p(x µ,σ 2 ) = 1 µ)2 (x e 2σ 2 = N(µ,σ 2 ) 2πσ der µ er forventningsverdien og σ 2 variansen. Multivariat normalfordeling: [ 1 p(x µ,σ) =

Detaljer

Unik4590/Unik9590/TTK Mønstergjenkjenning

Unik4590/Unik9590/TTK Mønstergjenkjenning Sammendrag og eksempler Universitetssenteret på Kjeller Høsten 2016 (15. oktober 2016) Hva er mønstergjenkjenning? Formålet med mønstergjenkjenning Gjenkjenne objekter - tilordne objekter til én av flere

Detaljer

Bayesisk estimering. Tettheten i punkt x er her gitt ved: der p(q X ) er áposterioriparameterfordelinggitt ved: p(q X )=

Bayesisk estimering. Tettheten i punkt x er her gitt ved: der p(q X ) er áposterioriparameterfordelinggitt ved: p(q X )= Bayesisk estimering Bayesisk estimering Tettheten i punkt x er her gitt ved: Z p(x X )= p(x q)p(q X )dq der p(q X ) er áposterioriparameterfordelinggitt ved: p(q X )= p(x q)p(q) R p(x q)p(q)dq og p(x q)

Detaljer

FFI-RAPPORT. Teknologiske muligheter for Tolletaten. mønstergjenkjenning og maskinlæring

FFI-RAPPORT. Teknologiske muligheter for Tolletaten. mønstergjenkjenning og maskinlæring FFI-RAPPORT 17/17026 Teknologiske muligheter for Tolletaten mønstergjenkjenning og maskinlæring - Idar Dyrdal Lars Aurdal Kristin Hammarstrøm Løkken Thor Engøy Teknologiske muligheter for Tolletaten mønstergjenkjenning

Detaljer

TEK5020/TEK Mønstergjenkjenning

TEK5020/TEK Mønstergjenkjenning Sammendrag og eksempler Lineære diskriminantfunksjoner (Gradientsøk, perceptronmetoden) UiO : Institutt for teknologisystemer Høsten 2018 (22. oktober 2018) Diskriminantfunksjoner Utvidet egenskapsrom

Detaljer

Diskrete egenskaper. Egenskapsvektoren x antar kun diskrete verdier: v 1,v 2,...,v m. Endringer fra det kontinuerlige tilfellet er at:

Diskrete egenskaper. Egenskapsvektoren x antar kun diskrete verdier: v 1,v 2,...,v m. Endringer fra det kontinuerlige tilfellet er at: Iledig Beslutigsteori Parametriske metoder Ikke-parametriske metoder Diskrimiatfuksjoer Evaluerig Ikke-ledet lærig Klygeaalyse Diskrete egeskaper Diskrete egeskaper Egeskapsvektore x atar ku diskrete verdier:

Detaljer

Ikke-separable problemer

Ikke-separable problemer Feilrettingsmetoder Ikke-separable problemer Feilrettingsmetodene konvergerer under gitte betingelser til løsningsvektorer for lineært separable problemer, men kan også gi gode resultater på ikke-separable

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg

Detaljer

EKSAMEN. EMNEANSVARLIG: Terje Bokalrud og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler.

EKSAMEN. EMNEANSVARLIG: Terje Bokalrud og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler. KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Kvalitetsledelse med Statistikk. SMF2121 EKSAMENSDATO: 1. juni 2010 KLASSE: Ingeniørutdanning TID: kl. 9.00 13.00. EMNEANSVARLIG: Terje Bokalrud og Hans Petter

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

Kapittel 3: Studieopplegg

Kapittel 3: Studieopplegg Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Eksamen - INF 283 Maskinlæring

Eksamen - INF 283 Maskinlæring Eksamen - INF 283 Maskinlæring 23 feb. 2016 Tid: 3 timer Eksamen inneholder 15 oppgaver, som vil bli vektet likt ved evaluering. 1 Table 1 attributt antall personer forsørget av låntaker månedlig inntekt

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 1. juni 2010. KLASSE: HIS 08 11. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2100 - FASIT Eksamensdag: Torsdag 15. juni 2017. Tid for eksamen: 09.00 13.00. Oppgavesettet er på 5 sider. Vedlegg: Tillatte

Detaljer

Høgskolen i Gjøviks notatserie, 2001 nr 5

Høgskolen i Gjøviks notatserie, 2001 nr 5 Høgskolen i Gjøviks notatserie, 2001 nr 5 5 Java-applet s for faget Statistikk Tor Slind Avdeling for Teknologi Gjøvik 2001 ISSN 1501-3162 Sammendrag Dette notatet beskriver 5 JAVA-applets som demonstrerer

Detaljer

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017 Løsningsforslag Eksamen S, høsten 016 Laget av Tommy Odland Dato: 7. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 3 5x, og vi kommer til å få bruk for reglene (ax n ) = anx

Detaljer

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6 Terningkast Halvor Aarnes, UiO, 2014 Innhold Ett terningkast og utfallsrom... 1 Union og snitt... 4 Betinget sannsynlighet... 5 Forventningsverdi E(X) og varianse Var(X)... 5 Konfidensintervall for proporsjoner...

Detaljer

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for

Detaljer

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:

Detaljer

HMM-tagging INF4820 H2008. Jan Tore Lønning. 30. september. Institutt for Informatikk Universitetet i Oslo

HMM-tagging INF4820 H2008. Jan Tore Lønning. 30. september. Institutt for Informatikk Universitetet i Oslo INF4820 H2008 Institutt for Informatikk Universitetet i Oslo 30. september Outline 1 2 3 4 5 Outline 1 2 3 4 5 Flertydighet Example "" "fisk" subst appell mask ub fl @løs-np "fisker" subst appell

Detaljer

EKSAMEN I TMA4285 TIDSREKKEMODELLER Fredag 7. desember 2012 Tid: 09:00 13:00

EKSAMEN I TMA4285 TIDSREKKEMODELLER Fredag 7. desember 2012 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Bokmål Faglig kontakt under eksamen: John Tyssedal 73593534/41645376 EKSAMEN I TMA4285 TIDSREKKEMODELLER Fredag

Detaljer

Fasit for tilleggsoppgaver

Fasit for tilleggsoppgaver Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x

Detaljer

Econ 2130 uke 16 (HG)

Econ 2130 uke 16 (HG) Econ 213 uke 16 (HG) Hypotesetesting I Løvås: 6.4.1 6, 6.5.1-2 1 Testing av µ i uid modellen (situasjon I Z-test ). Grunnbegreper. Eksempel. En lege står overfor følgende problemstilling. Standardbehandling

Detaljer

Oppgaver til INF 5110, kapittel 5

Oppgaver til INF 5110, kapittel 5 Oppgaver til INF 5110, kapittel 5 Fra boka: 5.3 Vi har sett litt på denne på en forelesning 5.11 Vi har tidligere sett på: -> ) a 5.18 Forsøk også sette alternativet -> til slutt Utvid grammatikken på

Detaljer

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor

Detaljer

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer. Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en statistikk (observator) er fordelingen av verdiene statistikken tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg

Detaljer

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg.

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA 1081F REA1081) EKSAMENSDATO: 1. juni 2010. KLASSE: Flexibel ingeniørutdanning, 2kl. Bygg. TID: kl. 9.00 12.00. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

Konfidensintervall for µ med ukjent σ (t intervall)

Konfidensintervall for µ med ukjent σ (t intervall) Forelesning 3, kapittel 6 Konfidensintervall for µ med ukjent σ (t intervall) Konfidensintervall for µ basert på n observasjoner fra uavhengige N( µ, σ) fordelinger når σ er kjent : Hvis σ er ukjent har

Detaljer

Klassisering. Insitutt for matematiske fag, NTNU 21. august Klassiseringsproblemet. Notat for TMA4240/TMA4245 Statistikk

Klassisering. Insitutt for matematiske fag, NTNU 21. august Klassiseringsproblemet. Notat for TMA4240/TMA4245 Statistikk Klassisering Notat for TMA4240/TMA4245 Statistikk Insitutt for matematiske fag, NTNU 21. august 2012 Innen maskinlæring studerer man algoritmer som tillater datamaskiner å utvikle atferd på grunnlag av

Detaljer

Suffisient observator

Suffisient observator Iledig Beslutigsteori Parametriske metoder Ikke-parametriske metoder Diskrimiatfuksjoer Evaluerig Ikke-ledet lærig Klygeaalyse Suffisiete observatorer Suffisiet observator Statistisk størrelse s som ieholder

Detaljer

Forskningsmetoder. Data: Måling og målefeil. Frode Svartdal. UiTø 16.01.2014 FRODE SVARTDAL 1 V-2014. Frode Svartdal

Forskningsmetoder. Data: Måling og målefeil. Frode Svartdal. UiTø 16.01.2014 FRODE SVARTDAL 1 V-2014. Frode Svartdal Forskningsmetoder Data: Måling og målefeil Frode Svartdal UiTø V-2014 Frode Svartdal 16.01.2014 FRODE SVARTDAL 1 Variabler Variabel noe (av psykologisk interesse) som varierer Motsatt: Konstant Eksempler:

Detaljer

Fra første forelesning:

Fra første forelesning: 2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen

Detaljer

Alpha 2. GSM- SMS alarm. alpha-2 SYSTEM OK INGEN ALARMER. Høgliveien 30, 1850 Mysen Tlf: 69890660 E-post: post@aspn.no

Alpha 2. GSM- SMS alarm. alpha-2 SYSTEM OK INGEN ALARMER. Høgliveien 30, 1850 Mysen Tlf: 69890660 E-post: post@aspn.no Alpha 2 GSM- SMS alarm alpha-2 GSM /SMS SYSTEM OK INGEN ALARMER 1 Innhold INTRODUKSJON... 4 HOVEDMENY... 5 Statusfelt... 5 Visning av alarm... 5 Lesing av temperatur... 5 Reset alarm... 5 Betjening...

Detaljer

STK Oppsummering

STK Oppsummering STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

Høgskoleni østfold EKSAMEN. ITD33506 Bildebehandling og monstergjenkjenning. Dato: Eksamenstid: kl 9.00 til kl 12.00

Høgskoleni østfold EKSAMEN. ITD33506 Bildebehandling og monstergjenkjenning. Dato: Eksamenstid: kl 9.00 til kl 12.00 Or Høgskoleni østfold EKSAMEN Emnekode: Emne: ITD33506 Bildebehandling og monstergjenkjenning Dato: 25.11.2013 Eksamenstid: kl 9.00 til kl 12.00 Hjelpemidler: Læreboken, ett A4-ark skrevet på begge sider

Detaljer

Tilpasning av bilder. Enkel bildebehandling

Tilpasning av bilder. Enkel bildebehandling Tilpasning av bilder Her skal vi vise hvordan du enkelt kan tilpasse bilder til bruk på web eller i presentasjoner ved hjelp av Office Picture Manager. Vi skal vise hvordan du kan lage bilder i fire ulike

Detaljer

STK1100 våren 2019 Mere om konfidensintevaller

STK1100 våren 2019 Mere om konfidensintevaller STK1100 våren 2019 Mere om konfidensintevaller Svarer til avsnitt 8.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Konfidensintervall for µ i store utvalg Anta at de stokastiske

Detaljer

MULTICOM 112. Muntlig innvirkning A1: Ingen krav

MULTICOM 112. Muntlig innvirkning A1: Ingen krav MULTICOM 112 Brukerveiledning Formål Denne MULTICOM112 CD-ROM har som mål å hjelpe alarmsentralpersonell med å utvikle grunnleggende språkkunnskaper til det nivået hvor de kan identifisere et fremmende

Detaljer

To-dimensjonale kontinuerlige fordelinger

To-dimensjonale kontinuerlige fordelinger To-dimensjonale kontinuerlige fordelinger Noen resultater for diskrete fordelinger Vi har tidligere definert punktsannsynligheten p(x, y) for en todimensjonal variabel (X, Y ) som p(x, y) = P ({X = x}

Detaljer

Sampling av bilder. Romlig oppløsning, eksempler. INF Ukens temaer. Hovedsakelig fra kap. 2.4 i DIP

Sampling av bilder. Romlig oppløsning, eksempler. INF Ukens temaer. Hovedsakelig fra kap. 2.4 i DIP INF 2310 22.01.2008 Ukens temaer Hovedsakelig fra kap. 2.4 i DIP Romlig oppløsning og sampling av bilder Kvantisering Introduksjon til pikselmanipulasjon i Matlab (i morgen på onsdagstimen) Naturen er

Detaljer

Merke objekt Kapittel 3. Merke objekt Kapittel 3

Merke objekt Kapittel 3. Merke objekt Kapittel 3 DDS-CAD 10 Merke objekt Kapittel 3 1 Innhold Side Kapittel 3 Merke objekt... 3 Endre parametre for merket objekt... 3 Merke objekt innenfor og som berøres av et rektangel... 5 Merke alle objekt innenfor

Detaljer

Grunnleggende om Digitale Bilder (ITD33515)

Grunnleggende om Digitale Bilder (ITD33515) Grunnleggende om Digitale Bilder (ITD33515) Lars Vidar Magnusson January 13, 2017 Delkapittel 2.2, 2.3, 2.4 og 2.5 Lys og det Elektromagnetiske Spektrum Bølgelengde, Frekvens og Energi Bølgelengde λ og

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet

Detaljer

Halvårsplan i norsk 3.trinn våren 2018 Karuss skole

Halvårsplan i norsk 3.trinn våren 2018 Karuss skole Ord for farge Ord for tid: månedene og årstidene Lureord: Ord med o for å 1 Mål fra kunnskapsløftet Læringsmål Læringsressurser Vurdering Skrive enkle fortellende, beskrivende og argumenterende tekster.

Detaljer

Notat 2, ST Sammensatte uttrykk. 27. januar 2006

Notat 2, ST Sammensatte uttrykk. 27. januar 2006 Notat 2, ST1301 27. januar 2006 1 Sammensatte uttrykk Vi har sett at funksjoner ikke trenger å bestå av annet enn ett enkeltuttrykk som angir hva funksjonen skal returnere uttrykkt ved de variable funksjonen

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variable (5.2) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel.

Detaljer

Grunnleggende brukerveiledning

Grunnleggende brukerveiledning Grunnleggende brukerveiledning for Akershus fylkeskommunes statistikkverktøy http://statistikk.akershus-fk.no Utarbeidet av Cathrine Bergjordet, analysestaben, AFK Sist oppdatert 31/8 2012 Finne riktig

Detaljer

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning Eksamen i SOD 165 Grafiske metoder Klasse : 3D Dato : 15. august 2000 Antall oppgaver : 4 Antall sider : 4 Vedlegg : Utdrag fra OpenGL Reference Manual

Detaljer

Forelesning 7 Statistiske beskrivelser av enkeltvariabler. Mål for sentraltendens

Forelesning 7 Statistiske beskrivelser av enkeltvariabler. Mål for sentraltendens Forelesning 7 Statistiske beskrivelser av enkeltvariabler Statistiske mål for univariate fordelinger: Sentraltendens Verdien for fordelingens tyngdepunkt Spredning Hvor nært opp til tyngdepunktet ligger

Detaljer

Notat 2, ST januar 2005

Notat 2, ST januar 2005 Notat 2, ST1301 25. januar 2005 1 Sammensatte uttrykk Vi har sett at funksjoner ikke trenger å bestå av annet enn ett enkeltuttrykk som angir hva funksjonen skal returnere uttrykkt ved de variable funksjonen

Detaljer

Galton-brett og sentralgrenseteorem

Galton-brett og sentralgrenseteorem Halvor Aarnes, IBV, 2014 Galton-brett og sentralgrenseteorem På et Galton-brett (Sir Francis Galton) beveger kuler for eksempel erter eller klinkekuler seg som følge av tyngdekraften på et skråstilt brett

Detaljer

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene

1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene 1 Sec 3-2: Hvordan beskrive senteret i dataene 2 Sec 3-3: Hvordan beskrive spredningen i dataene Todeling av statistikk Deskriptiv statistikk Oppsummering og beskrivelse av den stikkprøven du har. Statistisk

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

Analog til digital omformer

Analog til digital omformer A/D-omformer Julian Tobias Venstad ED-0 Analog til digital omformer (Engelsk: Analog to Digital Converter, ADC) Forside En rask innføring. Innholdsfortegnelse Forside 1 Innholdsfortegnelse 2 1. Introduksjon

Detaljer

filosofien bak tilstandskontroll

filosofien bak tilstandskontroll filosofien bak tilstandskontroll av arnstein holm the pulse of your machinery 20.01.2012 maskindynamikk as - the pulse of your machinery 1 tilstandskontroll er ikke noe nytt... de siste 20 årene har tk

Detaljer

Gruvedrift. Institutt for matematiske fag, NTNU. Notat for TMA4240/TMA4245 Statistikk

Gruvedrift. Institutt for matematiske fag, NTNU. Notat for TMA4240/TMA4245 Statistikk Gruvedrift Notat for TMA/TMA Statistikk Institutt for matematiske fag, NTNU I forbindelse med planlegging av gruvedrift i et område er det mange hensyn som må tas når en skal vurdere om prosjektet er lønnsomt.

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 9.6: Prediksjonsintervall 9.8: To utvalg, differanse µ 1 µ 2 Mette Langaas Foreleses mandag 18.oktober, 2010 2 Prediksjonsintervall for fremtidig observasjon,

Detaljer

Oppgaver til INF 5110, kapittel 5 Fullt svar på oppgave 5.4, og en del andre oppgaver med svar

Oppgaver til INF 5110, kapittel 5 Fullt svar på oppgave 5.4, og en del andre oppgaver med svar Oppgaver til INF 5110, kapittel 5 Fullt svar på oppgave 5.4, og en del andre oppgaver med svar Fra boka: 5.3, 5.4, 5.11, 5.12, 5.13. Oppgave 2 fra Eksamen 2006 (se undervisningsplanen 2008). Utvid grammatikken

Detaljer

Løsningsforslag Eksamen S2, høsten 2017 Laget av Tommy O. Sist oppdatert: 26. november 2017

Løsningsforslag Eksamen S2, høsten 2017 Laget av Tommy O. Sist oppdatert: 26. november 2017 Løsningsforslag Eksamen S, høsten 017 Laget av Tommy O. Sist oppdatert: 6. november 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 4x 3. Vi bruker regelen samt regelen (x n ) = nx

Detaljer

Mønstergjenkjenning i bildesekvenser

Mønstergjenkjenning i bildesekvenser 1 Mønstergjenkjenning i bildesekvenser Mønstergjenkjenning i bildesekvenser Line Eikvil og Ragnar Bang Huseby Kveldsseminar i bildeanalyse, 6. mai 00 : Ønsker å se på bildesekvenser i sammenheng for å:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : Onsdag. juni Tid for eksamen : 4:3 8:3 Oppgavesettet er på : 5 sider Vedlegg : Ingen

Detaljer

Communicate SymWriter: R1 Lage en tavle

Communicate SymWriter: R1 Lage en tavle Communicate SymWriter: R1 Lage en tavle I denne delen beskrives egenskaper som kan brukes for å lage en tavle til å skrive med. Stort sett vil du bare ha bruk for en del av dette når du lager skrivemiljøer.

Detaljer

Heuristiske søkemetoder III

Heuristiske søkemetoder III Heuristiske søkemetoder III Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Eksempel: Bildebehandling, segmentering: Hva er segmentering? Klassisk metode, terskling.

Detaljer

ting å gjøre å prøve å oppsummere informasjonen i Hva som er hensiktsmessig måter å beskrive dataene på en hensiktsmessig måte.

ting å gjøre å prøve å oppsummere informasjonen i Hva som er hensiktsmessig måter å beskrive dataene på en hensiktsmessig måte. Kapittel : Beskrivende statistikk Etter at vi har samlet inn data er en naturlig første ting å gjøre å prøve å oppsummere informasjonen i dataene på en hensiktsmessig måte. Hva som er hensiktsmessig måter

Detaljer

Da vil summen og gjennomsnittet være tilnærmet normalfordelte : Summen: X 1 +X X n ~N(nµ,nσ 2 ) Gjennomsnittet: X 1 +X

Da vil summen og gjennomsnittet være tilnærmet normalfordelte : Summen: X 1 +X X n ~N(nµ,nσ 2 ) Gjennomsnittet: X 1 +X Me me me me metallic hvit 4.4: Tilnærming til normalfordeling Tilnærming til normalfordeling: binomisk og Poisson kan tilnærmes v.h.a. normalfordeling under bestemte forhold (ved "mange" delforsøk/hendelser)

Detaljer

Statistikk for språk- og musikkvitere 1

Statistikk for språk- og musikkvitere 1 Statistikk for språk- og musikkvitere 1 Mitt navn: Åsne Haaland, Vitenskapelig databehandling USIT Ikke nøl, avbryt med spørsmål! Hva oppnår en med statistikk? Få oversikt over data: typisk verdi, spredning,

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Gunnar Taraldsen a, Torstein Fjeldstad b Tlf: a 464 32 506, b 962 09 710 Eksamensdato: 23. mai 2018 Eksamenstid

Detaljer

ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019

ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST111/ST611 Sannsynlighetsregning og statistikk Vår 219 Løsningsforslag Øving 12 22. mars 219 Side 1 av 18 Løsningsforslag

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

MØNSTERGJENKJENNING. Forelesningsnotater til kurset Unik4590/Unik9590/TTK4205

MØNSTERGJENKJENNING. Forelesningsnotater til kurset Unik4590/Unik9590/TTK4205 MØNSTERGJENKJENNING Forelesigsotater til kurset Uik4590/Uik9590/TTK4205 Idar Dyrdal Uiversitetsseteret på Kjeller idar@uik.o Høste 2016 (oppdatert 15. oktober 2016) Faget møstergjekjeig deles valigvis

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

ERTMS Driver Interface Simulering. Testrapport

ERTMS Driver Interface Simulering. Testrapport ERTMS Driver Interface Simulering Testrapport FORORD Denne rapporten inneholder testrapport laget i forbindelse med hovedprosjekt i Bachelorstudium i informasjonsteknologi ved Høgskolen i Oslo, våren 2010.

Detaljer

Forskningsmetoder. Måling, målefeil. Frode Svartdal. UiTø V-2011. Frode Svartdal 26.01.2011 FRODE SVARTDAL 1

Forskningsmetoder. Måling, målefeil. Frode Svartdal. UiTø V-2011. Frode Svartdal 26.01.2011 FRODE SVARTDAL 1 Forskningsmetoder Måling, målefeil Frode Svartdal UiTø V-2011 Frode Svartdal 26.01.2011 FRODE SVARTDAL 1 Variabler Variabel noe (av psykologisk interesse) som varierer Motsatt: Konstant Eksempler: Kjønn,

Detaljer

Dataanalyse. Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse?

Dataanalyse. Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse? Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse? Skrevet av: Kjetil Sander Utgitt av: estudie.no Revisjon: 1.0 (Sept.

Detaljer

METODEBESKRIVELSE OPTISK TELEVIEWER (OPTV)

METODEBESKRIVELSE OPTISK TELEVIEWER (OPTV) METODEBESKRIVELSE OPTISK TELEVIEWER (OPTV) Optisk televiewer kan benyttes til inspeksjon av grunnvannsbrønner, grunnvarmebrønner, forundersøkelser for fjellanlegg (tunneler, fjellrom), og er i mange tilfeller

Detaljer

GeoGebra-opplæring i Matematikk 1P

GeoGebra-opplæring i Matematikk 1P GeoGebra-opplæring i Matematikk 1P Emne Underkapittel Perspektivtegning I 3.8 Perspektivtegning II 3.8 Regulære mangekanter 3.9 Flislegging I 3.9 Flislegging II 3.9 Flislegging III 3.9 Terningkast 4.1

Detaljer

Læringsmål og pensum. if (be): else (not_to_be):

Læringsmål og pensum. if (be): else (not_to_be): 1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk - 3rd edition: Kapittel 3 Professor Alf Inge Wang 2 if (be): else (not_to_be): 3 Læringsmål og pensum Mål Lære å bruke og

Detaljer

Oppgave 1 (samlet 15%)

Oppgave 1 (samlet 15%) 2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal svare på alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne

Detaljer

Eksamensoppgåve i TMA4240 Statistikk

Eksamensoppgåve i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgåve i TMA4240 Statistikk Fagleg kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende

Detaljer

Python: Valg og betingelser. TDT4110 IT Grunnkurs Professor Guttorm Sindre

Python: Valg og betingelser. TDT4110 IT Grunnkurs Professor Guttorm Sindre Python: Valg og betingelser TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Kunne forstå og bruke if-setninger sammenlikning av strenger nøstede beslutningsstrukturer betingelser

Detaljer

Normal- og eksponentialfordeling.

Normal- og eksponentialfordeling. Ukeoppgaver i Statistikk, uke 8 : Normal- og eksponentialfordeling. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 8 I løpet av uken blir løsningsforslag lagt

Detaljer

SPESIALISERING I ØKONOMISTYRING DST 9535 VERDI AV TILLEGGSINFORMASJON A) HVA KJENNETEGNER GODE BESLUTNINGSMODELLER?

SPESIALISERING I ØKONOMISTYRING DST 9535 VERDI AV TILLEGGSINFORMASJON A) HVA KJENNETEGNER GODE BESLUTNINGSMODELLER? SPESIALISERING I ØKONOMISTYRING HVA KJENNETEGNER GODE BESLUTNINGSMODELLER? DST 9535 VERDI AV TILLEGGSINFORMASJON.. Forelesningsnotet 3. Hva kjennetegner gode beslutningsmodeller? B) Når har informasjon

Detaljer

Hvordan hente ut listen over et hagelags medlemmer fra Hageselskapets nye portal

Hvordan hente ut listen over et hagelags medlemmer fra Hageselskapets nye portal Hvordan hente ut listen over et hagelags medlemmer fra Hageselskapets nye portal Av Ole Petter Vik, Asker Versjon 2.3 20.03.2012 Beskrivelsene for hvert enkelt skritt er over hvert skjermbilde. Via Hageselskapets

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger

Detaljer

ØstCom Mobil Skyveport Feilsøking og Funksjonskontroll Motor BX-246

ØstCom Mobil Skyveport Feilsøking og Funksjonskontroll Motor BX-246 ØstCom Mobil Skyveport Feilsøking og Funksjonskontroll Motor BX-246 Komplett funksjonssjekk Figur 1 Figur 2 Figur 3 Åpne luken for manuell utløsning nede på motoren. Låsehaken på denne går gjennom ett

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 0, blokk II Løsningsskisse Oppgave Surhetsgrad i ferskvann Eksamen august 00, oppgave av 3 a) En god estimator

Detaljer