ST0202 Statistikk for samfunnsvitere

Størrelse: px
Begynne med side:

Download "ST0202 Statistikk for samfunnsvitere"

Transkript

1 ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag

2 2 Tilfeldige variable (5.2) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel. Tilfeldig variabel: En variabel som har en numerisk verdi for hvert utfall i utfallsrommet. (Dvs. vi beskriver observasjonene med tall) Eksempler: 1. Kast terning og registrer antall øyne. 2. Trekk student og registrer antall vekttall i et semester 3. Trekk en velger og registrer 1 hvis han/hun vil stemme på partiet BP og 0 hvis ikke. 4. Registrer antall epost som kommer til en epostadresse på en bestemt dag. Merk: Tilfeldige variable er knyttet til et eksperiment der vi ikke kan forutse utfallet.

3 Vi skiller mellom: diskrete tilfeldige variabel med tellbart antall mulige verdier f.eks.: Antall biler som passere et lyskryss i løpet av en periode Antall mål i en fotballkamp kontinuerlige tilfeldige variable med ikke-tellbart antall mulige verdier f.eks.: Høyden på en person Tiden en person er innlagt på sykehus

4 4 Sannsynlighetsfordelingen til en diskret tilfeldig variabel (5.3) Sannsynlighetsfordeling: De mulige verdiene den tilfeldige variabelen kan ta, sammen med de tilhørende sannsynlighetene for disse verdiene. Sannsynlighetene gis ofte ved hjelp av en Sannsynlighetsfunksjon: En regel som gir en sannsynlighet P(x) til hver mulig verdi x for den tilfeldige variablen. Eksempel: Terningkast x=antall øyne P(x)=sannsynligheten for at antall øyne er lik x (dvs. 1/6)

5 P(x) er altså en kort skrivemåte for sannsynligheten for den hendelsen at vi får et utfall som gir verdien x på den tilfeldige variabelen. x P(x) 1 1/6 2 1/6 3 1/6 4 1/6 5 1/6 6 1/6 Alternativ skrivemåte: P(x)=1/6 for x=1,2,3,4,5,6

6 Eksempel: Modifisert terning med en side med 1-tall, 2 sider med 2-tall og 3 sider med 3-tall. x=antall øyne. x P(x) 1 1/6 2 2/6 3 3/6 eller P(x) = x 6 for x = 1, 2, 3 Sannsynlighetsfunksjonen P(x) tilfredstiller de vanlige kravene til sannsynligheter: 1. 0 P(x) 1 2. P(x) =1 Oppgave: Er P(x) = x 10 for x = 1, 2, 3, 4en sannsynlighetsfordeling?

7 Eksempel: Meningsmåling I en populasjon er det 43% EU-tilhengere og 57% EU-motstandere. Spør en tilfeldig valgt person om EU, og sett x=1 hvis personen er for og sett x=0 ellers. Da er sannsynlighetsfordelingen til x gitt ved x P(x) Merk: En sannsynlighetsfordeling viser teoretiske sannsynligheter. Den skal representere populasjonen.

8 Eksempel: Ved meningsmålinger er andelen av EU-tilhengere i populasjonen ukjent, og vi setter den til p og skriver x P(x) 0 1 p 1 p Daerpen parameter siden den beskriver populasjonen. Vi ønsker nå å bruke meningsmålingen (dvs. utvalget) til å anslå verdien på p. (Vi kommer tilbake til dette i kap. 9)

9 9 Eksempel: Maskinutleie Maskinutleiefirma disponerer 4 mobile heisekraner Tilfeldig variabel er x = antall utleide kraner en tilfeldig dag. Sannsynlighetsfordeling: x P(x) Sannsynlighetene kan f.eks. være basert på lang erfaring.

10 10 Grafisk representasjon av sannsynlighetsfordeling

11 11 Forventning og varians til en diskret tilfeldig variabel (5.4) Forventningen til en diskret tilfelding variabel x er eller mu = sum av hver x multiplisert med sannsynligheten P(x) μ =Σ[xP(x)] Dette er parameteren (for populasjonen) som svarer til gjennomsnittet i et utvalg: x = Σx n

12 Eksempel: Terningkast. P(x) = 1 6 for x = 1, 2, 3, 4, 5, 6 μ = [xp(x)] = = 3.5 Oppgave: Finn forventningen μ når P(x) = x 10 for x = 1, 2, 3, 4

13 Eksempel: Maskinutleie x P(x) Forventet antall utleide heisekraner: μ = [xp(x)] = = 1.95

14 14 Varians til en diskret tilfeldig variabel Variansen til en diskret tilfeldig variabel er gitt ved: sigma i annen, som beregnes ved å multiplisere de kvadratiske avvikene fra gjennomsnittet, (x μ) 2, med de tilsvarende sannsynligheter P(x) og så summere dette, dvs. σ 2 = [(x μ) 2 P(x)] Formel: Husk utvalgsvarians σ 2 = [x 2 P(x)] μ 2 s 2 = (x x) 2 n 1 = x 2 ( x) 2 /n n 1

15 15 Standardavvik til en tilfeldig variabel Dette er definert som kvadratroten til variansen, dvs. standardavvik: σ = σ 2

16 Eksempel: Terningkast, μ = 21 6 [x 2 P(x)] = = 91 6 σ 2 = Σx 2 P(x) μ 2 = 91 ( ) = σ = σ 2 = 1.71

17 Oppgave: Gitt P(x) = x 10 for x = 1, 2, 3, 4, finn forventning og varians. μ = [xp(x)] = 3.0 σ 2 = [x 2 P(x)] μ 2 = 10.0 (3.0) 2 = 1.0

18 18 Den binomiske sannsynlighetsfordeling (5.5) Binomisk eksperiment: Et eksperiment som består i gjentatte forsøk med følgende egenskaper: 1. Det er n identiske uavhengige forsøk. 2. Hvert forsøk har to mulige utfall, ofte kalt suksess og fiasko. 3. P(suksess)=p, P(fiasko)=q, p+q=1 4. Den binomiske tilfeldige variabelen x er antallet suksessfulle utfall som inntreffer, og x kan anta enhver heltallsverdi fra 0 til n. Oppgave: Betrakt eksperimentet å trille en terning 12 ganger. La suksess være at terningen viser 1. Fiasko er dermed at terningen ikke viser 1. La x være antallet suksesser. Er dette et binomisk eksperiment?

19 19 Eksempel: Quiz En student får fire spørsmål med tre svaraltenativer for hvert spørsmål. Studenten kan ingen ting så han gjetter. Svararket ser slik ut: Sett en ring rundt det beste svaret på hvert sp rsmål. 1. a b c 2. a b c 3. a b c 4. a b c

20 La den tilfeldige variable x være antall korrekte svar på de fire spørsmålene. For hvert spørsmål lar vi betegne rett svar ( correct ) og W betegne galt svar ( wrong ). Vi kan sette opp følgende sannsynlighetstre for de fire spørsmålene i rekkefølge 1,2,3,4. w W W W W W W W W W W W W W W Utfall W W WW W WW WW WWW W WW WW WWW WW WWW WWW WWWW x P (1/3) 4 (2/3) 0 (1/3) 3 (2/3) 1 (1/3) 1 (2/3) 1 (1/3) 2 (2/3) 2 (1/3) 3 (2/3) 1 (1/3) 2 (2/3) 2 (1/3) 2 (2/3) 2 (1/3) 1 (2/3) 3 (1/3) 3 (2/3) 1 (1/3) 2 (2/3) 2 (1/3) 2 (2/3) 2 (1/3) 1 (2/3) 3 (1/3) 2 (2/3) 2 (1/3) 1 (2/3) 3 (1/3) 1 (2/3) 3 (1/3) 0 (2/3) 4

21 For hvert spørsmål er P() =1/3, P(W )=2/3 Kolonnen til høyre angir sannsynligheten for hver gren i treet. Vi ser at sannsynlighetsfunksjonen P(x) blir: P(0) = P(0 rette) = = ( ) 2 4 = 16 3 ( 1 P(1) = P(1 rett) =(4) =(4) P(2) = P(2 rette) =(6) =(6) P(3) = P(3 rette) =(4) =(4) P(4) = P(4 rette) = = ( = ) 1 ( ) 2 3 = ( ) 1 2 ( ) 2 2 = ( ) 1 3 ( ) 2 1 = ) 4 = 1 81 = 0.012

22 22 Binomisk sannsynlighetsfunksjon La det være n forsøk, sannsynlighet p for suksess og sannsynlighet q for fiasko. Da er P(x) =c(p x )(q n x ) for x = 0, 1, 2,...,n der c er antallet grener med x suksesser. c kalles binomisk koeffisient og kan regnes ut ved ( ) n n! c = = x x!(n x)! der n! leses n-fakultet og er gitt ved n! =1 2 n. Tips: p 0 er alltid lik 1; også 0! =1.

23 Situasjonen er som i quiz-eksempelet: Oppgave: Finn P(x), x=0,1,2,3,4 fra den generelle formelen for binomisk sannsynlighetsfordeling Oppgave: Finn P(x 3)

24 24 Forventning og standardavvik for binomisk fordeling (5.6) Forventning for binomisk fordeling med n forsøk, suksesssannsynlighet p og fiaskosannsynlighet q: μ = np Standardavvik for binomisk fordeling: σ = npq Oppgave: Finn forventning og varians for en binomisk tilfeldig variabel med n=30 og p=0.6.

25

26 26 Eksempel 5.9: Dårlige egg Bestyreren på Steve s Food Market garanterer at alle hans kartonger med 12 egg inneholder høyst ett dårlig egg. Hvis en kartong inneholder mer enn ett dårlig egg, vil han erstatte hele dusinet og la kunden beholde de gode eggene! Hvis sannsynligheten for et dårlig egg er 0.05, hva er sannsynligheten for at bestyreren må erstatte en gitt kartong?

27 27 Løsning på dårlige egg La x være antall dårlige egg i en tilfeldig eske. Hvilke forutsetninger må vi gjøre for at vi skal kunne anta at x har en binomisk fordeling med n = 12 forsøk og sannsynlighet for suksess lik 0.05? Sannsynligheten for at en kartong inneholder x dårlige egg er da ( ) 12 P(x) = (0.05) x (0.95) 12 x for x = 0, 1, 2,...,12 x

28 Bestyreren vil erstatte en eske hvis x er enten 2,3,4,5,6,7,8,9,10,11,12. For å finne sannsynligheten for dette er det lettere å først finne sannsynligheten for å ikke erstatter kartongen, dvs. for at x = 0 eller 1. Dette har sannsynlighet P(0)+P(1) = ( ) 12 (0.05) 0 (0.95) ( ) 12 (0.05) 1 (0.95) 11 1 = (0.95) (0.05) 1 (0.95) 11 = = Sannsynligheten for å erstatte en kartong er da =

Tilfeldige variable (5.2)

Tilfeldige variable (5.2) Tilfeldige variable (5.) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel. Tilfeldig variabel: En variabel som har en numerisk verdi for hvert utfall i

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 5: Sannsynlighetsfordelinger for diskrete variabler Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variabler (5.1) Dersom vi til hvert utfall av eksperimentet

Detaljer

Binomisk sannsynlighetsfunksjon

Binomisk sannsynlighetsfunksjon ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Binomisk sannsynlighetsfunksjon La det være n forsøk, sannsynlighet p for suksess og sannsynlighet q for fiasko. Den tilfeldige

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn

Detaljer

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn P(x), x=0,1,2,3,4 fra den generelle formelen for binomisk sannsynlighetsfordeling

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

Fra første forelesning:

Fra første forelesning: 2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!

Detaljer

Kapittel 4.4: Forventning og varians til stokastiske variable

Kapittel 4.4: Forventning og varians til stokastiske variable Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske

Detaljer

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko

Detaljer

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger 5.1-5.4: Uniform, binomisk, hypergeometrisk fordeling Mette Langaas 2 Arbeidshverdag etter endt studium Studere et fenomen (f.eks.

Detaljer

Forelening 1, kapittel 4 Stokastiske variable

Forelening 1, kapittel 4 Stokastiske variable Forelening 1, kapittel 4 Stokastiske variable Eksempel X = "antall kron på kast med to mynter (før de er kastet)" Uniformt utfallsrom {MM, MK, KM, KK}. X = x beskriver hendelsen "antall kron på kast med

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

Diskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Binomial-fordelingen

Diskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Binomial-fordelingen Diskret sannsynlighetsfordeling (kap 1.1-1.6) Oversikt Utfallsrom (sample space) Sannsynlighetsfordeling Forventning (expectation), E(, populasjonsgjennomsnitt Bruk av figurer og histogram Binomialfordelingen

Detaljer

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilnærming av binomiske sannsynligheter Konfidensintervall Ørnulf Borgan Matematisk institutt Universitetet i Oslo

Detaljer

Diskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Forventning (gjennomsnitt) (X=antall mynt i tre kast)

Diskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Forventning (gjennomsnitt) (X=antall mynt i tre kast) Diskret sannsynlighetsfordeling (kap 1.1-1.6) Oversikt Utfallsrom (sample space) Sannsynlighetsfordeling Forventning (expectation), E(X), populasjonsgjennomsnitt Bruk av figurer og histogram Binomialfordelingen

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA0 Sannsynlighetsregning med statistikk, våren 0 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller ( Sanns.modell : nå betyr det klasse/type sanns.fordeling.

Detaljer

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer. Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en statistikk (observator) er fordelingen av verdiene statistikken tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling

Detaljer

Foreleses onsdag 8. september 2010

Foreleses onsdag 8. september 2010 TMA4240 Statistikk H200 4.2: Varians (univariat del) 4.4: Chebyshevs teorem 3.4: Simultanfordelinger Mette Langaas Foreleses onsdag 8. september 200 Mette.Langaas@math.ntnu.no, TMA4240H200 2 4.2 Varians

Detaljer

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010

Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

ECON240 Vår 2018 Oppgaveseminar 1 (uke 6)

ECON240 Vår 2018 Oppgaveseminar 1 (uke 6) ECON240 Vår 2018 Oppgaveseminar 1 (uke 6) Oppgaver til prerequisites og kapittel 1 fra læreboken Example P.1, P.5, P.6, P.7, P.8, P.9, P.11, P.12, P.13, og P.14 Example 1.1, 1.2, 1.3, 1.4, 1.6, 1.7, 1.9,

Detaljer

Bernoulli forsøksrekke og binomisk fordeling

Bernoulli forsøksrekke og binomisk fordeling Bernoulli forsøksrekke og binomisk fordeling Bernoulli forsøksrekke i) gjentar et forsøk n ganger ii) hvert forsøk gir enten suksess eller fiasko iii) sannsynligheten for suksess er p i alle forsøkene

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren 006. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller (k. 3.6 Hyergeometrisk modell (k. 3.7 Geometrisk

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2014 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

TMA4245 Statistikk Eksamen august 2014

TMA4245 Statistikk Eksamen august 2014 TMA4245 Statistikk Eksamen august 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Oppgave 1 En bedrift produserer en type medisin i pulverform Medisinen selges på flasker

Detaljer

ST0103 Brukerkurs i statistikk Høst 2014

ST0103 Brukerkurs i statistikk Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST0103 Brukerkurs i statistikk Høst 2014 Løsningsforslag Øving 1 2.1 Frekvenstabell For å lage en frekvenstabell må vi telle

Detaljer

Kapittel 4.3: Tilfeldige/stokastiske variable

Kapittel 4.3: Tilfeldige/stokastiske variable Kapittel 4.3: Tilfeldige/stokastiske variable Litt repetisjon: Sannsynlighetsteori Stokastisk forsøk og sannsynlighet Tilfeldig fenomen Individuelle utfall er usikre, men likevel et regulært mønster for

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2015 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

TMA4240 Statistikk Høst 2008

TMA4240 Statistikk Høst 2008 TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2016 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

ECON240 Høst 2017 Oppgaveseminar 1 (uke 35)

ECON240 Høst 2017 Oppgaveseminar 1 (uke 35) ECON40 Høst 017 Oppgaveseminar 1 (uke 35) Oppgaver til prerequisites og kapittel 1 fra læreboken Example P.1, P.5, P.6, P.7, P.8, P.9, P.11, P.1, P.13, og P.14 Example 1.1, 1., 1.3, 1.4, 1.6, 1.7, 1.9,

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon

Detaljer

µ = E(X) = Ʃ P(X = x) x

µ = E(X) = Ʃ P(X = x) x Redigerte høydepunkt fra forrige episode 3.2: Punktsannsynlighet og kumulativ sannsynlighet punktsannsynlighet: sanns. for at en stok. var. X har en viss verdi x; P(X = x) kumulativ sannsynlighet: sanns.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 10. oktober 2012. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

Regneregler for forventning og varians

Regneregler for forventning og varians Regneregler for forventning og varians Det fins regneregler som er til hjelp når du skal finne forventningsverdier og varianser. Vi skal her se nærmere på disse reglene. Vi viser deg også hvordan reglene

Detaljer

Kapittel 5: Tilfeldige variable, forventning og varians.

Kapittel 5: Tilfeldige variable, forventning og varians. Kapittel 5: Tilfeldige variable, forventning og varians. Tilfeldige variable Tilfeldige variable kalles også stokastiske variable. En tilfeldig variabel er en variabel som får sin numeriske verdi bestemt

Detaljer

Test, 3 Sannsynlighet og statistikk

Test, 3 Sannsynlighet og statistikk Test, 3 Sannsynlighet og statistikk Innhold 3. Stokastiske variabler og sannsynlighetsfordelinger... 3. Forventningsverdi, varians og standardavvik... 5 3.3 Normalfordelingen... 4 3.4 Sentralgrensesetningen...

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Det er to populasjoner som vi ønsker å sammenligne. Vi trekker da et utvalg

Detaljer

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den

Detaljer

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik. Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:

Detaljer

ECON Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger. Jo Thori Lind

ECON Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger. Jo Thori Lind ECON2130 - Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Betinget sannsynlighet 2. Stokastiske variable 3. Forventning og varians 4. Regneregler

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2017 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Kap. 5.2: Utvalgsfordelinger for antall og andeler

Kap. 5.2: Utvalgsfordelinger for antall og andeler Kap. 5.2: Utvalgsfordelinger for antall og andeler Binære data (1/0, Ja/Nei, Suksess/Feil) Utvalgsundersøkelser: Ja/Nei-spørsmål Tilstedeværelse av arter: Tilstede/Ikke-tilstede (1/0) Overlevelse etter

Detaljer

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6 Terningkast Halvor Aarnes, UiO, 2014 Innhold Ett terningkast og utfallsrom... 1 Union og snitt... 4 Betinget sannsynlighet... 5 Forventningsverdi E(X) og varianse Var(X)... 5 Konfidensintervall for proporsjoner...

Detaljer

ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019

ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST/ST Sannsynlighetsregning og statistikk Vår 9 Oppgaver fra boka 3..9 Ved et terningkast anses utfallet antall øyne lik for

Detaljer

Oppfriskning av blokk 1 i TMA4240

Oppfriskning av blokk 1 i TMA4240 Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for

Detaljer

Betinget sannsynlighet

Betinget sannsynlighet Betinget sannsynlighet Multiplikasjonsloven for sannsynligheter (s. 49 i bok): P( AB ) = P( A B ) P(B) Veldig viktig verktøy for å finne sannsynligheter for snitt. (Bevises ved rett fram manipulering av

Detaljer

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) P(B oga)+p(b ogā) P(B A)P(A)+P(B Ā)P(Ā) ST0202 Statistikk for samfunnsvitere Bo Lindqvist

Detaljer

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1 ECON 0 EKSAMEN 004 VÅR SENSORVEILEDNING Oppgaven består av 0 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Kapittel 5: Noen diskrete sannsynlighetsfordelinger 5.4 Geometrisk og negativ binomisk fordeling 5.5 Poisson-prosess og -fordeling Mette Langaas Institutt for matematiske fag,

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger 5.5-5.6: Negativ binomisk, geometrisk, Poisson Mette Langaas Foreleses mandag 20. september 2010 2 Kabel En kabel består av mange

Detaljer

UNIVERSITETET I OSLO Matematisk Institutt

UNIVERSITETET I OSLO Matematisk Institutt UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent

Detaljer

Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger

Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger TMA4245 Statistikk (B, K1, I) 3.1, 3.2, 3.3 foreleses torsdag 15.januar 0.00 0.02 0.04 0.06 0.08 160 170 180 190 hoyde i cm Mette.Langaas@math.ntnu.no

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 2.8: Bayes regel 3.1: Stokastisk variabel 3.2: Diskrete sannsynlighetsfordelinger 3.3: Kontinuerlige sannsynlighetsfordelinger Mette Langaas Foreleses onsdag 1. september 2010

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) =P(B oga)+p(b

Detaljer

Testobservator for kjikvadrattester

Testobservator for kjikvadrattester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: t tilfeldig utvalg av n individer er trukket

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Utvalgsfordelinger (Kapittel 5)

Utvalgsfordelinger (Kapittel 5) Utvalgsfordelinger (Kapittel 5) Observator En observator er en funksjon av data for mange individer, for eksempel Gjennomsnitt Andel Stigningstall i regresjonslinje En observator er en tilfeldig variabel

Detaljer

Fasit for tilleggsoppgaver

Fasit for tilleggsoppgaver Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Sannsynlighet og statistikk

Sannsynlighet og statistikk Sannsynlighet og statistikk Innhold Kompetansemål Sannsynlighet og statistikk, S... 3. Stokastiske variabler og sannsynlighetsfordelinger... 3 Stokastisk forsøk... 3 Definisjon av sannsynlighet og sannsynlighetsmodell...

Detaljer

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for

Detaljer

Medisinsk statistikk Del I høsten 2009:

Medisinsk statistikk Del I høsten 2009: Medisinsk statistikk Del I høsten 2009: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Beregning av sannsynlighet i en binomisk forsøksrekke generelt Sannsynligheten for at suksess intreffer X

Detaljer

statistikk, våren 2011

statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 011 Kp. 3 Diskrete tilfeldige variable 1 Diskrete tilfeldige variable, innledning Hva er en tilfeldig variabel (stokastisk variabel)? Diskret tilfeldig

Detaljer

Denne uken: Kapittel 4.3 og 4.4

Denne uken: Kapittel 4.3 og 4.4 Sist: Kapittel 4.1, 4.2, 4.5 Tilfeldighet Sannsynlighetsmodeller Regler for sannsynlighet Denne uken: Kapittel 4.3 og 4.4 Tilfeldige variable Forventning og varians til tilfeldige variable Litt repetisjon:

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende

Detaljer

Observatorar og utvalsfordeling. Torstein Fjeldstad Institutt for matematiske fag, NTNU

Observatorar og utvalsfordeling. Torstein Fjeldstad Institutt for matematiske fag, NTNU Observatorar og utvalsfordeling Torstein Fjeldstad Institutt for matematiske fag, NTNU 08.10.2018 I dag Til no i emnet Observatorar Utvalsfordelingar Sentralgrenseteoremet 2 Til no i emnet definisjon av

Detaljer

Eksamensoppgave i ST0103 Brukerkurs i statistikk

Eksamensoppgave i ST0103 Brukerkurs i statistikk Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner STK1100 våren 2017 Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner Svarer til avsnittene 4.1 og 4.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger

Detaljer

STK Oppsummering

STK Oppsummering STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 3.3: Kontinuerlige sannsynlighetsfordelinger 4.1: Matematisk forventing (univariat del) Mette Langaas Foreleses mandag 6. september 2010 2 3.1 Stokastisk variabel (repetisjon)

Detaljer

3.1 Stokastisk variabel (repetisjon)

3.1 Stokastisk variabel (repetisjon) TMA4240 Statistikk H2010 3.3: Kontinuerlige sannsynlighetsfordelinger 4.1: Matematisk forventing (univariat del) Mette Langaas Foreleses mandag 6. september 2010 2 3.1 Stokastisk variabel (repetisjon)

Detaljer

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer. Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en observator er fordelingen av verdiene observatoren tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg er en tilfeldig

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Tirsdag

Detaljer

Oppgaver fra 8.3, 8.4, , 8.51, 8.52, 8.231, 8.232, 8.250, 8.252

Oppgaver fra 8.3, 8.4, , 8.51, 8.52, 8.231, 8.232, 8.250, 8.252 Oppgaver fra 8.3, 8.4, 8.5 8.41, 8.51, 8.52, 8.231, 8.232, 8.250, 8.252 8.41 Populasjon: Tilfeldig variabel X : Trekke en tilfeldig flaske og måle volumet Ukjent sannsynlighetsfordeling, men forventning

Detaljer

Testobservator for kjikvadrattester

Testobservator for kjikvadrattester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket

Detaljer

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012)

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012) 1 ECON 130 HG - februar 01 Løsningskisse for oppgaver til undervisningsfri uke 8 (0.-. februar 01) Oppg..1. Variabel: x = antall kundehenvendelser pr. dag 1. Antall observasjoner: n = 100 dager. I Excel

Detaljer

Da vil summen og gjennomsnittet være tilnærmet normalfordelte : Summen: X 1 +X X n ~N(nµ,nσ 2 ) Gjennomsnittet: X 1 +X

Da vil summen og gjennomsnittet være tilnærmet normalfordelte : Summen: X 1 +X X n ~N(nµ,nσ 2 ) Gjennomsnittet: X 1 +X Me me me me metallic hvit 4.4: Tilnærming til normalfordeling Tilnærming til normalfordeling: binomisk og Poisson kan tilnærmes v.h.a. normalfordeling under bestemte forhold (ved "mange" delforsøk/hendelser)

Detaljer

Forelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind

Forelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind Forelesning 5: Kontinuerlige fordelinger, normalfordelingen Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Kontinuerlige fordelinger 2. Uniform fordeling 3. Normal-fordelingen 1. Kontinuerlige fordelinger

Detaljer

Utvalgsfordelinger (Kapittel 5)

Utvalgsfordelinger (Kapittel 5) Utvalgsfordelinger (Kapittel 5) Oversikt pensum, fortid og fremtid Eksplorativ data-analyse (Kap 1, 2) Hvordan produsere data (Kap 3) Sannsynlighetsteori (Kap 4) Utvalgsfordelinger til observatorer (Kap

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA0 Sannsnlighetsregning med statistikk, våren 007 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsnlighetsmodeller Noen viktige sannsnlighetsmodeller Binomisk modell (kp. 3.6) (kp. 3.7) (notater)

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper Bo Lindqvist Institutt for matematiske fag 2 Kapittel 8: Sammenligning av grupper Situasjon: Vi ønsker

Detaljer

Sum to terninger forts. Eksempel: kast med to terninger. Sum to terninger forts. Kapittel 3. TMA4240 H2006: Eirik Mo

Sum to terninger forts. Eksempel: kast med to terninger. Sum to terninger forts. Kapittel 3. TMA4240 H2006: Eirik Mo 3 Sum to terninger forts. Kapittel 3 TMA4240 H200: Eirik Mo 2 3 4 5,,2,3,4,5, 2 2, 2,2 2,3 2,4 2,5 2, Andre 3 3, 3,2 3,3 3,4 3,5 3, terning 4 4, 4,2 4,3 4,4 4,5 4, 5 5, 5,2 5,3 5,4 5,5 5,,,2,3,4,5, Med

Detaljer

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1 ECON 130 EKSAMEN 005 VÅR SENSORVEILEDNING Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom , Oppgave 1 I denne oppgaven kan du anta at

Detaljer