Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4"

Transkript

1 3 Tyngdepunkt Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4240 H2006: Eirik Mo Forventing til en stokastisk variabel DEF 4.1: La X være en stokastisk variabel med sannsynlighetsfordeling f(x). Forventningsverdien (mean, expected value) til X er 4 Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at 0 x r e ax dx = r! når a > 0 og r er et heltall 0 ar+1 Vi betrakter ankomst- og oppholdstider for et bestemt lokaltog på en jernbanestasjon. Toget skal etter rutetabellen ankomme hver hverdag klokka 8:00, men kommer alltid etter dette tidspunktet. hvis X er diskret, og µ = E(X) = x µ = E(X) = hvis X er kontinuerlig. x f(x) x f(x)dx La X (minutter) betegne togets forsinkelse på en tilfeldig valgt hverdag. Vi antar at X er en stokastisk variabel med sannsynlighetstetthet { kxe 2x for x > 0 g(x) = 0 for x 0 der k > 0 er en konstant. i) Har vist at k = 4. ii) Hva er forventingsverdien til X?

2 5 Prosjektstyring 7 Forventing til funksjon av en stokastisk variabel X = tid for å samle inn data (i påbegynte timer) Y = tid for å analysere data TEO 4.1: La X være en stokastisk variabel med sannsynlighetsfordeling f(x). Forventningsverdien til den stokastiske variablen g(x) er µ g(x) = E[g(X)] = x g(x)f(x) f X (x) hvis X er diskret, og f Y (y) µ g(x) = E[g(X)] = g(x)f(x)dx hvis X er kontinuerlig. 6 8 Prosjektstyring (forts.) E(aX + b) Ser på tid brukt til datainnsamling (X) Kunden har betalt 1200 kr for datainnsamlingen, og prosjektarbeideren som skal utføre datainnsamlingen får 500 kr timen. Hva er forventet inntekt for datainnsamlingen? f X (x) TEO 4.5: Hvis a og b er konstanter, så er E(aX + b) = a E(X) + b COR 1: Setter vi a = 0 ser vi at E(b) = b COR 2: Setter vi b = 0 ser vi at E(aX) = a E(X)

3 9 E(sum eller differanse) TEO 4.6: Forventningsverdien til summen eller differansen av to eller flere funksjoner av den stokastiske variablen X, er summen eller differansen til forventningsverdiene til funksjonene. Det vil si, siden E[g 1 (X) ± g 2 (X)] = E[g 1 (X)] ± E[g 2 (X)]. g(x) = g 1 (X) ± g 2 (X) E(g(X)) = E(g 1 (X) ± g 2 (X)) = [g 1 (x) ± g 2 (x)] f(x)dx = E[g 1 (X)] ± E[g 2 (X)]. 11 Togforsinkelsen (forts.) 0 E(X) = 1 x r e ax dx = r! når a > 0 og r er et heltall 0 ar+1 { 4xe 2x for x > 0 f X (x) = 0 for x 0 Hva er variansen til X? Varians (og kovarians) DEF 4.3: La X være en stokastisk variabel med sannsynlighetsfordeling f(x) og forventning µ = E(X). Variansen til X er σ 2 = Var(X) = E[(X µ) 2 ] = x hvis X er diskret, og σ 2 = Var(X) = E[(X µ) 2 ] = (x µ) 2 f(x) (x µ) 2 f(x)dx hvis X er kontinuerlig. Den positive kvadratroten av variansen, σ = SD(X), kalles standard avviket til X. TEO 4.2: Variansen til en stokastisk variabel X er σ 2 = Var(X) = E(X 2 ) [E(X)] 2 = E(X 2 ) µ 2 12 Varians til en funksjon av en stokastisk variabel TEO 4.3: La X være en stokastisk variabel med sannsynlighetsfordeling f(x). Variansen til den stokastiske variablen g(x) er σ 2 g(x) = E[(g(X) µ g(x)) 2 ] = x hvis X er diskret, og σ 2 g(x) = E[(g(X) µ g(x)) 2 ] = hvis X er kontinuerlig. [g(x) µ g(x) ] 2 f(x) [g(x) µ g(x) ] 2 f(x)dx

4 13 Varians til en lineær funksjon av en stokastisk variabel TEO 4.9: Hvis a og b er konstanter, så er σ 2 ax+b = Var(aX + b) = a2 Var(X) = a 2 σ 2 X COR 1: Setter vi a = 1 ser vi at COR 2: Setter vi b = 0 ser vi at Var(X + b) = Var(X) = σ 2 X. Var(aX) = a 2 Var(X) = a 2 σ 2 X. 15 Forventning og varians, univariat Diskret stokastisk variabel Kontinuerlig stokastisk variabel Forventning: E(X), tyngdepunkt i fordelingen, beste gjett på ny fremtidig observasjon µ = E(X) = x xf(x) µ = E(X) = xf(x)dx µ g(x) = E[g(X)] = x g(x)f(x) µ g(x) = E[g(X)] = g(x)f(x)dxx E(aX + b) = a E(X) + b Varians: Var(X), mål for spredning σ 2 = Var(X) = E[(X µ) 2 ] = E(X 2 ) µ 2 σ 2 = x (x µ)2 f(x) σ 2 = (x µ)2 f(x)dx σg(x) 2 = Var[g(X)] = E[(g(X) µ g(x)) 2 ] σg(x) 2 = x (g(x) µ g(x)) 2 f(x) σg(x) 2 = [g(x) µ g(x)] 2 f(x)dx Var(aX + b) = a 2 Var(X) Standardavvik: SD(X) = Var(X) Mål for spredning på samme skala som originalobservasjonenen. 14 Prosjektstyring (forts.) Chebyshevs teorem Ser på aktivitet A. Kunden har betalt 1200 kr for aktivitet A, og prosjektarbeideren som skal utføre aktivitet A får 500 kr timen. Inntekt for aktivitet A: g(x) = X Forventning: E(g(X)) = 100. Hva er Var(g(X))? f X (x) TEO 4.11: Chebyshevs teorem Sannsynligheten for at en stokastisk variabel X vil anta en verdi innen k standardavvik fra forventningsverdien er minst 1 1/k 2. Det vil si, P(µ kσ < X < µ + kσ) 1 1 k 2 k=1: P(µ σ < X < µ + σ) = 0 k=2: P(µ 2σ < X < µ + 2σ) = 0.75 k=3: P(µ 3σ < X < µ + 3σ) = 0.89

5 17 Chebyshevs teorem og Normalfordelingen Nøyaktig for normalfordelingen: k=1: P(µ σ < X < µ + σ) = k=2: P(µ 2σ < X < µ + 2σ) = k=3: P(µ 3σ < X < µ + 3σ) = Prosjektstyring (forts.) X = tid for datainnsamling (i påbegynte timer) Y = tid for dataanalyse. x f Y (y) y f X (x) µ X = E(X) = = 2.2 µ Y = E(Y) = = 3.0 Hva er E(X + Y)? Hva er E( Y X )? 18 Forventning til funksjon av flere stokastiske variabler 20 E(funksjoner av flere SV) DEF 4.2: La X og Y være stokastisk variable med simultan sannsynlighetsfordeling f(x, y). Forventningsverdien til den stokastiske variabelen g(x, Y) er µ g(x,y) = E[g(X, Y)] = g(x, y)f(x, y) x y hvis X og Y er diskrete, og µ g(x,y) = E[g(X, Y)] = hvis X og Y er kontinuerlige. g(x, y)f(x, y)dxdy TEO 4.7: Forventningsverdien til summen eller differansen av to eller flere funksjoner av de stokastiske variablene X og Y, er summen eller differansen til forventningsverdiene til funksjonene. Det vil si, E[g(X, Y) ± h(x, Y)] = E[g(X, Y)] ± E[h(X, Y)]. COR 1: Setter vi g(x, Y) = g(x) og h(x, Y) = h(y) E[g(X) ± h(x)] = E[g(X)] ± E[h(Y)]. COR 2: Setter vi g(x, Y) = X og h(x, Y) = Y E[X ± Y] = E[X] ± E[Y].

6 21 Generalisering Y = E(Y) = Formelsamlingen s 34. a i X i + b a i E(X i ) + b Varians og kovarians DEF 4.4: La X og Y være to stokastisk variable med simultan sannsynlighetsfordeling f(x, y), og forventninger hhv. µ X = E(X) og µ Y = E(Y). Kovariansen til X og Y er σ XY = Cov(X, Y) = E[(X µ X )(Y µ Y )] = (x µ X )(y µ Y )f(x, y) x y hvis X og Y er diskrete, og σ XY = Cov(X, Y) = E[(X µ X )(Y µ Y )] = hvis X og Y er kontinuerlige. (x µ X )(y µ Y )f(x, y)dxdy 22 Prosjektstyring (forts.) x f Y (y) y f X (x) Er interessert i forholdet g(x, Y) = Y X mellom varigheten av datainnsamling og dataanalyse. NB: E [ Y X [ ] Y E X = x y y f(x, y) x = (1/2) (1/3) (2/3) 0.03 = 1.44 ] E(X) E(Y) (3/2) (4/3) Kovarians TEO 4.4: Kovariansen til to stokastiske variabler X og Y med forventninger hhv. µ X = E(X) og µ Y = E(Y), er gitt ved σ XY = Cov(X, Y) = E(X Y) E(X) E(Y) = E(X Y) µ X µ Y TEO 4.8: La X og Y være to uavhengige stokastiske variabler. Da er E(X Y) = E(X) E(Y). Når X og Y er uavhengige er E(X Y) = E(X) E(Y) = µ X µ Y. Dermed når X og Y er uavhengige er Cov(X, Y) = µ X µ Y µ X µ Y = 0. Men, hvis Cov(X, Y) betyr det nødvendigvis IKKE at X og Y er uavhengige.

7 25 Korrelasjon DEF 4.5: La X og Y være to stokastisk variable med kovarians σ XY og varianser hhv. σ 2 X og σ2 Y. Korrelasjonskoeffisienten til X og Y er 27 Aksjekurs, eksamen juni 2004, 2c ρ XY = Cov(X, Y) Var(X) Var(Y) = σ XY σ X σ Y aksjeverdi i kroner Tolkning : Hvis Y = ax + b og a > 0 ρ XY = 1 Hvis Y = ax + b og a < 0 ρ XY = 1 Hvis X og Y er uavhengige ρ XY = 0 1 ρ XY dager Figuren viser utviklingen av aksjekursen til Agderfrukt (stiplet) sammen med aksjekursen til Trønderfrukt (heltrukket) Korrelasjon = Korrelasjon = 0.5 Aksjekurs, forts. Kursendringen dag i for Agderfrukt kaller vi X i, og vi antar at X i har forventning µ X = 0.15 kroner og standardavvik σ X = 0.60 kroner. Kursendringen dag i for Trønderfrukt kaller vi Y i, og vi antar at Y i har forventning µ Y = 0.15 kroner og standardavvik σ Y = 0.80 kroner. Kursendringer for ulike dager antas å være uavhengige Korrelasjon = Korrelasjon = Vi sammenlikner de to selskapene ved å måle differansen mellom de daglige kursendringene, D i = X i Y i, og ta gjennomsnitt. Vi ser på 10 dager og får D = D i = (X i Y i ). Gir figuren grunn til å tro at endringene i de to aksjekursene samme dag, X i og Y i, er uavhengige? Korrelasjonen mellom X i og Y i for disse to selskapene, ρ(x i, Y i ), er enten -0.5, 0.0 eller 0.5. Hvilken av disse verdiene virker mest rimelig fra figuren? Begrunn kort. Hva blir forventningsverdi og varians for D? Benytt verdien for korrelasjonen, ρ(x i, Y i ), som du valgte over.

8 29 Varians til lineærkombinasjon av to stokastiske variabler TEO 4.10: La X og Y være to stokastisk variable med simultan sannsynlighetsfordeling f(x, y), da er σ 2 ax+by = Var(aX + by) = a 2 Var(X) + b 2 Var(Y) + 2ab Cov(X, Y) = a 2 σ 2 X + b2 σ 2 Y + 2ab σ XY COR 1: Hvis X og Y er uavhengige stokastiske variable, så er Cov(X, Y) = 0 og Var(aX + by) = a 2 Var(X) + b 2 Var(Y) = a 2 σ 2 X + b 2 σ 2 Y COR 2: Hvis X og Y er uavhengige stokastiske variable, så er Cov(X, Y) = 0 og Var(aX by) = a 2 Var(X) + b 2 Var(Y) = a 2 σ 2 X + b 2 σ 2 Y COR 3: Hvis X 1, X 2,..., X n er uavhengige stokastiske variable, så er 31 Prosjektstyring: tid Total varighet av aktiviteter er X + Y, hva er Var(X + Y)? µ X = E(X) = = 2.2 µ Y = E(Y) = = 3.0 E(X + Y) = E(X) + E(Y) = = 5.2 σ 2 X = Var(X) = E(X 2 ) µ 2 X = = = 0.36 σy 2 = Var(Y) = E(Y 2 ) µ 2 Y = = = 1.00 Var(a 1 X a n X n ) = a 2 1 Var(X 1 ) + + a 2 n Var(X n ) 30 Generalisering 32 Prosjektstyring: tid (forts.) Y = E(Y) = Var(Y) = + 2 a i X i + b a i E(X i ) + b a 2 i Var(X i ) i 1 a i a j Cov(X i, X j ) j=1 σ XY = Cov(X, Y) = E(XY) µ X µ Y = = = 0.16 Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y) = = 1.68 SD(X + Y) = Var(X + Y) = 1.68 = 1.3 Formelsamlingen s 34.

9 33 Prosjektstyring: penger Inntekt for datainnsamling er: X Inntekt for dataanalyse er: Y Totalt inntekt er Z = 500 X 500 Y = a Y X + a Y Y + b der a X = 500, a Y = 500 og b = µ X = E(X) = = 2.2 µ Y = E(Y) = = 3.0 E(a x X + a Y Y + b) = a X E(X) + a Y E(Y) + b E(Z) = ( 500) ( 500) = 600 σx 2 = Var(X) = Kapittel 4.5 : nytt i 8. utgave NB: Fordelingen er ofte gitt basert på naturlover e.l., men parameterverdiene må ofte estimeres fra målte data. Selv om vi i flere oppgaver oppgir en forventningsverdi (µ), vil den i praksis være funnet fra eksperimentelle data. Kapittel 9 tar opp estimering, for situasjonene når parametre er kjente og ukjente. σ 2 Y = Var(Y) = 1.00 σ XY = Cov(X, Y) = 0.16 Var(a X + a Y Y + b) = a 2 X Var(X) + a2 Y Var(Y) + 2a X a Y Cov(X, Y) Var(Z) = ( 500) ( 500) ( 500) ( 500)0.16 = q SD(X + Y) = Var(Z) = = Kapittel 4.5 : nytt i 8. utgave Kapittel 4 er som kapittel 3 grunnleggende. Kapittel 3 fortalte om generelle egenskaper ved fordelinger, kapittel 4 tar opp mål for fundamentale parametre som karakteriserer systemet og som vi vil bruke videre. Gjennomsnittet til en fordeling antyder tendensen, og variansen eller standardavviket antyder variabiliteten til systemet. Videre angir kovariansen tendensen til at to stokastiske variabler følger hverandre i et system.

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4245 V2007: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF 4.1: La X være

Detaljer

Foreleses onsdag 8. september 2010

Foreleses onsdag 8. september 2010 TMA4240 Statistikk H200 4.2: Varians (univariat del) 4.4: Chebyshevs teorem 3.4: Simultanfordelinger Mette Langaas Foreleses onsdag 8. september 200 Mette.Langaas@math.ntnu.no, TMA4240H200 2 4.2 Varians

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Kapittel 4: Matematisk forventning [4.1+start 4.3] Quiz kjørt med Kahoot! fra kahoot.it. Mette Langaas wiki.math.ntnu.no/emner/tma4240/2015h/start/ 2 Høyde, kvinner Frequency

Detaljer

Eksempel: kast med to terninger

Eksempel: kast med to terninger Kapittel 3 TMA4245 V2007: Eirik Mo 2 Eksempel: kast med to terninger I et eksperiment kaster vi to terninger og registerer antall øyne på hver terning. Utfallsrom S={(,),(,2),(,3),...,(,), (2,),...,(2,),...,(,)}

Detaljer

Forventning og varians.

Forventning og varians. Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.1) Forventningsverdi = gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: x xf(x),x

Detaljer

Kapittel 2: Hendelser

Kapittel 2: Hendelser Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en

Detaljer

Forventning og varians.

Forventning og varians. Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.) Forventningsverdi gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: E(X) f(),x diskret

Detaljer

Sum to terninger forts. Eksempel: kast med to terninger. Sum to terninger forts. Kapittel 3. TMA4240 H2006: Eirik Mo

Sum to terninger forts. Eksempel: kast med to terninger. Sum to terninger forts. Kapittel 3. TMA4240 H2006: Eirik Mo 3 Sum to terninger forts. Kapittel 3 TMA4240 H200: Eirik Mo 2 3 4 5,,2,3,4,5, 2 2, 2,2 2,3 2,4 2,5 2, Andre 3 3, 3,2 3,3 3,4 3,5 3, terning 4 4, 4,2 4,3 4,4 4,5 4, 5 5, 5,2 5,3 5,4 5,5 5,,,2,3,4,5, Med

Detaljer

FORMELSAMLING TIL STK1100 OG STK1110

FORMELSAMLING TIL STK1100 OG STK1110 FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål

Detaljer

Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger

Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger f(x,y) NTNU Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger TMA4240 Statistikk (F2 og E7) 3.4: Foreleses mandag 30.august y=hoyde x=vekt Ole.Petter.Lodoen@math.ntnu.no p.1/18 Oppsummering

Detaljer

6 x P (X = x) = x=1 = P (X 2 = 6)P (X 2 = 6)P (X 3 = 6) =

6 x P (X = x) = x=1 = P (X 2 = 6)P (X 2 = 6)P (X 3 = 6) = Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 4, blokk I Løsningsskisse Oppgave 1 a) Utfallsrommet til X 1 er {1, 2,, 4, 5, }. Sannsynlighetsfordelingen

Detaljer

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik. Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:

Detaljer

statistikk, våren 2011

statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 011 Kp. 3 Diskrete tilfeldige variable 1 Diskrete tilfeldige variable, innledning Hva er en tilfeldig variabel (stokastisk variabel)? Diskret tilfeldig

Detaljer

To-dimensjonale kontinuerlige fordelinger

To-dimensjonale kontinuerlige fordelinger To-dimensjonale kontinuerlige fordelinger Noen resultater for diskrete fordelinger Vi har tidligere definert punktsannsynligheten p(x, y) for en todimensjonal variabel (X, Y ) som p(x, y) = P ({X = x}

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning

Detaljer

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a

Detaljer

TMA4240 Statistikk Høst 2008

TMA4240 Statistikk Høst 2008 TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har

Detaljer

Forelesning 7. mars, 2017

Forelesning 7. mars, 2017 Forelesning 7. mars, 2017 AVSNITT 5.1 Eksempel: Miljøkonturer AVSNITT 5.2 Forventningen til en funksjon av flere variable Kovariansen mellom to variable Eksempel: Miljøkonturer Miljøvariable som karakteriserer

Detaljer

Statistikk 1 kapittel 4

Statistikk 1 kapittel 4 Statistikk 1 kapittel 4 Nico Keilman ECON 2130 Vår 2017 Kapittel 4 Stokastiske (tilfeldige) variabler Anta 1) Vi kjenner sannsynligheter for ulike utfall knyttet til et forsøk 2) Hvert utfall har en (meningsfull)

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

La U og V være uavhengige standard normalfordelte variable og definer

La U og V være uavhengige standard normalfordelte variable og definer Binormalfordelingen Definisjon Noe av hensikten med å innføre begrepet betinget sannsynlighet er at kompliserte modeller ofte kan bygges ut fra enkle betingede modeller. Når man spesifiserer betingelser

Detaljer

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene

Detaljer

Kapittel 4.4: Forventning og varians til stokastiske variable

Kapittel 4.4: Forventning og varians til stokastiske variable Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske

Detaljer

6.1 Kontinuerlig uniform fordeling

6.1 Kontinuerlig uniform fordeling Kapittel 6 Noen kontinuerlige sannsynlighetsfordelinger TMA4240 H2006: Eirik Mo 2 6.1 Kontinuerlig uniform fordeling Kontinuerlig uniform fordeling: Sannsynlighetstettheten til den kontinuerlige uniforme

Detaljer

Denne veka. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon

Denne veka. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Denne veka Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Notat: Ordningsvariable og ekstremvariable Ordnings variable Maksimum Minumum Transformasjon

Detaljer

TMA4245 Statistikk Høst 2016

TMA4245 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 4 Løsningsskisse Oppgave 1 Mureren La X være mengden mørtel mureren bruker i løpet av en tilfeldig valgt arbeidsdag.

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA1081 EKSAMENSDATO: 11. juni 2007. KLASSE: Ingeniørklasser. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.

Detaljer

Stokastisk variabel. Eksempel augefarge

Stokastisk variabel. Eksempel augefarge Dagens tekst Kap 3: Stokastiske variable og sannsynsfordelingar Stokastisk variabel: Diskret sannsynsfordeling: Kontinuerleg sannsynsfordeling: Kummulativ sannsynsfordeling: Diskret simultanfordeling Kontinuerleg

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling

Detaljer

TMA4245 Statistikk Høst 2016

TMA4245 Statistikk Høst 2016 TMA5 Statistikk Høst 6 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving Løsningsskisse Oppgave a) Den tilfeldige variabelen X er kontinuerlig fordelt med sannsynlighetstetthet

Detaljer

Notasjon. Løsninger. Problem. Kapittel 7

Notasjon. Løsninger. Problem. Kapittel 7 3 Notasjon Kapittel 7 Funksjoner av stokastiske variabler Har n stokastiske variabler, X 1, X 2,..., X n, med kjent fordeling f( 1, 2,..., n ) og kumulativ fordeling F( 1, 2,..., n ). Ser på Y = u(x 1,

Detaljer

6.2 Normalfordeling. Høyde kvinner og menn. 6.1 Kontinuerlig uniform fordeling. Kapittel 6

6.2 Normalfordeling. Høyde kvinner og menn. 6.1 Kontinuerlig uniform fordeling. Kapittel 6 3 6.2 Normalfordeling Kapittel 6 Noen kontinuerlige sannsynlighetsfordelinger TMA4245 V2007: Eirik Mo Normalfordeling: Sannsynlighetstettheten til en normalfordelt stokastisk variabel, X, med forventning

Detaljer

Oppfriskning av blokk 1 i TMA4240

Oppfriskning av blokk 1 i TMA4240 Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (fra til): 09:00

Detaljer

Kapittel 5: Diskrete sannsynsfordelingar TMA4245 Statistikk. 5.2 Diskret uniform fordeling NTNU NTNU NTNU

Kapittel 5: Diskrete sannsynsfordelingar TMA4245 Statistikk. 5.2 Diskret uniform fordeling NTNU NTNU NTNU Kapittel 5: Disrete sasysfordeligar TMA4245 Statisti Rep.: Forvetig, varias og ovarias Forvetig (tygdeput, geeraliserig av empiris gjeomsitt): < P x µ = E(X) = R xf(x) (Xdisret) : xf(x)dx (Xotiuerlig)

Detaljer

Løsningsforslag til obligatorisk oppgave i ECON 2130

Løsningsforslag til obligatorisk oppgave i ECON 2130 Andreas Mhre April 15 Løsningsforslag til obligatorisk oppgave i ECON 13 Oppgave 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) E(XY) = - E(X ) X og Z er uavhengige, så

Detaljer

TMA4240 Statistikk Høst 2007

TMA4240 Statistikk Høst 2007 TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,

Detaljer

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma.

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. TMA4240 Statistikk H2010 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. Mette Langaas Foreleses mandag 27. september 2010 2

Detaljer

Statistikk 1 kapittel 4

Statistikk 1 kapittel 4 Statistikk 1 kapittel 4 Nico Keilman ECON 2130 Vår 2015 Kapittel 4 Stokastiske (tilfeldige) variabler Anta 1) Vi kjenner sannsynligheter for ulike utfall knyttet til et forsøk 2) Hvert utfall har en (meningsfull)

Detaljer

Kontinuerlige sannsynlighetsfordelinger.

Kontinuerlige sannsynlighetsfordelinger. Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x er sannsynlighetstettheten til en kontinuerlig X dersom:. f(x 0 for alle x R 2. f(xdx = 3. P (a

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

Løsningsforslag Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 25. mai 2017

Løsningsforslag Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 25. mai 2017 Løsningsforslag Eksamen S, våren 17 Laget av Tommy O. Sist oppdatert: 5. mai 17 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x /x = x x 1. Den eneste regelen vi trenger her er (kx n )

Detaljer

TMA4245 Statistikk Vår 2007

TMA4245 Statistikk Vår 2007 TMA4245 Statistikk Vår 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har lært.

Detaljer

Formelsamling V MAT110 Statistikk 1. Per Kristian Rekdal

Formelsamling V MAT110 Statistikk 1. Per Kristian Rekdal Formelsamling V-2016 MAT110 Statistikk 1 Per Kristian Rekdal Figur 1: Statistikk. 3 Innhold 1 Beskrivende statistikk 9 1.1 Populasjon og utvalg.................................. 9 1.2 Statistiske mål

Detaljer

Eksamensoppgåve i ST1201/ST6201 Statistiske metoder

Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Fagleg kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (frå til): 09:00

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA44 Statistikk Høst 9 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b Løsningsskisse Oppgave X er en stokastisk variabel med sannsynlighetstetthet { f(x),

Detaljer

Kontinuerlige sannsynlighetsfordelinger.

Kontinuerlige sannsynlighetsfordelinger. Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x) er sannsynlighetstettheten til en kontinuerlig X dersom: 1. f(x) 0 for alle x R 2. f(x)dx =1 3. P (a

Detaljer

Kapittel 5: Tilfeldige variable, forventning og varians.

Kapittel 5: Tilfeldige variable, forventning og varians. Kapittel 5: Tilfeldige variable, forventning og varians. Tilfeldige variable Tilfeldige variable kalles også stokastiske variable. En tilfeldig variabel er en variabel som får sin numeriske verdi bestemt

Detaljer

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter Observatorer STK00 - Observatorer - Kap 6 Geir Storvik 4. april 206 Så langt: Sannsynlighetsteori Stokastiske modeller Nå: Data Knytte data til stokastiske modeller Utgangspunkt Eksempel høyde Oxford studenter

Detaljer

EKSAMEN I TMA4240 Statistikk

EKSAMEN I TMA4240 Statistikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Henning Omre (909 37848) Mette Langaas (988 47649) EKSAMEN I TMA4240 Statistikk 18.

Detaljer

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner STK1100 våren 2017 Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner Svarer til avsnittene 4.1 og 4.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i

Detaljer

TMA4240 Statistikk. Øving nummer 7. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4240 Statistikk. Øving nummer 7. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Vår 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave Blandet drops a) Tippekupong På en tippekupong er det gitt 2 fotballkamper.

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 11. juni 2007. KLASSE: HIS 05 08. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 5 (innkl. forside)

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: STK Sannsynlighetsregning og statistisk modellering Eksamensdag: Mandag 4. mars 26 Tid for eksamen: 5. 7. Oppgavesettet er

Detaljer

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Oppgave 1 a) En god estimator er forventningsrett og har liten varians. Vi tester forventningsretthet: E[ˆµ] E[Y ] µ E[ µ] E[ 1 2 X + 1 2 Y ] 1 2 E[X]

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 2.8: Bayes regel 3.1: Stokastisk variabel 3.2: Diskrete sannsynlighetsfordelinger 3.3: Kontinuerlige sannsynlighetsfordelinger Mette Langaas Foreleses onsdag 1. september 2010

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Funksjoner av stokastiske variabler (kapittel 7+notat) Fokus på start med kumulativ fordeling 7.2 Funksjon av en SV (inkludert en-entydighet). Fordeling til max/min (fra notat).

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling Kapittel 8 Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling TMA4240 H2006: Eirik Mo 2 Til nå... Definert sannsynlighet og stokastiske variabler (kap. 2 & 3).

Detaljer

Regneøvelse 22/5, 2017

Regneøvelse 22/5, 2017 Regneøvelse 22/5, 217 Arne Bang Huseby Eksamen STK11 212: oppgave 1 og 2 Eksamen STK11 28: oppgave 1) og 2 Eksamen 212, oppgave 1 Ved en bestemt butikk i en større dagligvarekjede viser langvarige data

Detaljer

FORMELSAMLING STATISTIKK, HiG

FORMELSAMLING STATISTIKK, HiG Høgskolen i Gjøvik Avdeling for ingeniørfag Versjon fra mai 2007 FORMELSAMLING STATISTIKK, HiG Hans Petter Hornæs hans.hornaes@hig.no ISSN:??????? Innledning. Denne formelsamlingen er skrevet for bruk

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Kapittel 5: Noen diskrete sannsynlighetsfordelinger 5.4 Geometrisk og negativ binomisk fordeling 5.5 Poisson-prosess og -fordeling Mette Langaas Institutt for matematiske fag,

Detaljer

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger 5.1-5.4: Uniform, binomisk, hypergeometrisk fordeling Mette Langaas 2 Arbeidshverdag etter endt studium Studere et fenomen (f.eks.

Detaljer

Transformasjoner av stokastiske variabler

Transformasjoner av stokastiske variabler Transformasjoner av stokastiske variabler Notasjon merkelapper på fordelingene Sannsynlighetstettheten og den kumulative fordelingen til en stokastisk variabel X betegnes hhv. f X og F X. Indeksen er altså

Detaljer

Gammafordelingen og χ 2 -fordelingen

Gammafordelingen og χ 2 -fordelingen Gammafordelingen og χ 2 -fordelingen Gammafunksjonen Gammafunksjonen er en funksjon som brukes ofte i sannsynlighetsregning. I mange fordelinger dukker den opp i konstantleddet. Hvis man plotter n-fakultet

Detaljer

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko

Detaljer

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser. ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35

Detaljer

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere

Detaljer

Om eksamen. Never, never, never give up!

Om eksamen. Never, never, never give up! Plan vidare Onsdag Gjere ferdig kap 11 + repetisjon Fredag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve

Detaljer

Utvalgsfordelinger (Kapittel 5)

Utvalgsfordelinger (Kapittel 5) Utvalgsfordelinger (Kapittel 5) Oversikt pensum, fortid og fremtid Eksplorativ data-analyse (Kap 1, 2) Hvordan produsere data (Kap 3) Sannsynlighetsteori (Kap 4) Utvalgsfordelinger til observatorer (Kap

Detaljer

Regneregler for forventning og varians

Regneregler for forventning og varians Regneregler for forventning og varians Det fins regneregler som er til hjelp når du skal finne forventningsverdier og varianser. Vi skal her se nærmere på disse reglene. Vi viser deg også hvordan reglene

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten

Detaljer

Denne veka. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon

Denne veka. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Denne veka Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Notat: Ordningsvariable og ekstremvariable Ordnings variable Maksimum Minumum Transformasjon

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Oppgave 1: Pengespill a) For hver deltaker har vi følgende situasjon: Deltakeren får en serie oppgaver. Hver runde har to mulige utfall: Deltakeren

Detaljer

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilnærming av binomiske sannsynligheter Konfidensintervall Ørnulf Borgan Matematisk institutt Universitetet i Oslo

Detaljer

Eksamen i. MAT110 Statistikk 1

Eksamen i. MAT110 Statistikk 1 Avdeling for logistikk Eksamen i MAT110 Statistikk 1 Eksamensdag : Torsdag 28. mai 2015 Tid : 09:00 13:00 (4 timer) Faglærer/telefonnummer : Molde: Per Kristian Rekdal / 924 97 051 Kristiansund: Terje

Detaljer

Forelening 1, kapittel 4 Stokastiske variable

Forelening 1, kapittel 4 Stokastiske variable Forelening 1, kapittel 4 Stokastiske variable Eksempel X = "antall kron på kast med to mynter (før de er kastet)" Uniformt utfallsrom {MM, MK, KM, KK}. X = x beskriver hendelsen "antall kron på kast med

Detaljer

Løsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017

Løsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017 Løsningsforslag Eksamen S, våren 016 Laget av Tommy Odland Dato: 9. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = e x. Den generelle regelen er at (e ax ) = ae ax, i vårt tilfelle

Detaljer

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden.

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden. Estimeringsmetoder Momentmetoden La X, X 2,..., X n være uavhengige variable som er rektangulært fordelte på intervallet [0, θ]. Vi vet da at forventningsverdiene til hver observasjon og forventningen

Detaljer

Betinget sannsynlighet

Betinget sannsynlighet Betinget sannsynlighet Multiplikasjonsloven for sannsynligheter (s. 49 i bok): P( AB ) = P( A B ) P(B) Veldig viktig verktøy for å finne sannsynligheter for snitt. (Bevises ved rett fram manipulering av

Detaljer

Høgskoleni østfold EKSAMEN

Høgskoleni østfold EKSAMEN et) Høgskoleni østfold EKSAMEN Emnekode:Emne: SFB10711Metode 1 Statistikkdel Dato: 5. feb. 2016Eksamenstid: kl. 1400 Hjelpemidler: Kalkulator Utlevert formelsamling til kl. 1800 Faglærer: Nils Ingar Arvidsen

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.1 Uniform fordeling 6.2-6.3 Normalfordeling Mette Langaas Institutt for matematiske fag, NTNU wiki.math.ntnu.no/emner/tma4240/2015h/start/

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Ett utvalg: estimere forventningsverdi og intervall [9.4] Student-t fordeling [8.6] Quiz fra SME og konfidensintervall Mette Langaas Institutt for matematiske fag, NTNU wiki.math.ntnu.no/emner/tma4240/2015h/start/

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,

Detaljer

Funksjoner av stokastiske variable.

Funksjoner av stokastiske variable. Funksjoner av stokastiske variable. Dekkes av pensumsidene i kap. 7 I ulike sammenhenger, blant annet for å finne fordelingen til estimatorer, er vi interesserte i fordelingen til funksjoner av stokastiske

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4 november 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren

Detaljer

TMA4245 Statistikk Eksamen august 2014

TMA4245 Statistikk Eksamen august 2014 TMA4245 Statistikk Eksamen august 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Oppgave 1 Ei bedrift produserer ein type medisin i pulverform Medisinen seljast på flasker

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5 Løsningsskisse Oppgave 1 En lottorekke kan oppfattes som et ikke-ordnet utvalg på

Detaljer

Funksjoner av stokastiske variable.

Funksjoner av stokastiske variable. Funksjoner av stokastiske variable. Dekkes av pensumsidene i kap. 7 I ulike sammenhenger, blant annet for å finne fordelingen til estimatorer, er vi interesserte i fordelingen til funksjoner av stokastiske

Detaljer

STK Oppsummering

STK Oppsummering STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter

Detaljer

Løsningsforslag Eksamen S2, høsten 2017 Laget av Tommy O. Sist oppdatert: 26. november 2017

Løsningsforslag Eksamen S2, høsten 2017 Laget av Tommy O. Sist oppdatert: 26. november 2017 Løsningsforslag Eksamen S, høsten 017 Laget av Tommy O. Sist oppdatert: 6. november 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 4x 3. Vi bruker regelen samt regelen (x n ) = nx

Detaljer

Dagens tekst. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon

Dagens tekst. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Dagens tekst Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Notat: Ordningsvariable og ekstremvariable Ordnings variable Maksimum Minumum Transformasjon

Detaljer

UNIVERSITETET I OSLO Matematisk Institutt

UNIVERSITETET I OSLO Matematisk Institutt UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent

Detaljer

Medisinsk statistikk Del I høsten 2009:

Medisinsk statistikk Del I høsten 2009: Medisinsk statistikk Del I høsten 2009: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Beregning av sannsynlighet i en binomisk forsøksrekke generelt Sannsynligheten for at suksess intreffer X

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar

Detaljer