TMA4240 Statistikk Høst 2008
|
|
- Caroline Møller
- 7 år siden
- Visninger:
Transkript
1 TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har lært. Oppgavene skal besvares uten å bruke læreboka eller tabellen. Bestem det/de riktige svaret/svarene for hvert spørsmål. a) Hendelse Hva er en hendelse? 1. Et utfall som inntreffer sjelden 2. En mengde av enkeltutfall 3. Konvergens av relative hyppigheter 4. Et stokastisk forsøk som ikke kan gjentas under samme betingelser b) Disjunkte hendelser To disjunkte hendelser er 1. To hendelser som ikke kan inntreffe samtidig 2. To hendelser som bare kan inntreffe samtidig 3. To umulige hendelser 4. To hendelser som har minst ett enkeltutfall felles c) Kast en mynt to ganger. Da er det (når en ikke tar hensyn til rekkefølgen) 1. mer sannsynlig å få to kron enn å få en mynt og en kron 2. mindre sannsynlig å få to kron enn å få en mynt og en kron 3. like sannsynlig å få to kron som å få en mynt og en kron d) Hvor mange tre-sifrede tall av tallene 1,2,3,4,5 fins det? a. Trekker med tilbakelegging, ordnet: b. Trekker uten tilbakelegging, ordnet: e) Betinget sannsynlighet La A og B være to disjunkte hendelser. Hva er da P (A B)? Ikke definert 4. P (A) + P (B) oving7-oppg-b 29. september 2008 Side 1
2 f) Total sannsynlighet Setningen om total sannsynlighet sier: La A 1,... A r være en oppdeling av utfallsrommet S (dvs. at hendelsene A j er parvis disjunkte og tilsammen oppfyller hele utfallsrommet) og la B være en vilkårlig hendelse. Da gjelder: 1. P (B) = r j=1 P (A j)p (B A j ) 2. P (B) = r j=1 P (A j)p (A j B) 3. P (B) = r j=1 P (B j)p (A B j ) 4. P (B) = r j=1 P (A j)p (B A j ) 5. P (B A j ) = r j=1 P (A j)p (B A j ) g) Uavhengighet Hva vil det si at to hendelser A og B er uavhengige? 1. At de ikke kan inntreffe samtidig 2. At de ikke er disjunkte 3. At de er disjunkte 4. At P (A B) = P (A)P (B A) 5. At P (A B) = P (A)P (B) 6. At de forekommer i atskilte stokastiske forsøk 7. At A er inneholdt i B eller omvendt h) Diskret variabel En stokastisk variable sies å være diskret fordelt dersom: 1. Den har bare endelig mange mulige verdier 2. Den har endelig eller tellbart uendelig mange mulige verdier 3. De mulige verdier er tallene 1,2,3, De mulige verdier er mengden av alle reelle tall 5. De mulige verdier er et intervall [a, b] på tallinjen, der vi kan ha a = og/eller b = i) Kontinuerlig variabel En stokastisk variable sies å være kontinuerlig fordelt dersom: 1. Den har bare endelig mange mulige verdier 2. Den har endelig eller tellbart uendelig mange mulige verdier 3. De mulige verdier er tallene 1, 2, 3, De mulige verdier er mengden av alle reelle tall 5. De mulige verdier er et intervall [a, b] på tallinjen, der vi kan ha a = og/eller b = j) Punktsannsynlighet diskret variabel Punktsannsynligheten p(x) for en diskret stokastisk variabel X tilfredsstiller:
3 1. p(x) > 0 for alle reelle tall x 2. p(x) > 0 for alle mulige verdier for X 3. p(x) > 0 for x = 1, 2, p(x) er en strengt voksende funksjon av x 5. p(x) er overalt ikke-avtagende som funksjon av x 6. x p(x) = 1 k) Fordelingsfunksjon diskret variabel Fordelingsfunskjonen F (x) for en diskret stokastisk variabel X tilfredsstiller: 1. F (x) er definert for alle reelle tall x 2. F (x) > 0 for alle reelle tall x 3. F (x) > 0 for alle mulige verdier for X 4. F (x) > 0 for x = 1, 2, F (x) er en strengt voksende funksjon av x 6. F (x) er overalt ikke-avtagende som funksjon av x 7. x F (x) = 1 8. lim x F (x) = 1 9. F (0) = 0 l) Forventning og varians En stokastisk variabel X har punktsannsynlighet: p( 1) = 0.5, p(1) = 0.5. En stokastisk variabel Y har punktsannsynlighet: p( 2) = 0.5, p(2) = X har mindre forventingsverdi enn Y 2. X har større forventingsverdi enn Y 3. X og Y har samme forventningsverdi, nemlig 0 4. X har mindre varians enn Y 5. X har større varians enn Y 6. X og Y har samme varians 7. SD(X) = 1, SD(Y ) = 2 m) Ved innføringen av bomringen i Trondheim vil 80% av bilistene ha køfri- brikke. For en gruppe på 10 bilister, hva er sannsynligheten for at alle har køfri-brikke? /10 = 0.08 n) En urne inneholder 7 røde og 5 grønne kuler. Trekk 3 kuler - og la X være antall grønne blant de 3. Mulige sannsynlighetsfordelinger for X kan være: 1. X er binomisk fordelt. 2. X er poissonfordelt. 3. X er hypergeometrisk fordelt. Skriv riktig tall (1,2 eller 3) for fordeling i situasjonene nedenfor.
4 a.... De 3 kulene trekkes med tilbakelegging. b.... De 3 kulene trekkes uten tilbakelegging. o) Kontinuerlige variable La X være en kontinuerlig stokastisk variabel med sannsynlighetstetthet f(x) og fordelingsfunksjon F (x). Sett ring rundt de utsagn nedenfor som er korrekte f(x) 1 for alle x. 2. f(x) 0 for alle x F (x) 1 for alle x. 4. F (x) > 0 for alle x. 5. F (x) er en ikke-avtagende funksjon. 6. f(x) er en ikke-avtagende funksjon. 7. f(x) er stykkevis kontinuerlig 8. f (x) = F (x) for alle unntatt muligens endelig mange x. 9. F (x) = f(x) for alle unntatt muligens endelig mange x. 10. P (X = x) = 0 for alle verdier av x. 11. P (X = x) > 0 for alle unntatt muligens endelig mange x. 12. F (x) = x f(u)du. 13. f(x) = x F (u)du. 14. P (a < X b) = b a f(u)du. 15. P (a X b) = b a f(u)du. 16. P (a < X b) = F (b) F (a). p) Forventningsverdi og varians La X være en kontinuerlig stokastisk variabel med sannsynlighetstetthet f(x) og fordelingsfunksjon F (x). Sett ring rundt de utsagn nedenfor som er korrekte. 1. E(X) = xf(x)dx 2. E(X) = x2 f(x)dx 3. E(X) = xf (x)dx 4. E(X) er alltid lik den verdi av x der f(x) er størst 5. Var(X) = x2 f(x)dx 6. Var(X) = x2 f(x)dx hvis E(X) = 0 7. Var(X) = (x E(X))2 f(x)dx 8. Var(X) = x2 f(x)dx [E(X)] 2 q) Eksponensialfordelingen Hva mener en med at eksponensialfordelingen ikke har hukommelse? (T eksp(λ)) 1. Den er vanskelig å huske.
5 2. La T være levetiden til en lyspære. En ny lyspære har like stor sannsynlighet for å leve i 10 timer som en lyspære som virker etter 100 timer har å leve i 10 timer til. 3. P (T > y) = P (T > x + y T > x) 4. Parameteren λ endrer seg hele tiden. Eksponensialfordelingen husker ikke sin verdi av λ. r) Funksjon av stokastisk variabel La X være kontinuerlig fordelt med sannsynlighetstetthet f X (x), og la Y = e X. Da blir sannsynlighetstettheten til Y: 1. f Y (y) = f X (e y )e y 2. f Y (y) = f X (ln y)e y 3. f Y (y) = f X (ln y) 1 y s) La X være normalfordelt med forventningsverdi µ og varians σ 2. La Y = ax + b for gitte konstanter a og b. Sett ring rundt de riktige utsagn nedenfor. 1. Y er ikke nødvendigvis normalfordelt 2. Y er normalfordelt 3. Hvis a = 1/σ og b = µ/σ, så er Y standard normalfordelt 4. E(Y ) = aσ + b 5. E(Y ) = aµ + b 6. Var(Y ) = aσ 7. Var(Y ) = a 2 σ 2 8. Var(Y ) = aσ 2 + b 2 t) La X være normalfordelt med forventningsverdi µ og varians σ 2. Hvilken av følgende transformasjoner av X gir en standard normalfordeling (dvs. N(0,1))? 1. Z = X µ σ 2. Z = X µ σ 2 3. Z = X µ µ 4. Z = X µσ u) La Φ(x) være fordelingsfunksjonen i standard normalfordelingen. Sett ring rundt de riktige utsagnene nedenfor. 1. Φ(x) = 1 2π e x Φ( x) = Φ(x) 7. Φ( x) = 1 Φ(x) 2. Φ(x) = 1 Φ( x) 5. Φ( x) = Φ(x) 8. Φ(0) = 0 3. Φ(0) = Φ(0) = 1 9. lim x Φ(x) = 0 v) La X 1 og X 2 være diskrete stokastiske variable, hver med mulige verdier 0, 1, 2, 3,.... Sett ring rundt det riktige utsagnet nedenfor. 1. P (X 2 = 0 X 1 = 0) + P (X 2 = 1 X 1 = 0) + P (X 2 = 2 X 1 = 0) + P (X 2 = 3 X 1 = 0) +... = 1 2. P (X 2 = 0 X 1 = 0) + P (X 2 = 0 X 1 = 1) + P (X 2 = 0 X 1 = 2) + P (X 2 = 0 X 1 = 3) +... = 1 w) La X 1 og X 2 være to stokastiske variable, diskrete eller kontinuerlige. Sett ring rundt de korrekte utsagnene nedenfor. 1. Var(X 1 + X 2 ) = Var(X 1 ) + Var(X 2 )
6 2. Var(X 1 + X 2 ) = Var(X 1 ) + Var(X 2 ) + Cov(X 1, X 2 ) 3. Var(X 1 + X 2 ) = Var(X 1 ) + Var(X 2 ) + 2Cov(X 1, X 2 ) 4. Var(X 1 + X 2 ) = Var(X 1 ) + Var(X 2 ) 2Cov(X 1, X 2 ) 5. Var(X 1 + X 2 ) = Var(X 1 ) + Var(X 2 ) hvis X 1 og X 2 er stokastisk uavhengige 6. Cov(X 1, X 2 ) = E(X 1 X 2 ) E(X 1 )E(X 2 ) 7. Cov(X 1, X 2 ) = E(X 1 X 2 ) hvis X 1 og X 2 er stokastisk uavhengige 8. Cov(X 1, X 2 ) = E(X 1 )E(X 2 ) hvis X 1 og X 2 er stokastisk uavhengige 9. E(X 1 X 2 ) = E(X 1 )E(X 2 ) hvis X 1 og X 2 er stokastisk uavhengige x) La X 1 og X 2 være uavhengige stokastiske variable. La Y = X 1 X 2 og Z = 1 2 (X 1 +X 2 ). Sett ring rundt de riktige svarene nedenfor: Fasit 1. Var(Y ) = Var(X 1 ) Var(X 2 ) 2. Var(Y ) = Var(X 1 ) + Var(X 2 ) 3. Var(Z) = 1 2 (Var(X 1) + Var(X 2 )) 4. Var(Z) = 1 4 (Var(X 1) + Var(X 2 )) 5. Var(Z) = 1 4 Var(Y ) 6. Var(2Z) = Var(Y )
TMA4245 Statistikk Vår 2007
TMA4245 Statistikk Vår 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har lært.
DetaljerBernoulli forsøksrekke og binomisk fordeling
Bernoulli forsøksrekke og binomisk fordeling Bernoulli forsøksrekke i) gjentar et forsøk n ganger ii) hvert forsøk gir enten suksess eller fiasko iii) sannsynligheten for suksess er p i alle forsøkene
DetaljerA) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.
Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:
DetaljerHøgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen
Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:
DetaljerOppfriskning av blokk 1 i TMA4240
Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for
DetaljerMULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016
MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 SETT RING RUNDT DET RIKTIGE SVARET FOR HVER OPPGAVE. Oppgave 1 Stokastisk forsøk Stokastiske forsøk karakteriseres ved to av følgende egenskaper.
DetaljerFORMELSAMLING TIL STK1100 OG STK1110
FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål
DetaljerSTK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner
STK1100 våren 2017 Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner Svarer til avsnittene 4.1 og 4.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i
Detaljer6 x P (X = x) = x=1 = P (X 2 = 6)P (X 2 = 6)P (X 3 = 6) =
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 4, blokk I Løsningsskisse Oppgave 1 a) Utfallsrommet til X 1 er {1, 2,, 4, 5, }. Sannsynlighetsfordelingen
DetaljerTMA4240 Statistikk H2010
TMA4240 Statistikk H2010 3.3: Kontinuerlige sannsynlighetsfordelinger 4.1: Matematisk forventing (univariat del) Mette Langaas Foreleses mandag 6. september 2010 2 3.1 Stokastisk variabel (repetisjon)
Detaljer3.1 Stokastisk variabel (repetisjon)
TMA4240 Statistikk H2010 3.3: Kontinuerlige sannsynlighetsfordelinger 4.1: Matematisk forventing (univariat del) Mette Langaas Foreleses mandag 6. september 2010 2 3.1 Stokastisk variabel (repetisjon)
DetaljerTMA4240 Statistikk Høst 2009
TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5 Løsningsskisse Oppgave 1 En lottorekke kan oppfattes som et ikke-ordnet utvalg på
DetaljerForelesing 27 Oppsummering. Torstein Fjeldstad Institutt for matematiske fag, NTNU
Forelesing 27 Oppsummering Torstein Fjeldstad Institutt for matematiske fag, NTNU 18.04.2018 I dag Lineær regresjon (sjekk av modellantagelser) Praktisk informasjon Andre statistikk-kurs Oversikt over
DetaljerKapittel 3: Stokastiske variable og sannsynlighetsfordelinger
Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger TMA4245 Statistikk (B, K1, I) 3.1, 3.2, 3.3 foreleses torsdag 15.januar 0.00 0.02 0.04 0.06 0.08 160 170 180 190 hoyde i cm Mette.Langaas@math.ntnu.no
DetaljerEksamensoppgave i Løsningsskisse TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i Løsningsskisse TMA440 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 18 96, b 99 40 33 30 Eksamensdato: 30. november
DetaljerKap. 6, Kontinuerlege Sannsynsfordelingar
Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform Onsdag Normal Onsdag Eksponensial I dag Gamma I dag Kji-kvadrat I dag Student-T (Kap
DetaljerTMA4240 Statistikk. Øving nummer 7. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag
TMA4240 Statistikk Vår 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave Blandet drops a) Tippekupong På en tippekupong er det gitt 2 fotballkamper.
DetaljerTo-dimensjonale kontinuerlige fordelinger
To-dimensjonale kontinuerlige fordelinger Noen resultater for diskrete fordelinger Vi har tidligere definert punktsannsynligheten p(x, y) for en todimensjonal variabel (X, Y ) som p(x, y) = P ({X = x}
DetaljerKap. 6, Kontinuerlege Sannsynsfordelingar
Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform I går Normal I går Eksponensial I dag Gamma I dag Kji-kvadrat I dag Nokre eigenskapar
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: STK Sannsynlighetsregning og statistisk modellering Eksamensdag: Mandag 4. mars 26 Tid for eksamen: 5. 7. Oppgavesettet er
DetaljerTMA4240 Statistikk H2015
TMA4240 Statistikk H2015 Funksjoner av stokastiske variabler (kapittel 7+notat) Fokus på start med kumulativ fordeling 7.2 Funksjon av en SV (inkludert en-entydighet). Fordeling til max/min (fra notat).
DetaljerLøsningsforslag, eksamen statistikk, juni 2015
Løsningsforslag, eksamen statistikk, juni 0 Oppgave 1 Siden det spørres om tall fra et intervall, som oppgaven viser kan være et reelle, er det tydelig at tallene er tatt fra en kontinuerlig fordeling.
DetaljerTMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
DetaljerTyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4
3 Tyngdepunkt Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4240 H2006: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF
Detaljer3.4: Simultanfordelinger (siste rest) 4.1,4.2,4.3: Multivariat del (ferdig med kapittel 3 og 4 etter denne forelesningen)
TMA4240 Statistikk H200 3.4: Simultanfordelinger (siste rest) 4.,4.2,4.3: Multivariat del (ferdig med kapittel 3 og 4 etter denne forelesningen) Mette Langaas Foreleses mandag 3. september 200 2 f (x,
DetaljerForelening 1, kapittel 4 Stokastiske variable
Forelening 1, kapittel 4 Stokastiske variable Eksempel X = "antall kron på kast med to mynter (før de er kastet)" Uniformt utfallsrom {MM, MK, KM, KK}. X = x beskriver hendelsen "antall kron på kast med
DetaljerTMA4245 Statistikk Høst 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 4 Løsningsskisse Oppgave 1 Mureren La X være mengden mørtel mureren bruker i løpet av en tilfeldig valgt arbeidsdag.
DetaljerST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST/ST Sannsynlighetsregning og statistikk Vår 9 Oppgaver fra boka 3..9 Ved et terningkast anses utfallet antall øyne lik for
DetaljerFORMELSAMLING TIL STK1100 OG STK1110
FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 11. november 2017) 1. Sannsynlighet La A, B, A 1, A 2,..., B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål
DetaljerTMA4240 Statistikk Høst 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren
DetaljerKontinuerlige sannsynlighetsfordelinger.
Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x) er sannsynlighetstettheten til en kontinuerlig X dersom: 1. f(x) 0 for alle x R 2. f(x)dx =1 3. P (a
DetaljerTMA4240 Statistikk Eksamen desember 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet
DetaljerBetinget sannsynlighet
Betinget sannsynlighet Multiplikasjonsloven for sannsynligheter (s. 49 i bok): P( AB ) = P( A B ) P(B) Veldig viktig verktøy for å finne sannsynligheter for snitt. (Bevises ved rett fram manipulering av
DetaljerKapittel 2: Hendelser
Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en
DetaljerTMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling
TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger 5.1-5.4: Uniform, binomisk, hypergeometrisk fordeling Mette Langaas 2 Arbeidshverdag etter endt studium Studere et fenomen (f.eks.
DetaljerKapittel 6: Kontinuerlige sannsynlighetsfordelinger
Kapittel 6: Kontinuerlige sannsynlighetsfordelinger TMA4240 Statistikk (F2 og E7) Foreleses 15. september, 2004. µ µ µ + Basert på slides av Mette Langås p.1/16 6.1 Kontinuerlig uniform fordeling Kontinuerlig
DetaljerForelesning 13. mars, 2017
Forelesning 13. mars, 217 AVSNITT 5.2 Kovariansen mellom to variable Korrelasjon mellom to variable AVSNITT 5.3 Betingede fordelinger Kovariansen mellom to stokastiske variable Kovariansen mellom to stokastiske
Detaljer1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m
Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a
DetaljerDagens tekst. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon
Dagens tekst Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Notat: Ordningsvariable og ekstremvariable Ordnings variable Maksimum Minumum Transformasjon
DetaljerTMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger
TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko
DetaljerTMA4240 Statistikk H2015
TMA4240 Statistikk H2015 Kapittel 4: Matematisk forventning [4.1+start 4.3] Quiz kjørt med Kahoot! fra kahoot.it. Mette Langaas wiki.math.ntnu.no/emner/tma4240/2015h/start/ 2 Høyde, kvinner Frequency
DetaljerRegneregler for forventning og varians
Regneregler for forventning og varians Det fins regneregler som er til hjelp når du skal finne forventningsverdier og varianser. Vi skal her se nærmere på disse reglene. Vi viser deg også hvordan reglene
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2008
ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,
DetaljerFormelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal
Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene
DetaljerTMA4240 Statistikk Høst 2015
TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Oppgave 1 X er kontinuerlig fordelt med sannsynlighetstetthet f(x) = 2xe
DetaljerForeleses onsdag 8. september 2010
TMA4240 Statistikk H200 4.2: Varians (univariat del) 4.4: Chebyshevs teorem 3.4: Simultanfordelinger Mette Langaas Foreleses onsdag 8. september 200 Mette.Langaas@math.ntnu.no, TMA4240H200 2 4.2 Varians
DetaljerSTK1100 våren Forventningsverdi. Forventning, varians og standardavvik
STK00 våren 0 Forventning, varians og standardavvik Svarer til avsnitt 3.3 i læreboka Geir Storvik (Ørnulf Borgan) Matematisk institutt Universitetet i Oslo Forventningsverdi Punktsannsynligheten px (
DetaljerTMA4240 Statistikk 2014
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5, blokk I Løsningsskisse Oppgave 1 X og Y er uavhengige Poisson-fordelte stokastiske variable, X p(x;5 og Y p(y;1.
DetaljerTMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 0, blokk II Løsningsskisse Oppgave Surhetsgrad i ferskvann Eksamen august 00, oppgave av 3 a) En god estimator
DetaljerTMA4240 Statistikk Høst 2009
TMA44 Statistikk Høst 9 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b Løsningsskisse Oppgave X er en stokastisk variabel med sannsynlighetstetthet { f(x),
DetaljerKap. 6, Kontinuerlege Sannsynsfordelingar
Kapittel 6, Kontinuerlege Sannsynsfordelingar Sjå på eit utval av ofte brukte kontinuerlege sannsynsfordelingar Uniform I går Normal I går Eksponensial I dag Gamma I dag Kji-kvadrat I dag Nokre eigenskapar
DetaljerFormelsamling i medisinsk statistikk
Formelsamling i medisinsk statistikk Versjon av 6. mai 208 Dette er en formelsamling til O. O. Aalen (red.): Statistiske metoder i medisin og helsefag, Gyldendal, 208. Gjennomsnitt x = n (x + x 2 + x 3
DetaljerTMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Vi antar X er normalfordelt, X N(3315, 55 2. Ved bruk av formelheftet finner
DetaljerSTK1100 våren Normalfordelingen. Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger
STK00 våren 206 Normalfordelingen Svarer til avsnitt 4.3 i læreboka Geir Storvik Matematisk institutt Universitetet i Oslo Normalfordelingen er den viktigste av alle sannsynlighetsfordelinger Normalfordelingen
DetaljerEmnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard
EKSAMEN Emnekode: SFB107111 Emnenavn: Metode 1, statistikk deleksamen Dato: 16. mai 2017 Hjelpemidler: Godkjent kalkulator og vedlagt formelsamling m/tabeller Eksamenstid: 4 timer Faglærer: Hans Kristian
DetaljerTMA4240 Statistikk 2014
TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn
DetaljerTMA4240 Statistikk Høst 2012
TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 5 blokk I Løsningsskisse Oppgave 1 X N(18,2.5 2 ) P(X < 15) = P ( X 18 < 15 18 ) = P(Z < 1.2)
DetaljerStatistikk 1 kapittel 4
Statistikk 1 kapittel 4 Nico Keilman ECON 2130 Vår 2017 Kapittel 4 Stokastiske (tilfeldige) variabler Anta 1) Vi kjenner sannsynligheter for ulike utfall knyttet til et forsøk 2) Hvert utfall har en (meningsfull)
DetaljerOppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag. Vi har fått oppgitt at X poisson(λ) med
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 5, blokk I Løsningsskisse Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag.
DetaljerMidtveiseksamen i STK1100 våren 2017
Midtveiseksamen i STK1100 våren 2017 Denne midtveiseksamenen består av 20 oppgaver. Det er ett riktig svaralternativ for hvert spørsmål. Hvis svaret er oppgitt som et desimaltall, er det rundet av til
DetaljerDiskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Forventning (gjennomsnitt) (X=antall mynt i tre kast)
Diskret sannsynlighetsfordeling (kap 1.1-1.6) Oversikt Utfallsrom (sample space) Sannsynlighetsfordeling Forventning (expectation), E(X), populasjonsgjennomsnitt Bruk av figurer og histogram Binomialfordelingen
DetaljerTogforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at
Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4245 V2007: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF 4.1: La X være
DetaljerTMA4240 Statistikk Høst 2007
TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010
ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning
DetaljerForelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind
Forelesning 5: Kontinuerlige fordelinger, normalfordelingen Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Kontinuerlige fordelinger 2. Uniform fordeling 3. Normal-fordelingen 1. Kontinuerlige fordelinger
DetaljerSiden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden.
Estimeringsmetoder Momentmetoden La X, X 2,..., X n være uavhengige variable som er rektangulært fordelte på intervallet [0, θ]. Vi vet da at forventningsverdiene til hver observasjon og forventningen
Detaljerfor x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter
TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere
DetaljerTMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Løsningsskisse Oppgave X er kontinuerlig fordelt med sannsynlighetstetthet f X (x) = { x exp( x ) x
DetaljerTMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar
DetaljerTransformasjoner av stokastiske variabler
Transformasjoner av stokastiske variabler Notasjon merkelapper på fordelingene Sannsynlighetstettheten og den kumulative fordelingen til en stokastisk variabel X betegnes hhv. f X og F X. Indeksen er altså
Detaljerstatistikk, våren 2011
ÅMA110 Sannsynlighetsregning med statistikk, våren 011 Kp. 3 Diskrete tilfeldige variable 1 Diskrete tilfeldige variable, innledning Hva er en tilfeldig variabel (stokastisk variabel)? Diskret tilfeldig
DetaljerBinomisk sannsynlighetsfunksjon
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Binomisk sannsynlighetsfunksjon La det være n forsøk, sannsynlighet p for suksess og sannsynlighet q for fiasko. Den tilfeldige
DetaljerEksempel: kast med to terninger
Kapittel 3 TMA4245 V2007: Eirik Mo 2 Eksempel: kast med to terninger I et eksperiment kaster vi to terninger og registerer antall øyne på hver terning. Utfallsrom S={(,),(,2),(,3),...,(,), (2,),...,(2,),...,(,)}
DetaljerOppgave 1 a) La X være massen til et tilfeldig valgt egg, målt i gram. Sannsynligheten for at et tilfeldig valgt egg veier mer enn 60 g er
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 5 Løsningsskisse Oppgave 1 a La X være massen til et tilfeldig valgt egg, målt i gram. Sannsynligheten for at
DetaljerTMA4240 Statistikk H2010
TMA4240 Statistikk H2010 2.8: Bayes regel 3.1: Stokastisk variabel 3.2: Diskrete sannsynlighetsfordelinger 3.3: Kontinuerlige sannsynlighetsfordelinger Mette Langaas Foreleses onsdag 1. september 2010
DetaljerTilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk
MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilnærming av binomiske sannsynligheter Konfidensintervall Ørnulf Borgan Matematisk institutt Universitetet i Oslo
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.
ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling
DetaljerTMA4240 Statistikk H2015
TMA4240 Statistikk H2015 Kapittel 5: Noen diskrete sannsynlighetsfordelinger 5.4 Geometrisk og negativ binomisk fordeling 5.5 Poisson-prosess og -fordeling Mette Langaas Institutt for matematiske fag,
DetaljerLøsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår
Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x
DetaljerKontinuerlige sannsynlighetsfordelinger.
Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x er sannsynlighetstettheten til en kontinuerlig X dersom:. f(x 0 for alle x R 2. f(xdx = 3. P (a
DetaljerTMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag
TMA4245 Statistikk Vår 2017 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3 Dette er den første av to innleveringer i blokk 2 Denne øvingen skal oppsummere pensum
DetaljerTMA4240 Statistikk Eksamen desember 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlege stokastiske variabelen X ha fordelingsfunksjon (sannsynstettleik
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren
DetaljerTMA4240 Statistikk Høst 2009
TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b5 Løsningsskisse Oppgave 1 Vi ønsker å finne ut om et nytt serum kan stanse leukemi.
DetaljerDiskrete sannsynlighetsfordelinger.
Diskrete sannsynlighetsfordelinger. Dekkes av kapittel 5 i læreboka. Husk: f(x) er punktsannsynligheten til en diskret X dersom: 1. f(x) 0 2. x f(x) =1 3. f(x) =P (X = x) Vi skal nå sepå situasjoner der
DetaljerDenne veka. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon
Denne veka Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Notat: Ordningsvariable og ekstremvariable Ordnings variable Maksimum Minumum Transformasjon
DetaljerÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.
ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35
DetaljerTMA4245 Statistikk Eksamen august 2014
TMA4245 Statistikk Eksamen august 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Oppgave 1 En bedrift produserer en type medisin i pulverform Medisinen selges på flasker
DetaljerTMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må
DetaljerUtfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010
TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2017 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
DetaljerTMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. Mette Langaas Foreleses mandag 27. september 2010 2
DetaljerKapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma.
TMA4240 Statistikk H2010 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. Mette Langaas Foreleses mandag 27. september 2010 2
DetaljerEksamensoppgave i TMA4240 / TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 / TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato: 10. august 2017 Eksamenstid (fra til): 09.00-13.00
DetaljerDiskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Binomial-fordelingen
Diskret sannsynlighetsfordeling (kap 1.1-1.6) Oversikt Utfallsrom (sample space) Sannsynlighetsfordeling Forventning (expectation), E(, populasjonsgjennomsnitt Bruk av figurer og histogram Binomialfordelingen
DetaljerTMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger 5.5-5.6: Negativ binomisk, geometrisk, Poisson Mette Langaas Foreleses mandag 20. september 2010 2 Kabel En kabel består av mange
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2016 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
Detaljer5.2 Diskret uniform fordeling. Midtveiseksamen (forts.) Kapittel 5. Noen diskrete sannsynlighetsfordelinger. TMA4245 V2007: Eirik Mo
Histogram of x 1 2 3 4 5 6 x 0 1 2 3 4 5 6 3 Midtveiseksamen oppg. 1a eksamen 06.08.2004 Kapittel 5 Noen diskrete sannsynlighetsfordelinger TMA4245 V2007: Eirik Mo Høsten 2004 ble det i TMA4240 bli innført
Detaljer