EKSAMEN I EMNE TMA4245 STATISTIKK
|
|
- Gaute Egeland
- 9 år siden
- Visninger:
Transkript
1 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Bokmål Faglig kontakt under eksamen: John Tyssedal / Jo Eidsvik / EKSAMEN I EMNE TMA4245 STATISTIKK 15. mai 2009 Tid: 09:00 13:00 Hjelpemidler: Tabeller og formler i statistikk, Tapir Forlag K. Rottmann: Matematisk formelsamling Kalkulator HP30S / CITIZEN SR-270X Gult, stemplet A5-ark med egne håndskrevne notat. Sensuren faller: 9. juni 2009 Oppgave 1 Vannverket Et vannverk har to pumper for å pumpe vann fra en drikkevannskilde til et vannreservoar. For å kunne pumpe vann må minst en av pumpene fungere. For en vilkårlig dag la A 1 være hendelsen at pumpe 1 fungerer, og la A 2 være hendelsen at pumpe 2 fungerer. Fra tidligere vet en at P (A 1 ) = 0.8, P (A 2 ) = 0.8 og P (A 1 A 2 ) = 0.9. a) Er hendelsene A 1 og A 2 uavhengige? Er hendelsene A 1 og A 2 disjunkte? Grunngi svarene. Finn sannsynligheten for at vannverket kan pumpe vann en vilkårlig dag, det vil si finn P (A 1 A 2 ).
2 TMA4245 Statistikk Side 2 av 5 Vannverket blir pålagt krav om at de over tid skal kunne pumpe vann i 997 av 1000 dagar. De bestemmer seg for å intallere en pumpe til slik at de kan pumpe vann dersom minst en av de tre pumpene fungerer. Den nye pumpen skal fungere uavhengig av de to andre. La A 3 være hendelsen at den nye pumpen fungerer. b) Hvor stor må P (A 3 ) være for at sannsynligheten for å kunne pumpe vann en vilkårlig dag skal være 0.997? Anta at sannsynligheten for at vannverket kan pumpe vann en dag er uavhengig av om det kunne pumpe de foregående dagene. La X være antall dagar til første gang vannverket ikke kan pumpe vann. Hvilken fordeling har X? Grunngi svaret. Hva blir E(X) etter at den tredje pumpen er installert? Oppgave 2 Avviksrapporter Knut har ansvar for internkontrollen i en større bedrift, og er opptatt av hvor mange meldinger om alvorlige avvik som kommer inn. La N vere antall meldinger som kommer inn i et tidsrom av lengde t. Vi antar at meldingene kommer inn uavhengig av hverandre, og at N er poissonfordelt med parameter λt; f(n; λt) = (λt)n n! Det er kjent at λ = 1.5 meldinger / uke. exp( λt) n = 0, 1, 2,... a) Hva er sannsynligheten for at det i et tidsrom på en uke ikke kommer inn noen meldinger om alvorlige avvik? Hva er sannsynligheten for at det i et tidsrom på fire uker kommer inn flere enn to slike meldinger? b) Knut reiser på ferie. Når han kommer tilbake tre uker senere, er det kommet inn en melding om alvorlig avvik. Hva er sannsynligheten for at meldinga kom inn i den første uka han var på ferie? Grunngi svaret. La T være tiden fra Knut reiser på ferie til denne meldinga kom inn. Finn fordelinga til T. Vis utledninga og argumenter for resultatet. Knut har inntrykk av at avvik ikke blir meldt inn fordi det er tidkrevende, og han innfører et nytt system for innmelding av alvorlige avvik. Det første året (52 uker) det nye systemet var i bruk kom det inn N = 104 meldinger.
3 TMA4245 Statistikk Side 3 av 5 Knut ønsker å estimere λ basert på disse dataene. c) Vis at sannsynlighetsmaksimeringsestimatoren for λ er ˆλ SME = N 52 Finn forventning og varians for ˆλ SME. Er ˆλ SME forventningsrett? Hva blir sannsynlighetsmaksimeringsestimatet for λ? Oppgave 3 Kontrastmiddel Effekten av ulike typer kontrastmiddel brukt ved røntgenundersøkelser av hender skal studeres. Kontrastmiddelet injiseres i håndflaten før røntgenbildet tas. En ønsker å minske strålingsfaren ved å ta få bilder - helst bare ett av hver hånd. For å måle effekten har en utviklet et kontrastmål for et bilde av en hånd. Uten kontrastmiddel benevnes målet K 0 og det varierer fra person til person, men kan ansees som identisk for begge hendene på en person. Tidligere erfaring tilsier at K 0 er normalfordelt med forventningsverdi µ 0 og standardavvik σ 0. Det vil si at K 0 er n(k 0 ; µ 0, σ 0 ). a) Anta i dette punktet at µ 0 = 25 og σ 0 = 4. Finn følgende sannsynligheter: P (K 0 30) P (20 K 0 < 30) Anta nå at µ 0 og σ 0 er ukjente. En studie på 10 forsøkspersoner brukes til å kartlegge kontrastmålet. Et røntgenbilde uten bruk av kontrastmiddel tas av en av hendene til hver av de 10 forsøkspersonene. Det resulterer i 10 uavhengige observasjoner av kontrastmålet K 0, se tabell 1. Forsøksnr. i k 0 (i) Tabell 1: Målt kontrast uten bruk av kontrastmiddel. Her blir k 0 = 1/10 10 i=1 k 0(i) = 26 og 10 i=1 (k 0(i) k 0 ) 2 = 166. b) Utled et 90% konfidensintervall for forventet kontrastmål µ 0, og finn tallsvar.
4 TMA4245 Statistikk Side 4 av 5 Ved bruk av kontrastmiddel endres kontrasten i røntgenbildene slik at kontrastmålet blir: hvor R er effekten av kontrastmiddelet. K = K 0 + R Anta at R er normalfordelt med forventning µ R og standardavvik σ R, dvs n(r; µ R, σ R ). Videre antar vi at K 0 og R har en korrelasjon på ρ 0R, og at også K er normalfordelt n(k; µ K, σ K ). c) Utled uttrykk for forventningen µ K og standardavviket σ K til kontrastmålet ved bruk av kontrastmiddel. Vi ønsker nå å sammenlikne kontrastmålene ved bruk av to ulike kontrastmiddel, type A og type B. La effekten av hver av disse være R A og R B, og tilsvarende blir kontrastmålene: K A = K 0 + R A K B = K 0 + R B Vi antar at alle variablene er normalfordelte, og at R A og R B er uavhengige. For å undersøke kontrastmålene for de to ulike kontrastmidlene gjennomfører vi et forsøksopplegg: For hver type gjør vi 10 forsøk. For de 20 forsøkspersonene injiseres kontrastmiddelet i en hånd, et røntgenbilde tas, og kontrastmålet registreres. Dette gir et sett av uavhengige observasjoner av K A og K B, se tabell 2 og 3. Forsøk nr (i) k A (i) Tabell 2: Målt kontrast ved bruk av kontrastmiddel A. Her blir k A = 1/10 10 i=1 k A(i) = 35. Forsøk nr (i) k B (i) Tabell 3: Målt kontrast ved bruk av kontrastmiddel B. Her blir k B = 1/10 10 i=1 k B(i) = 38. Anta i punkt d) og e) at standardavvikene til K 0 og R er kjente, σ 0 = 4 og σ R = 2, at korrelasjonen mellom K 0 og R er kjent, ρ 0R = 5/16, og at standardavviket σ R og korrelasjonen ρ 0R er lik for de to kontrastmiddlene, det vil si Var(R A ) = Var(R B ) = 2 2 og Corr(K 0, R A ) = Corr(K 0, R B ) = 5/16. Følgende hypotese fremsettes: Forventet kontrastmål ved bruk av kontrastmiddel type A og type B er identiske. Denne hypotesen skal testes mot alternativet at de to forventningene er ulike.
5 TMA4245 Statistikk Side 5 av 5 d) Test hypotesen over på signifikansnivå 0.1 ved å bruke dataene i tabell 2 og 3. Utled styrken for denne testen for forskjell i forventet kontrastmål lik 2. Et alternativ forsøksopplegget er at 10 forsøkspersoner får injisert kontrastmiddel type A i ene hånden og type B i andre hånden. Deretter blir det tatt røntgenbilde av begge hendene. Dette forsøksopplegget ble gjennomført, og gav observasjoner som i tabell 4. Person (i) k A (i) k B (i) Tabell 4: Målt kontrast for person nr i ved bruk av kontrastmiddel type A, k A (i), og type B, k B (i). Her blir k A = 1/10 10 i=1 k A(i) = 35 og k B = 1/10 10 i=1 k B(i) = 37. Vi skal nå teste samme hypotese som under punkt d). e) Forklar kort hvorfor dette er et bedre forsøksopplegg. Utfør en ny test på hypotesen fremsatt i punkt d) der du nyttiggjør deg dette forsøksopplegget. Bruk dataene fra tabell 4. Sammenlikn dette med resultatet i punkt d) og kommenter. Utled styrken for denne testen for forskjell i forventet kontrastmål lik 2. Sammenlikn med styrkeresultatet i punkt d) og kommenter. Regn ut hvor mange forsøkspersoner vi måtte ha i forsøksopplegget i punkt d) for å få samme styrke som over.
EKSAMEN I EMNE TMA4245 STATISTIKK
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 5 Nynorsk Fagleg kontakt under eksamen: John Tyssedal 73 59 35 34/ 41 64 53 76 Jo Eidsvik 73 59 01 53/ 90 12 74 72 EKSAMEN
EKSAMEN I TMA4245 Statistikk
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Turid Follestad (98 06 68 80/73 59 35 37) Hugo Hammer (45 21 01 84/73 59 77 74) Eirik
EKSAMEN I FAG TMA4240/TMA4245 STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: John Tyssedal 41 64 53 76 EKSAMEN I FAG TMA4240/TMA4245 STATISTIKK Lørdag 10. august
Eksamensoppgave i TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
EKSAMEN I TMA4240 Statistikk
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Henning Omre (909 37848) Mette Langaas (988 47649) EKSAMEN I TMA4240 Statistikk 18.
Eksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (fra til): 09:00
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Jo Eidsvik og Arild Brandrud Næss Tlf: 90 12 74 72 og 99 53 82 94 Eksamensdato: 9. desember 2013 Eksamenstid
HØGSKOLEN I STAVANGER
EKSAMEN I: MOT310 STATISTISKE METODER VARIGHET: 4 TIMER DATO: 27. FEBRUAR 2004 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 5
Eksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Tlf: Eksamensdato: august 2015 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte hjelpemidler:
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
Eksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00
EKSAMEN I FAG TMA4240 STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglige kontakter under eksamen: Jo Eidsvik 90127472 Arild Brandrud Næss 99538294 EKSAMEN I FAG TMA4240 STATISTIKK
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 22 18 96, b 99 40 33 30 Eksamensdato: 30. november 2017 Eksamenstid
HØGSKOLEN I STAVANGER
EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 25. NOVEMBER 2003 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet
EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Håvard Rue 73 59 35 20 Håkon Tjelmeland 73 59 35 20 Bjørn Kåre Hegstad 73 59 35 20
EKSAMEN I TMA4240 Statistikk
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Henning Omre (909 37848) Mette Langaas (988 47649) EKSAMEN I TMA4240 Statistikk 18.
Eksamensoppgåve i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Fagleg kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (frå til): 09:00
Eksamensoppgave i TMA4240 / TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 / TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato: 10. august 2017 Eksamenstid (fra til): 09.00-13.00
Eksamensoppgave i ST0103 Brukerkurs i statistikk
Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Sara Martino a, Torstein Fjeldstad b Tlf: a 994 03 330, b 962 09 710 Eksamensdato: 28. november 2018 Eksamenstid
Eksamensoppgåve i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Fagleg kontakt under eksamen: Tlf: Eksamensdato: august 2015 Eksamenstid (frå til): Hjelpemiddelkode/Tillatne hjelpemiddel:
EKSAMEN I TMA4245 STATISTIKK Tysdag 21. mai 2013 Tid: 09:00 13:00 (Korrigert )
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 5 Nynorsk Fagleg kontakt under eksamen: Håkon Tjelmeland 73593538/48221896 Ola Diserud 93218823 EKSAMEN I TMA4245 STATISTIKK
EKSAMEN I FAG TMA4240/TMA4245 STATISTIKK Lørdag 10. august 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Fagleg kontakt under eksamen: John Tyssedal 41 64 53 76 EKSAMEN I FAG TMA4240/TMA4245 STATISTIKK Lørdag 10. august
Eksamensoppgåve i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgåve i TMA4240 Statistikk Fagleg kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG
Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato:
Eksamensoppgave i TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Ingelin Steinsland a, Øyvind Bakke b Tlf: a 73 59 02 39, 926 63 096, b 73 59 81 26, 990 41 673 Eksamensdato:
Eksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 11. desember 2014 Eksamenstid (fra til): 09:00
EKSAMEN I TMA4285 TIDSREKKEMODELLER Fredag 7. desember 2012 Tid: 09:00 13:00
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Bokmål Faglig kontakt under eksamen: John Tyssedal 73593534/41645376 EKSAMEN I TMA4285 TIDSREKKEMODELLER Fredag
Eksamensoppgave i SØK1004 - Statistikk for økonomer
Institutt for samfunnsøkonomi Eksamensoppgave i SØK1004 - Statistikk for økonomer Faglig kontakt under eksamen: Hildegunn E. Stokke, tlf 73591665 Bjarne Strøm, tlf 73591933 Eksamensdato: 01.12.2014 Eksamenstid
EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Kontakt under eksamen: Ingelin Steinsland (92 66 30 96) EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER Tirsdag
TMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
Eksamensoppgave i TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Gunnar Taraldsen a, Torstein Fjeldstad b Tlf: a 464 32 506, b 962 09 710 Eksamensdato: 23. mai 2018 Eksamenstid
Eksamensoppgåve i TMA4240 / TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgåve i TMA4240 / TMA4245 Statistikk Fagleg kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato: 10. august 2017 Eksamenstid (frå til): 09.00-13.00
MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12.
MASTR I IDRTTSVITNSKAP 2014/2016 Utsatt individuell skriftlig eksamen i STA 400- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator ksamensoppgaven består av 10 sider inkludert
Eksamensoppgåve i TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgåve i TMA4245 Statistikk Fagleg kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (frå til): 09:00 13:00 Hjelpemiddelkode/Tillatne
TMA4240 Statistikk 2014
TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten
Oppgave 1: Feil på mobiltelefoner
Oppgave 1: Feil på mobiltelefoner a) Sannsynlighetene i oppgaven blir P (F 1 F 2 ) P (F 1 ) + P (F 2 ) P (F 1 F 2 ) P (F 1 ) + 1 P (F2 C ) P (F 1 F 2 ) 0.080 + 0.075 0.006 0.149 P (F 1 F 2 ) P (F 1 F 2
EKSAMEN I EMNE TMA4315 GENERALISERTE LINEÆRE MODELLER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Bokmål Faglig kontakt under eksamen: Håkon Tjelmeland 73 59 35 38 EKSAMEN I EMNE TMA4315 GENERALISERTE LINEÆRE MODELLER
> 6 7 ) = 1 Φ( 1) = 1 0.1587 = 0.8413 P (X < 7 X < 8) P (X < 8) < 7 6 1 ) < 8 6 1 ) = Φ(2) = 0.8413
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Oppgave Sykkelruter a) P (Y > 6) P (Y > 6) P ( Y 7 > 6 7 ) Φ( ) 0.587 0.843 b) Hypoteser: H 0 : µ µ 2 H : µ < µ 2
TMA4240 Statistikk Høst 2009
TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Oppgave 1 Oppgave 11.5 fra læreboka. Oppgave 2 Oppgave 11.21 fra læreboka. Oppgave
STUDIEÅRET 2011/2012. Utsatt individuell skriftlig eksamen. STA 200- Statistikk. Mandag 27. august 2012 kl. 10.00-12.00
STUDIEÅRET 2011/2012 Utsatt individuell skriftlig eksamen STA 200- Statistikk i Mandag 27. august 2012 kl. 10.00-12.00 Hjelpemidler: kalkulator. Formelsamling blir delt ut på eksamen Eksamensoppgaven består
EKSAMEN I TMA4300 BEREGNINGSKREVENDE STATISTIKK Torsdag 16 Mai, 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Kontakt: Jo Eidsvik 9747 EKSAMEN I TMA43 BEREGNINGSKREVENDE STATISTIKK Torsdag 6 Mai, 3 Tilatte hjelpemiddel: Gult
MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00
MASTER I IDRETTSVITENSKAP 2014/2016 Individuell skriftlig eksamen i STA 400- Statistikk Fredag 13. mars 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 10 sider inkludert forsiden
TMA4240 Statistikk Høst 2012
TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving blokk II Oppgave 1 Oppgave 11.3 fra læreboka. Oppgave 2 Oppgave 11.19 fra læreboka. Oppgave
Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.
EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ
HØGSKOLEN I STAVANGER
HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 5. JUNI 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET
TMA4240 Statistikk Høst 2009
TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b7 Oppgave 1 Automatisert laboratorium Eksamen november 2002, oppgave 3 av 3 I eit
Eksamensoppgave i ST0103 Brukerkurs i statistikk
Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Jarle Tufto Tlf: 99 70 55 19 Eksamensdato: 3. desember 2016 Eksamenstid (fra til): 09:00-13:00
Eksamensoppgave i Løsningsskisse TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i Løsningsskisse TMA440 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 18 96, b 99 40 33 30 Eksamensdato: 30. november
TMA4240 Statistikk Høst 2018
TMA4240 Statistikk Høst 2018 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 5 Dette er andre av tre innleveringer i blokk 2. Denne øvingen skal oppsummere pensum
EKSAMEN I ST2101 STOKASTISK MODELLERING OG SIMULERING Onsdag 1. juni 2005 Tid: 09:00 14:00
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Nynorsk Fagleg kontakt under eksamen: Håkon Tjelmeland 73 59 35 38 EKSAMEN I ST2101 STOKASTISK MODELLERING OG SIMULERING
EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Onsdag
TMA4265 Stokastiske prosesser
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Bokmål Faglig kontakt under eksamen: Øyvind Bakke Telefon: 73 59 81 26, 990 41 673 TMA4265 Stokastiske prosesser
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Tirsdag 2. juni 2009. Tid for eksamen: 14.30 17.30. Oppgavesettet
EKSAMEN I EMNE TMA4265/SIF5072 STOKASTISKE PROSESSER Onsdag 10. august 2005 Tid: 09:00 13:00
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Bokmål Faglig kontakt under eksamen: Håkon Tjelmeland 73 59 35 38 EKSAMEN I EMNE TMA4265/SIF5072 STOKASTISKE PROSESSER
TMA4240 Statistikk Høst 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte
år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9
TMA424 Statistikk Vår 214 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II Oppgave 1 Matlabkoden linearreg.m, tilgjengelig fra emnets hjemmeside, utfører
for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter
TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere
Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32).
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 16. november 2009 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir
Eksamensoppgave i TMA4295 Statistisk inferens
Institutt for matematiske fag Eksamensoppgave i TMA4295 Statistisk inferens Faglig kontakt under eksamen: Vaclav Slimacek Tlf: 942 96 313 Eksamensdato: Tirsdag 2. desember 2014 Eksamenstid (fra til): 09:00-13:00
TMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar
Eksamensoppgave i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 3. juni 2016 Eksamenstid (fra til): 09:00-13:00
Eksamensoppgåve i ST0103 Brukarkurs i statistikk
Institutt for matematiske fag Eksamensoppgåve i ST0103 Brukarkurs i statistikk Fagleg kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: August 2018 Eksamenstid (frå til): 09:00 13:00 Hjelpemiddelkode/Tillatne
Sted Gj.snitt Median St.avvik Varians Trondheim 6.86 7.50 6.52 42.49 Værnes 7.07 7.20 6.79 46.05 Oppdal 4.98 5.80 7.00 48.96
Vår 213 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 8, blokk II Matlabøving Løsningsskisse Oppgave 1 a) Ingen løsningsskisse. b) Finn, for hvert datasett,
TMA4265 Stokastiske prosesser
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Bokmål Faglig kontakt under eksamen: Øyvind Bakke Telefon: 73 59 81 26, 990 41 673 TMA4265 Stokastiske prosesser
EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av?? Bokmål Kontakt under eksamen: Thiago G. Martins 46 93 74 29 EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER Torsdag
EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 12 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Onsdag
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Eksamen i: ECON30 Statistikk UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 03.06.06 Sensur kunngjøres: 4.06.06 Tid for eksamen: kl. 09:00 :00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen i: ECON130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 1306017 Sensur kunngjøres senest: 3006017 Tid for eksamen: kl 09:00 1:00 Oppgavesettet er på 5 sider Tillatte
Page 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde
1 E DAG PÅ HELSESTASJOE Lises klassevenninnner Lise er veldig liten Hva gjør at du sier at hun er liten? Du har en hypotese om vanlig høyde Du har en hypotese om vanlig høyde Du sammenligner Lises høyde
TMA4240 Statistikk Høst 2015
TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Oppgave 1 X er kontinuerlig fordelt med sannsynlighetstetthet f(x) = 2xe
UNIVERSITETET I OSLO
Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 12. oktober 2011. Tid for eksamen: 15:00 17:00. Oppgavesettet
EKSAMENSOPPGAVE STA «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Rute.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Tirsdag 26. september 2017. Klokkeslett: 09 13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»
ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon
ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere
Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard
EKSAMEN Emnekode: SFB107111 Emnenavn: Metode 1, statistikk deleksamen Dato: 16. mai 2017 Hjelpemidler: Godkjent kalkulator og vedlagt formelsamling m/tabeller Eksamenstid: 4 timer Faglærer: Hans Kristian
EKSAMEN I TMA4285 TIDSREKKJEMODELLAR Fredag 7. desember 2012 Tid: 09:00 13:00
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 8 Nynorsk Fagleg kontakt under eksamen: John Tyssedal 73593534/41645376 EKSAMEN I TMA4285 TIDSREKKJEMODELLAR Fredag 7.
TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag
TMA4245 Statistikk Vår 2017 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3 Dette er den første av to innleveringer i blokk 2 Denne øvingen skal oppsummere pensum
TMA4240 Statistikk Eksamen desember 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet
Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen
Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:
TMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må
Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010
TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Eksamen: ECON2130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 29.05.2019 Sensur kunngjøres: 19.06.2019 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:
TMA4245 Statistikk Eksamen august 2014
TMA4245 Statistikk Eksamen august 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Oppgave 1 En bedrift produserer en type medisin i pulverform Medisinen selges på flasker
TMA4265 Stokastiske prosessar
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 6 Nynorsk Fagleg kontakt under eksamen: Øyvind Bakke Telefon: 73 59 81 26, 990 41 673 TMA4265 Stokastiske prosessar Onsdag
+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1
Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:
Eksamensoppgåve i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgåve i TMA440 Statistikk Fagleg kontakt under eksamen: Jo Eidsvik og Arild Brandrud Næss Tlf: 90 1 74 7 og 99 53 8 94 Eksamensdato: 9. desember 013 Eksamenstid
TMA4265 Stokastiske prosessar
Noregs teknisk-naturvitskaplege universitet Institutt for matematiske fag Side 1 av 6 Nynorsk Fagleg kontakt under eksamen: Øyvind Bakke Telefon: 73 59 81 26, 990 41 673 TMA4265 Stokastiske prosessar Mondag
Kontinuerlige sannsynlighetsfordelinger.
Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x er sannsynlighetstettheten til en kontinuerlig X dersom:. f(x 0 for alle x R 2. f(xdx = 3. P (a
Eksamensoppgave i TMA4267 Lineære statistiske modeller
Institutt for matematiske fag Eksamensoppgave i TMA4267 Lineære statistiske modeller Faglig kontakt under eksamen: Tlf: Eksamensdato: August 2014 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte hjelpemidler:
MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem
MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi
EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER
Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at
Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4245 V2007: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF 4.1: La X være
EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST00 STATISTIKK FOR SAMFUNNSVITERE Torsdag
i=1 t i +80t 0 i=1 t i = 9816.
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Jo Eidsvik 901 27 472 EKSAMEN I FAG SIF5075 LEVETIDSANALYSE Torsdag 22. mai 2003 Tid:
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 13/10, 2004. Tid for eksamen: Kl. 09.00 11.00. Vedlegg:
EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013 Tid: 09:00 13:00
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Bo Lindqvist 975 89 418 EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST0 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Torsdag 9. mai 994. Tid for eksamen: 09.00 5.00. Oppgavesettet
EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLAR
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 5 Nynorsk Kontakt under eksamen: Thiago G. Martins 46 93 74 29 EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLAR Torsdag
EKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Mandag 9. mai 017. Klokkeslett: 09 13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»