Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at"

Transkript

1 Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4245 V2007: Eirik Mo Forventing til en stokastisk variabel DEF 4.1: La X være en stokastisk variabel med sannsynlighetsfordeling f(x). Forventningsverdien (mean, expected value) til X er µ = E(X) = x x f(x) hvis X er diskret, og µ = E(X) = x f(x)dx hvis X er kontinuerlig.

2 3 Tyngdepunkt 4 Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at 0 x r e ax dx = r! når a > 0 og r er et heltall 0 ar+1 Vi betrakter ankomst- og oppholdstider for et bestemt lokaltog på en jernbanestasjon. Toget skal etter rutetabellen ankomme hver hverdag klokka 8:00, men kommer alltid etter dette tidspunktet. La X (minutter) betegne togets forsinkelse på en tilfeldig valgt hverdag. Vi antar at X er en stokastisk variabel med sannsynlighetstetthet { kxe 2x for x > 0 g(x) = 0 for x 0 der k > 0 er en konstant. i) Har vist at k = 4. ii) Hva er forventingsverdien til X?

3 5 Prosjektstyring X = tid for å samle inn data (i påbegynte timer) Y = tid for å analysere data f X (x) f Y (y) Prosjektstyring (forts.) Ser på tid brukt til datainnsamling (X) Kunden har betalt 1200 kr for datainnsamlingen, og prosjektarbeideren som skal utføre datainnsamlingen får 500 kr timen. Hva er forventet inntekt for datainnsamlingen? f X (x)

4 7 Forventing til funksjon av en stokastisk variabel TEO 4.1: La X være en stokastisk variabel med sannsynlighetsfordeling f(x). Forventningsverdien til den stokastiske variablen g(x) er µ g(x) = E[g(X)] = x g(x)f(x) hvis X er diskret, og µ g(x) = E[g(X)] = g(x)f(x)dx hvis X er kontinuerlig. 8 E(aX + b) TEO 4.5: Hvis a og b er konstanter, så er E(aX + b) = ae(x) + b COR 1: Setter vi a = 0 ser vi at E(b) = b COR 2: Setter vi b = 0 ser vi at E(aX) = ae(x)

5 9 E(sum eller differanse) TEO 4.6: Forventningsverdien til summen eller differansen av to eller flere funksjoner av den stokastiske variablen X, er summen eller differansen til forventningsverdiene til funksjonene. Det vil si, siden E[g 1 (X) ± g 2 (X)] = E[g 1 (X)] ± E[g 2 (X)]. g(x) = g 1 (X) ± g 2 (X) E(g(X)) = E(g 1 (X) ± g 2 (X)) = [g 1 (x) ± g 2 (x)] f(x)dx = E[g 1 (X)] ± E[g 2 (X)] Varians (og kovarians) DEF 4.3: La X være en stokastisk variabel med sannsynlighetsfordeling f(x) og forventning µ = E(X). Variansen til X er σ 2 = Var(X) = E[(X µ) 2 ] = x hvis X er diskret, og σ 2 = Var(X) = E[(X µ) 2 ] = (x µ) 2 f(x) (x µ) 2 f(x)dx hvis X er kontinuerlig. Den positive kvadratroten av variansen, σ = SD(X), kalles standard avviket til X. TEO 4.2: Variansen til en stokastisk variabel X er σ 2 = Var(X) = E(X 2 ) [E(X)] 2 = E(X 2 ) µ 2

6 11 Togforsinkelsen (forts.) 0 x r e ax dx = r! når a > 0 og r er et heltall 0 ar+1 { 4xe 2x for x > 0 f X (x) = 0 for x 0 E(X) = 1 Hva er variansen til X? 12 Varians til en funksjon av en stokastisk variabel TEO 4.3: La X være en stokastisk variabel med sannsynlighetsfordeling f(x). Variansen til den stokastiske variablen g(x) er σ 2 g(x) = E[(g(X) µ g(x)) 2 ] = x [g(x) µ g(x) ] 2 f(x) hvis X er diskret, og σ 2 g(x) = E[(g(X) µ g(x)) 2 ] = [g(x) µ g(x) ] 2 f(x)dx hvis X er kontinuerlig.

7 13 Varians til en lineær funksjon av en stokastisk variabel TEO 4.9: Hvis a og b er konstanter, så er σax+b 2 = Var(aX + b) = a2 Var(X) = a 2 σx 2 COR 1: Setter vi a = 1 ser vi at Var(X + b) = Var(X) = σx 2. COR 2: Setter vi b = 0 ser vi at Var(aX) = a 2 Var(X) = a 2 σx Prosjektstyring (forts.) Ser på aktivitet A. Kunden har betalt 1200 kr for aktivitet A, og prosjektarbeideren som skal utføre aktivitet A får 500 kr timen. Inntekt for aktivitet A: g(x) = X Forventning: E(g(X)) = 100. Hva er Var(g(X))? f X (x)

8 15 Forventning og varians, univariat Diskret stokastisk variabel Kontinuerlig stokastisk variabel Forventning: E(X), tyngdepunkt i fordelingen, beste gjett på ny fremtidig observasjon µ = E(X) = x xf(x) µ = E(X) = xf(x)dx µ g(x) = E[g(X)] = x g(x)f(x) µ g(x) = E[g(X)] = g(x)f(x)dxx E(aX + b) = ae(x) + b Varians: Var(X), mål for spredning σ 2 = Var(X) = E[(X µ) 2 ] = E(X 2 ) µ 2 σ 2 = x (x µ)2 f(x) σ 2 = (x µ)2 f(x)dx σg(x) 2 = Var[g(X)] = E[(g(X) µ g(x)) 2 ] σg(x) 2 = x (g(x) µ g(x)) 2 f(x) σg(x) 2 = [g(x) µ g(x)] 2 f(x)dx Var(aX + b) = a 2 Var(X) Standardavvik: SD(X) = Var(X) Mål for spredning på samme skala som originalobservasjonenen Chebyshevs teorem TEO 4.11: Chebyshevs teorem Sannsynligheten for at en stokastisk variabel X vil anta en verdi innen k standardavvik fra forventningsverdien er minst 1 1/k 2. Det vil si, P(µ kσ < X < µ + kσ) 1 1 k 2 k=1: P(µ σ < X < µ + σ) = 0 k=2: P(µ 2σ < X < µ + 2σ) = 0.75 k=3: P(µ 3σ < X < µ + 3σ) = 0.89

9 17 Chebyshevs teorem og Normalfordelingen Nøyaktig for normalfordelingen: k=1: P(µ σ < X < µ + σ) = k=2: P(µ 2σ < X < µ + 2σ) = k=3: P(µ 3σ < X < µ + 3σ) = Forventning til funksjon av flere stokastiske variabler DEF 4.2: La X og Y være stokastisk variable med simultan sannsynlighetsfordeling f(x, y). Forventningsverdien til den stokastiske variabelen g(x, Y) er µ g(x,y) = E[g(X, Y)] = x hvis X og Y er diskrete, og g(x, y)f(x, y) y µ g(x,y) = E[g(X, Y)] = g(x, y)f(x, y)dxdy hvis X og Y er kontinuerlige.

10 19 Prosjektstyring (forts.) X = tid for datainnsamling (i påbegynte timer) Y = tid for dataanalyse. x f Y (y) y f X (x) µ X = E(X) = = 2.2 µ Y = E(Y) = = 3.0 Hva er E(X + Y)? Hva er E( Y X )? 20 E(funksjoner av flere SV) TEO 4.7: Forventningsverdien til summen eller differansen av to eller flere funksjoner av de stokastiske variablene X og Y, er summen eller differansen til forventningsverdiene til funksjonene. Det vil si, E[g(X, Y) ± h(x, Y)] = E[g(X, Y)] ± E[h(X, Y)]. COR 1: Setter vi g(x, Y) = g(x) og h(x, Y) = h(y) E[g(X) ± h(x)] = E[g(X)] ± E[h(Y)]. COR 2: Setter vi g(x, Y) = X og h(x, Y) = Y E[X ± Y] = E[X] ± E[Y].

11 21 Generalisering Y = E(Y) = n a i X i + b i=1 n a i E(X i ) + b i=1 Formelsamlingen s Prosjektstyring (forts.) x f Y (y) y f X (x) Er interessert i forholdet g(x, Y) = Y X datainnsamling og dataanalyse. E [ ] Y X = x y mellom varigheten av y f(x, y) x NB: E [ Y X = (1/2) (1/3) (2/3) 0.03 = 1.44 ] E(X) E(Y) (3/2) (4/3) 0.15

12 Varians og kovarians DEF 4.4: La X og Y være to stokastisk variable med simultan sannsynlighetsfordeling f(x, y), og forventninger hhv. µ X = E(X) og µ Y = E(Y). Kovariansen til X og Y er σ XY = Cov(X, Y) = E[(X µ X )(Y µ Y )] = (x µ X )(y µ Y )f(x, y) x y hvis X og Y er diskrete, og σ XY = Cov(X, Y) = E[(X µ X )(Y µ Y )] = hvis X og Y er kontinuerlige. (x µ X )(y µ Y )f(x, y)dxdy 24 Kovarians TEO 4.4: Kovariansen til to stokastiske variabler X og Y med forventninger hhv. µ X = E(X) og µ Y = E(Y), er gitt ved σ XY = Cov(X, Y) = E(X Y) E(X) E(Y) = E(X Y) µ X µ Y TEO 4.8: La X og Y være to uavhengige stokastiske variabler. Da er E(X Y) = E(X) E(Y). Når X og Y er uavhengige er E(X Y) = E(X) E(Y) = µ X µ Y. Dermed når X og Y er uavhengige er Cov(X, Y) = µ X µ Y µ X µ Y = 0. Men, hvis Cov(X, Y) betyr det nødvendigvis IKKE at X og Y er uavhengige.

13 25 Korrelasjon DEF 4.5: La X og Y være to stokastisk variable med kovarians σ XY og varianser hhv. σ 2 X og σ2 Y. Korrelasjonskoeffisienten til X og Y er ρ XY = Cov(X, Y) Var(X) Var(Y) = σ XY σ X σ Y Tolkning : Hvis Y = ax + b og a > 0 ρ XY = 1 Hvis Y = ax + b og a < 0 ρ XY = 1 Hvis X og Y er uavhengige ρ XY = 0 1 ρ XY 1. Korrelasjon = 0.95 Korrelasjon = Korrelasjon = 0.7 Korrelasjon =

14 27 Aksjekurs, eksamen juni 2004, 2c aksjeverdi i kroner dager Figuren viser utviklingen av aksjekursen til Agderfrukt (stiplet) sammen med aksjekursen til Trønderfrukt (heltrukket). 28 Aksjekurs, forts. Kursendringen dag i for Agderfrukt kaller vi X i, og vi antar at X i har forventning µ X = 0.15 kroner og standardavvik σ X = 0.60 kroner. Kursendringen dag i for Trønderfrukt kaller vi Y i, og vi antar at Y i har forventning µ Y = 0.15 kroner og standardavvik σ Y = 0.80 kroner. Kursendringer for ulike dager antas å være uavhengige. Vi sammenlikner de to selskapene ved å måle differansen mellom de daglige kursendringene, D i = X i Y i, og ta gjennomsnitt. Vi ser på 10 dager og får D = i=1 D i = i=1 (X i Y i ). Gir figuren grunn til å tro at endringene i de to aksjekursene samme dag, X i og Y i, er uavhengige? Korrelasjonen mellom X i og Y i for disse to selskapene, ρ(x i, Y i ), er enten -0.5, 0.0 eller 0.5. Hvilken av disse verdiene virker mest rimelig fra figuren? Begrunn kort. Hva blir forventningsverdi og varians for D? Benytt verdien for korrelasjonen, ρ(x i, Y i ), som du valgte over.

15 29 Varians til lineærkombinasjon av to stokastiske variabler TEO 4.10: La X og Y være to stokastisk variable med simultan sannsynlighetsfordeling f(x, y), da er σ 2 ax+by = Var(aX + by) = a 2 Var(X) + b 2 Var(Y) + 2abCov(X, Y) = a 2 σ 2 X + b2 σ 2 Y + 2ab σ XY COR 1: Hvis X og Y er uavhengige stokastiske variable, så er Cov(X, Y) = 0 og Var(aX + by) = a 2 Var(X) + b 2 Var(Y) = a 2 σ 2 X + b 2 σ 2 Y COR 2: Hvis X og Y er uavhengige stokastiske variable, så er Cov(X, Y) = 0 og Var(aX by) = a 2 Var(X) + b 2 Var(Y) = a 2 σ 2 X + b 2 σ 2 Y COR 3: Hvis X 1, X 2,..., X n er uavhengige stokastiske variable, så er Var(a 1 X a n X n ) = a 2 1Var(X 1 ) + + a 2 nvar(x n ) 30 Generalisering Y = E(Y) = Var(Y) = + 2 n a i X i + b i=1 n a i E(X i ) + b i=1 n a 2 i Var(X i) i=1 n i=1 i 1 j=1 a i a j Cov(X i, X j ) Formelsamlingen s 34.

16 31 Prosjektstyring: tid Total varighet av aktiviteter er X + Y, hva er Var(X + Y)? µ X = E(X) = = 2.2 µ Y = E(Y) = = 3.0 E(X + Y) = E(X) + E(Y) = = 5.2 σ 2 X = Var(X) = E(X 2 ) µ 2 X = = = 0.36 σy 2 = Var(Y) = E(Y 2 ) µ 2 Y = = = Prosjektstyring: tid (forts.) σ XY = Cov(X, Y) = E(XY) µ X µ Y = = = 0.16 Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y) = = 1.68 SD(X + Y) = Var(X + Y) = 1.68 = 1.3

17 33 Prosjektstyring: penger Inntekt for datainnsamling er: X Inntekt for dataanalyse er: Y Totalt inntekt er Z = 500 X 500 Y = a Y X + a Y Y + b der a X = 500, a Y = 500 og b = µ X = E(X) = = 2.2 µ Y = E(Y) = = 3.0 E(a x X + a Y Y + b) = a X E(X) + a Y E(Y) + b E(Z) = ( 500) ( 500) = 600 σ 2 X = Var(X) = 0.36 σ 2 Y = Var(Y) = 1.00 σ XY = Cov(X, Y) = 0.16 Var(a X + a Y Y + b) = a 2 X Var(X) + a2 Y Var(Y) + 2a X a Y Cov(X, Y) Var(Z) = ( 500) ( 500) ( 500) ( 500)0.16 = q SD(X + Y) = Var(Z) = = Kapittel 4.5 : nytt i 8. utgave Kapittel 4 er som kapittel 3 grunnleggende. Kapittel 3 fortalte om generelle egenskaper ved fordelinger, kapittel 4 tar opp mål for fundamentale parametre som karakteriserer systemet og som vi vil bruke videre. Gjennomsnittet til en fordeling antyder tendensen, og variansen eller standardavviket antyder variabiliteten til systemet. Videre angir kovariansen tendensen til at to stokastiske variabler følger hverandre i et system.

18 35 Kapittel 4.5 : nytt i 8. utgave NB: Fordelingen er ofte gitt basert på naturlover e.l., men parameterverdiene må ofte estimeres fra målte data. Selv om vi i flere oppgaver oppgir en forventningsverdi (µ), vil den i praksis være funnet fra eksperimentelle data. Kapittel 9 tar opp estimering, for situasjonene når parametre er kjente og ukjente.

Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4

Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4 3 Tyngdepunkt Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4240 H2006: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Kapittel 4: Matematisk forventning [4.1+start 4.3] Quiz kjørt med Kahoot! fra kahoot.it. Mette Langaas wiki.math.ntnu.no/emner/tma4240/2015h/start/ 2 Høyde, kvinner Frequency

Detaljer

Foreleses onsdag 8. september 2010

Foreleses onsdag 8. september 2010 TMA4240 Statistikk H200 4.2: Varians (univariat del) 4.4: Chebyshevs teorem 3.4: Simultanfordelinger Mette Langaas Foreleses onsdag 8. september 200 Mette.Langaas@math.ntnu.no, TMA4240H200 2 4.2 Varians

Detaljer

Eksempel: kast med to terninger

Eksempel: kast med to terninger Kapittel 3 TMA4245 V2007: Eirik Mo 2 Eksempel: kast med to terninger I et eksperiment kaster vi to terninger og registerer antall øyne på hver terning. Utfallsrom S={(,),(,2),(,3),...,(,), (2,),...,(2,),...,(,)}

Detaljer

Kapittel 2: Hendelser

Kapittel 2: Hendelser Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en

Detaljer

Forventning og varians.

Forventning og varians. Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.1) Forventningsverdi = gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: x xf(x),x

Detaljer

Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger

Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger f(x,y) NTNU Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger TMA4240 Statistikk (F2 og E7) 3.4: Foreleses mandag 30.august y=hoyde x=vekt Ole.Petter.Lodoen@math.ntnu.no p.1/18 Oppsummering

Detaljer

6 x P (X = x) = x=1 = P (X 2 = 6)P (X 2 = 6)P (X 3 = 6) =

6 x P (X = x) = x=1 = P (X 2 = 6)P (X 2 = 6)P (X 3 = 6) = Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 4, blokk I Løsningsskisse Oppgave 1 a) Utfallsrommet til X 1 er {1, 2,, 4, 5, }. Sannsynlighetsfordelingen

Detaljer

Forventning og varians.

Forventning og varians. Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.) Forventningsverdi gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: E(X) f(),x diskret

Detaljer

Sum to terninger forts. Eksempel: kast med to terninger. Sum to terninger forts. Kapittel 3. TMA4240 H2006: Eirik Mo

Sum to terninger forts. Eksempel: kast med to terninger. Sum to terninger forts. Kapittel 3. TMA4240 H2006: Eirik Mo 3 Sum to terninger forts. Kapittel 3 TMA4240 H200: Eirik Mo 2 3 4 5,,2,3,4,5, 2 2, 2,2 2,3 2,4 2,5 2, Andre 3 3, 3,2 3,3 3,4 3,5 3, terning 4 4, 4,2 4,3 4,4 4,5 4, 5 5, 5,2 5,3 5,4 5,5 5,,,2,3,4,5, Med

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning

Detaljer

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene

Detaljer

statistikk, våren 2011

statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 011 Kp. 3 Diskrete tilfeldige variable 1 Diskrete tilfeldige variable, innledning Hva er en tilfeldig variabel (stokastisk variabel)? Diskret tilfeldig

Detaljer

FORMELSAMLING TIL STK1100 OG STK1110

FORMELSAMLING TIL STK1100 OG STK1110 FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål

Detaljer

6.2 Normalfordeling. Høyde kvinner og menn. 6.1 Kontinuerlig uniform fordeling. Kapittel 6

6.2 Normalfordeling. Høyde kvinner og menn. 6.1 Kontinuerlig uniform fordeling. Kapittel 6 3 6.2 Normalfordeling Kapittel 6 Noen kontinuerlige sannsynlighetsfordelinger TMA4245 V2007: Eirik Mo Normalfordeling: Sannsynlighetstettheten til en normalfordelt stokastisk variabel, X, med forventning

Detaljer

To-dimensjonale kontinuerlige fordelinger

To-dimensjonale kontinuerlige fordelinger To-dimensjonale kontinuerlige fordelinger Noen resultater for diskrete fordelinger Vi har tidligere definert punktsannsynligheten p(x, y) for en todimensjonal variabel (X, Y ) som p(x, y) = P ({X = x}

Detaljer

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik. Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:

Detaljer

TMA4245 Statistikk Høst 2016

TMA4245 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 4 Løsningsskisse Oppgave 1 Mureren La X være mengden mørtel mureren bruker i løpet av en tilfeldig valgt arbeidsdag.

Detaljer

Forelesning 7. mars, 2017

Forelesning 7. mars, 2017 Forelesning 7. mars, 2017 AVSNITT 5.1 Eksempel: Miljøkonturer AVSNITT 5.2 Forventningen til en funksjon av flere variable Kovariansen mellom to variable Eksempel: Miljøkonturer Miljøvariable som karakteriserer

Detaljer

Statistikk 1 kapittel 4

Statistikk 1 kapittel 4 Statistikk 1 kapittel 4 Nico Keilman ECON 2130 Vår 2015 Kapittel 4 Stokastiske (tilfeldige) variabler Anta 1) Vi kjenner sannsynligheter for ulike utfall knyttet til et forsøk 2) Hvert utfall har en (meningsfull)

Detaljer

Kontinuerlige sannsynlighetsfordelinger.

Kontinuerlige sannsynlighetsfordelinger. Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x er sannsynlighetstettheten til en kontinuerlig X dersom:. f(x 0 for alle x R 2. f(xdx = 3. P (a

Detaljer

Statistikk 1 kapittel 4

Statistikk 1 kapittel 4 Statistikk 1 kapittel 4 Nico Keilman ECON 2130 Vår 2017 Kapittel 4 Stokastiske (tilfeldige) variabler Anta 1) Vi kjenner sannsynligheter for ulike utfall knyttet til et forsøk 2) Hvert utfall har en (meningsfull)

Detaljer

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a

Detaljer

TMA4240 Statistikk Høst 2008

TMA4240 Statistikk Høst 2008 TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har

Detaljer

TMA4245 Statistikk Vår 2007

TMA4245 Statistikk Vår 2007 TMA4245 Statistikk Vår 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har lært.

Detaljer

TMA4245 Statistikk Høst 2016

TMA4245 Statistikk Høst 2016 TMA5 Statistikk Høst 6 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving Løsningsskisse Oppgave a) Den tilfeldige variabelen X er kontinuerlig fordelt med sannsynlighetstetthet

Detaljer

Stokastisk variabel. Eksempel augefarge

Stokastisk variabel. Eksempel augefarge Dagens tekst Kap 3: Stokastiske variable og sannsynsfordelingar Stokastisk variabel: Diskret sannsynsfordeling: Kontinuerleg sannsynsfordeling: Kummulativ sannsynsfordeling: Diskret simultanfordeling Kontinuerleg

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

Kapittel 4.4: Forventning og varians til stokastiske variable

Kapittel 4.4: Forventning og varians til stokastiske variable Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske

Detaljer

Denne veka. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon

Denne veka. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Denne veka Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Notat: Ordningsvariable og ekstremvariable Ordnings variable Maksimum Minumum Transformasjon

Detaljer

6.1 Kontinuerlig uniform fordeling

6.1 Kontinuerlig uniform fordeling Kapittel 6 Noen kontinuerlige sannsynlighetsfordelinger TMA4240 H2006: Eirik Mo 2 6.1 Kontinuerlig uniform fordeling Kontinuerlig uniform fordeling: Sannsynlighetstettheten til den kontinuerlige uniforme

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA44 Statistikk Høst 9 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b Løsningsskisse Oppgave X er en stokastisk variabel med sannsynlighetstetthet { f(x),

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

Oppfriskning av blokk 1 i TMA4240

Oppfriskning av blokk 1 i TMA4240 Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for

Detaljer

EKSAMEN I TMA4240 Statistikk

EKSAMEN I TMA4240 Statistikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Henning Omre (909 37848) Mette Langaas (988 47649) EKSAMEN I TMA4240 Statistikk 18.

Detaljer

Kapittel 5: Tilfeldige variable, forventning og varians.

Kapittel 5: Tilfeldige variable, forventning og varians. Kapittel 5: Tilfeldige variable, forventning og varians. Tilfeldige variable Tilfeldige variable kalles også stokastiske variable. En tilfeldig variabel er en variabel som får sin numeriske verdi bestemt

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: STK Sannsynlighetsregning og statistisk modellering Eksamensdag: Mandag 4. mars 26 Tid for eksamen: 5. 7. Oppgavesettet er

Detaljer

Notasjon. Løsninger. Problem. Kapittel 7

Notasjon. Løsninger. Problem. Kapittel 7 3 Notasjon Kapittel 7 Funksjoner av stokastiske variabler Har n stokastiske variabler, X 1, X 2,..., X n, med kjent fordeling f( 1, 2,..., n ) og kumulativ fordeling F( 1, 2,..., n ). Ser på Y = u(x 1,

Detaljer

TMA4240 Statistikk Høst 2007

TMA4240 Statistikk Høst 2007 TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 2.8: Bayes regel 3.1: Stokastisk variabel 3.2: Diskrete sannsynlighetsfordelinger 3.3: Kontinuerlige sannsynlighetsfordelinger Mette Langaas Foreleses onsdag 1. september 2010

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA1081 EKSAMENSDATO: 11. juni 2007. KLASSE: Ingeniørklasser. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.

Detaljer

Kapittel 5: Diskrete sannsynsfordelingar TMA4245 Statistikk. 5.2 Diskret uniform fordeling NTNU NTNU NTNU

Kapittel 5: Diskrete sannsynsfordelingar TMA4245 Statistikk. 5.2 Diskret uniform fordeling NTNU NTNU NTNU Kapittel 5: Disrete sasysfordeligar TMA4245 Statisti Rep.: Forvetig, varias og ovarias Forvetig (tygdeput, geeraliserig av empiris gjeomsitt): < P x µ = E(X) = R xf(x) (Xdisret) : xf(x)dx (Xotiuerlig)

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 11. juni 2007. KLASSE: HIS 05 08. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 5 (innkl. forside)

Detaljer

Løsningsforslag Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 25. mai 2017

Løsningsforslag Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 25. mai 2017 Løsningsforslag Eksamen S, våren 17 Laget av Tommy O. Sist oppdatert: 5. mai 17 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x /x = x x 1. Den eneste regelen vi trenger her er (kx n )

Detaljer

TMA4240 Statistikk. Øving nummer 7. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4240 Statistikk. Øving nummer 7. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Vår 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave Blandet drops a) Tippekupong På en tippekupong er det gitt 2 fotballkamper.

Detaljer

Kontinuerlige sannsynlighetsfordelinger.

Kontinuerlige sannsynlighetsfordelinger. Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x) er sannsynlighetstettheten til en kontinuerlig X dersom: 1. f(x) 0 for alle x R 2. f(x)dx =1 3. P (a

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!

Detaljer

Betinget sannsynlighet

Betinget sannsynlighet Betinget sannsynlighet Multiplikasjonsloven for sannsynligheter (s. 49 i bok): P( AB ) = P( A B ) P(B) Veldig viktig verktøy for å finne sannsynligheter for snitt. (Bevises ved rett fram manipulering av

Detaljer

La U og V være uavhengige standard normalfordelte variable og definer

La U og V være uavhengige standard normalfordelte variable og definer Binormalfordelingen Definisjon Noe av hensikten med å innføre begrepet betinget sannsynlighet er at kompliserte modeller ofte kan bygges ut fra enkle betingede modeller. Når man spesifiserer betingelser

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma.

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. TMA4240 Statistikk H2010 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. Mette Langaas Foreleses mandag 27. september 2010 2

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00

Detaljer

Formelsamling V MAT110 Statistikk 1. Per Kristian Rekdal

Formelsamling V MAT110 Statistikk 1. Per Kristian Rekdal Formelsamling V-2016 MAT110 Statistikk 1 Per Kristian Rekdal Figur 1: Statistikk. 3 Innhold 1 Beskrivende statistikk 9 1.1 Populasjon og utvalg.................................. 9 1.2 Statistiske mål

Detaljer

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner

STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner STK1100 våren 2017 Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner Svarer til avsnittene 4.1 og 4.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i

Detaljer

Regneøvelse 22/5, 2017

Regneøvelse 22/5, 2017 Regneøvelse 22/5, 217 Arne Bang Huseby Eksamen STK11 212: oppgave 1 og 2 Eksamen STK11 28: oppgave 1) og 2 Eksamen 212, oppgave 1 Ved en bestemt butikk i en større dagligvarekjede viser langvarige data

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter Observatorer STK00 - Observatorer - Kap 6 Geir Storvik 4. april 206 Så langt: Sannsynlighetsteori Stokastiske modeller Nå: Data Knytte data til stokastiske modeller Utgangspunkt Eksempel høyde Oxford studenter

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

Høgskoleni østfold EKSAMEN

Høgskoleni østfold EKSAMEN et) Høgskoleni østfold EKSAMEN Emnekode:Emne: SFB10711Metode 1 Statistikkdel Dato: 5. feb. 2016Eksamenstid: kl. 1400 Hjelpemidler: Kalkulator Utlevert formelsamling til kl. 1800 Faglærer: Nils Ingar Arvidsen

Detaljer

Regneregler for forventning og varians

Regneregler for forventning og varians Regneregler for forventning og varians Det fins regneregler som er til hjelp når du skal finne forventningsverdier og varianser. Vi skal her se nærmere på disse reglene. Vi viser deg også hvordan reglene

Detaljer

Regler i statistikk STAT 100

Regler i statistikk STAT 100 TORIL FJELDAAS RYGG - VÅREN 2010 Regler i statistikk STAT 100 Innhold side Sannsynlighetsregning 3 - Uttrykk 3 - Betinget sannsynlighet 4 - Regler for sannsynlighet 4 - Bayes teorem 4 - Uavhengige begivenheter

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer

EKSAMENSOPPGAVER SV SØ 232: METODE II

EKSAMENSOPPGAVER SV SØ 232: METODE II EKSAMENSOPPGAVER SV SØ 232: METODE II H-1998 Gjør rede for følgende begreper: 1. Stokastisk variabel 2. Sannsynlighet 3. Estimator 4. Estimat 5. Forventning 6. Varians 7. Kovarians Gjør rede for trinnene

Detaljer

EKSAMEN I TMA4245 Statistikk

EKSAMEN I TMA4245 Statistikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Turid Follestad (98 06 68 80/73 59 35 37) Hugo Hammer (45 21 01 84/73 59 77 74) Eirik

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (fra til): 09:00

Detaljer

Løsningsforslag til obligatorisk oppgave i ECON 2130

Løsningsforslag til obligatorisk oppgave i ECON 2130 Andreas Mhre April 15 Løsningsforslag til obligatorisk oppgave i ECON 13 Oppgave 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) E(XY) = - E(X ) X og Z er uavhengige, så

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4 november 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger Kontinuerlig uniform fordeling f() = B A, A B. En kontinuerlig størrelse (vekt, lengde, tid), som aldri kan bli mindre enn

Detaljer

FORMELSAMLING STATISTIKK, HiG

FORMELSAMLING STATISTIKK, HiG Høgskolen i Gjøvik Avdeling for ingeniørfag Versjon fra mai 2007 FORMELSAMLING STATISTIKK, HiG Hans Petter Hornæs hans.hornaes@hig.no ISSN:??????? Innledning. Denne formelsamlingen er skrevet for bruk

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 25. NOVEMBER 2003 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ

Detaljer

Eksamensoppgåve i ST1201/ST6201 Statistiske metoder

Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Fagleg kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (frå til): 09:00

Detaljer

Høgskoleni Øs fold EKSAMEN. Om noe er uklart eller mangelfullt i oppgaven inngår det som en del av oppgaven å ta de nødvendige forutsetninger.

Høgskoleni Øs fold EKSAMEN. Om noe er uklart eller mangelfullt i oppgaven inngår det som en del av oppgaven å ta de nødvendige forutsetninger. Høgskoleni Øs fold EKSAMEN Emnekode: Emne: SFB10711 Metodekurs 1: Grunnleggende matematikk og statistikk Deleksameni statistikk Dato: 3. januar 2014 Eksamenstid: kl. 0900 til kl. 1300 Hjelpemidler: Faglærer:

Detaljer

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko

Detaljer

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger 5.1-5.4: Uniform, binomisk, hypergeometrisk fordeling Mette Langaas 2 Arbeidshverdag etter endt studium Studere et fenomen (f.eks.

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Funksjoner av stokastiske variabler (kapittel 7+notat) Fokus på start med kumulativ fordeling 7.2 Funksjon av en SV (inkludert en-entydighet). Fordeling til max/min (fra notat).

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren

Detaljer

EKSAMEN I EMNE TMA4245 STATISTIKK

EKSAMEN I EMNE TMA4245 STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Bokmål Faglig kontakt under eksamen: John Tyssedal 73 59 35 34/ 41 64 53 76 Jo Eidsvik 73 59 01 53/ 90 12 74 72

Detaljer

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Ett utvalg: estimere forventningsverdi og intervall [9.4] Student-t fordeling [8.6] Quiz fra SME og konfidensintervall Mette Langaas Institutt for matematiske fag, NTNU wiki.math.ntnu.no/emner/tma4240/2015h/start/

Detaljer

Løsningsforslag til seminar 4 Undervisningsfri uke

Løsningsforslag til seminar 4 Undervisningsfri uke Løsningsforslag til seminar 4 Undervisningsfri uke Iman Ghayoornia February 22, 2016 Oppgave 2.1 Se Excel-filen som er tilgjengelig på emnesiden. Hvis du lurer på hvordan jeg fikk verdiene i cellene så

Detaljer

Løsningskisse seminaroppgaver uke 11 ( mars)

Løsningskisse seminaroppgaver uke 11 ( mars) HG Mars 008 Løsningskisse seminaroppgaver uke (0.-4. mars) ECON 0 EKSAMEN 004 VÅR Oppgave En gitt prøve er laget som en flervalgsprøve ( multiple choice test ). Prøven består av tre spørsmål. For hvert

Detaljer

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling Kapittel 8 Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling TMA4240 H2006: Eirik Mo 2 Til nå... Definert sannsynlighet og stokastiske variabler (kap. 2 & 3).

Detaljer

Motivasjon for kurset. ÅMA110 Sannsynlighetsregning med statistikk, våren 2008. Oppsummering. ÅMA110 Sannsynlighetsregning med statistikk våren 2008

Motivasjon for kurset. ÅMA110 Sannsynlighetsregning med statistikk, våren 2008. Oppsummering. ÅMA110 Sannsynlighetsregning med statistikk våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Oppsummering ÅMA0 Sannsynlighetsregning med statistikk våren 008 Pensum: Pensumbok: Per Chr. Hagen: "Innføring i sannsynlighetsregning og statistikk",

Detaljer

Gammafordelingen og χ 2 -fordelingen

Gammafordelingen og χ 2 -fordelingen Gammafordelingen og χ 2 -fordelingen Gammafunksjonen Gammafunksjonen er en funksjon som brukes ofte i sannsynlighetsregning. I mange fordelinger dukker den opp i konstantleddet. Hvis man plotter n-fakultet

Detaljer

Oppgavesettet består av 11 sider inklusiv denne forsiden, hvorav de 7 siste er formelsamling og tabeller.

Oppgavesettet består av 11 sider inklusiv denne forsiden, hvorav de 7 siste er formelsamling og tabeller. Høgskoleni østfold EKSAMEN Emnekode: Emnenavn: SFB10711 Metode 1, statistikk deleksamen Dato: Eksamenstid: 18. mai 2016 4 timer Hjelpemidler: Faglærer: Kalkulator og vedlagt Hans Kristian Bekkevard formelsamling

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5 Løsningsskisse Oppgave 1 En lottorekke kan oppfattes som et ikke-ordnet utvalg på

Detaljer

TMA4240 Statistikk H2015

TMA4240 Statistikk H2015 TMA4240 Statistikk H2015 Kapittel 5: Noen diskrete sannsynlighetsfordelinger 5.4 Geometrisk og negativ binomisk fordeling 5.5 Poisson-prosess og -fordeling Mette Langaas Institutt for matematiske fag,

Detaljer

Hogskoleni Østfold EKSAMEN. Eksamenstid: kl til k

Hogskoleni Østfold EKSAMEN. Eksamenstid: kl til k Hogskoleni Østfold EKSAMEN Emnekode: SFB10711 Dato: 5. jan 2015 Hjelpemidler: Kalkulator Utlevert formelsamling Emne: Metodekurs I: Grunnleggende matematikk og statistikk (Statistikk, ny og utsatt eksamen)

Detaljer

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter

for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere

Detaljer

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser. ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35

Detaljer

Løsningsforslag Til Statlab 5

Løsningsforslag Til Statlab 5 Løsningsforslag Til Statlab 5 Jimmy Paul September 6, 007 Oppgave 8.1 Vi skal se på ukentlige forbruk av søtsaker blant barn i et visst område. En pilotstudie gir at standardavviket til det ukentige forbruket

Detaljer

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden.

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden. Estimeringsmetoder Momentmetoden La X, X 2,..., X n være uavhengige variable som er rektangulært fordelte på intervallet [0, θ]. Vi vet da at forventningsverdiene til hver observasjon og forventningen

Detaljer

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilnærming av binomiske sannsynligheter Konfidensintervall Ørnulf Borgan Matematisk institutt Universitetet i Oslo

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

Løsningsforslag til obligatorisk innlevering 3.

Løsningsforslag til obligatorisk innlevering 3. svar3.nb 1 Løsningsforslag til obligatorisk innlevering 3. Oppgave 1 * Vi skal sammenlikne to sensoere A og B. Begge har rettet den samme oppgaven. Hvis populasjonen er eksamensoppgavene, har vi altså

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten

Detaljer