Statistikk 1 kapittel 4

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Statistikk 1 kapittel 4"

Transkript

1 Statistikk 1 kapittel 4 Nico Keilman ECON 2130 Vår 2017

2 Kapittel 4 Stokastiske (tilfeldige) variabler Anta 1) Vi kjenner sannsynligheter for ulike utfall knyttet til et forsøk 2) Hvert utfall har en (meningsfull) tallverdi Nå kan vi beregne forventede tallstørrelser, og deres variasjon Eksempel: levealder (antall år i live) til en tilfeldig valgt 50-åring. Det er en viss sjanse på at vedkommende dør på alder 50, 51, 52,, 110. Levealder er en stokastisk (tilfeldig) variabel. Det er usikkert hvilken verdi variabelen vil få. Stokastiske variabler skrives vanligvis som X, Y, Z, Definisjon: En stokastisk variabel (s.v.) X er en variabel som får en bestemt tallverdi for hvert utfall i utfallsrommet S

3 Kaster to terninger. X = sum av øyne, s.v. Hva er sannsynligheten P(X=8)? Antall gunstige utfall = 5, antall mulige utfall = 36 P(X=8) = 5/36 Hva med andre verdier av X? Tabellen gir P(X=x) og P(X x) for x = 2, 3, 12 Verdi x Sannsynlighet P(X=x) Kumulativ sannsynlighet P(X x) 2 1/36 1/36 3 2/36 3/36 4 3/36 6/36 5 4/36 10/36 6 5/36 15/36 7 6/36 21/36 8 5/36 26/36 9 4/36 30/ /36 33/ /36 35/ /36 36/36 = 1 3

4 Dette var et eksempel på et forsøk der den stokastiske variabelen er diskret. Levealder: her er den stokastiske variabelen kontinuerlig (i hvert fall i teori i praksis bruker vi ofte kun hele fullførte år) To typer sannsynlighetsmodeller -diskrete (enklere å forstå) -kontinuerlige 4

5 Sannsynlighetsmodeller for diskrete stokastiske variabler Definisjon: Sannsynlighetsfordeling (for en diskret s.v. X): samlet representasjon av alle verdiene en s.v. X kan ha, sammen med tilhørende sannsynligheter P(X=x) for alle x. Kan ta form av en tabell eller en formel. Eksempel: tabell for sum øyne. En sannsynlighet P(X=x) for en bestemt verdi x kalles også for punktsannsynlighet. 5

6 Eksempel 4.2. Fire barn, 16 mulige sammensetninger av barneflokken (se tabell 4.2) Definer stokastisk variabel X = antall jenter Tabell P(X=0) = P(ingen jenter) = (½) 4 = 1/16 P(X=1) = P(en jente) P(X=2) = P(to jenter) = P(X=3) = P(tre jenter) = P(en gutt) = 4*(½) 4 = ¼ = 6/16 = ¼ P(X=4) = P(fire jenter) = = 1/16 Sjekk: sum = ( )/16 = 1 Formel: P(X=x) = 4 x 16 x = 0, 1, 2, 3, 4 6

7 Kumulativ sannsynlighetsfordeling Gitt en sannsynlighetsfordeling P(X=x) for alle verdier x Den kumulative fordelingen er definert som F(x) = P(X x) Forklaring: la x 1, x 2, x 3, x n være verdiene som X kan ha i ordnet rekkefølge, slik at x 1 < x 2 < x 3 < x n. Da er F(x i ) = P(X x i ) = P(X=x 1 ) + P(X=x 2 ) + P(X=x 3 ) + + P(X=x i ) for en bestemt i, 1 i n Eksempler: 1) Tabell 4.1 2) Jente-eksemplet 7

8 Jente-eksemplet F(0) = P(X=0) = 1/16 F(1) = P(X=0) + P(X=1) = 5/16 F(2) = 11/16 F(3) = 15/16 F(4) = 16/16 = 1 F(x) 16/16=1 15/16 14/16 13/16 12/16 11/16 10/16 9/16 8/16 7/16 6/16 5/16 4/16 3/16 2/16 1/ x 8

9 Gitt sannsynlighetsfordelingen P(X=x), er det lett å finne den kumulative fordelingen F(x) for en bestemt x i, ved å legge sammen F(x i ) = P(X x i ) = P(X=x 1 ) + P(X=x 2 ) + P(X=x 3 ) + P(X=x i ) Omvendt, gitt F(x) for alle verdier av x, hvordan kan vi finne en bestemt punktsannsynlighet P(X=x i )? Beregn forskjeller: F(x i ) = P(X=x 1 ) + P(X=x 2 ) + P(X=x 3 ) + + P(X=x i-1 ) + P(X=x i ) F(x i-1 ) = P(X=x 1 ) + P(X=x 2 ) + P(X=x 3 ) + + P(X=x i-1 ) F(x i ) F(x i-1 ) = P(X=x i ) Også: for to generelle verdier x j og x k (x j < x k ): P(x j < X x k ) = F(x k ) F(x j ) < 9

10 Jente-eksemplet: P(flere enn 1 jente men maks 3 jenter) = = P(1 < X 3) = F(3) F(1) = 15/16 5/16 = 10/16 Sjekk: P(1 < X 3) = P(X=2 eller X=3) = 6/16 + 4/16 = 10/16 OK 10

11 Forventning Gitt en stokastisk variabel (s.v.) X med sannsynlighetsfordeling P(X=x) En rekke forsøk resulterer i mange verdier for X. Gjennomsnitt for denne tallserien heter forventning til X Forteller meg hvor «midtpunktet» av sannsynlighetsfordelingen ligger Eksempel: et spill over flere runder. Du taper 10 kr. med 60% sjanse i hver runde, og vinner 40 kr. med 40% sjanse. Deltar du? 60% av rundene taper du 10 kr. 40% av rundene vinner du 40 kr. Forventet resultat etter mange runder = 0,6. (-10) + 0,4. (+40) = +10 kr. i snitt pr. runde 11

12 X = resultat i en runde P(X= -10) = 0,6 og P(X= +40) = 0,4 Forventet resultat = (-10). P(X= -10) + (40). P(X= +40) = = (-10). 0,6 + (40). 0,4 = 10 kr Definisjon Gitt en diskret s.v. X med utfall x 1, x 2,, x n og punktsannsynligheter P(X=x i ) Forventningsverdi (forventning) til X er definert som E(X) = alle i [x i. P(X=x i )] Forventning E(X) er et fast tall, ikke stokastisk 12

13 1) Jente-eksemplet: Y = antall jenter i en firebarns familie Forventet antall jenter? Jfr. tabell 4.2 E(Y) = 0 x 1/ x ¼ + 2 x 6/ x ¼ + 4 x 1/16 = 32/16 = 2. 2) Terning, X = antall øyne er en s.v. E(X) = 1 x 1/6 + 2 x 1/ x 1/6 = 3½ Forventet verdi behøver ikke å være med i utfallsrommet! Du må ikke forveksle E(X) med et bestemt utfall Tolkning E(X): kaster du 1000 ganger, kan du forvente at antall øyne totalt går mot

14 Stokastisk variabel deskriptiv statistikk forventning gjennomsnitt X må være tellbar for å kunne beregne forventningen E(X) E(X) gir ikke mening når X er kategorisk (nominal, ordinal). Jfr X = bokommune, hårfarge etc. 14

15 St. Petersburg paradoks (eks. 4.8) En mynt kastes gjentatte ganger, inntil første gang resultatet er «kron» Du får 2 kroner utbetalt ved «kron» i 1. kast k k. kast Hvor stor er forventet gevinst? X = gevinst, s.v. Utfall x kan være alt fra 0, 2, 4, 2 k, «kron» i runde k betyr at det var «mynt» i rundene 1,2,,k-1. P(«kron» i runde k) = (½) k-1. ½ = (½) k E(X) = k=1 2 k.(½) k = 2.½ + 4.(½) (½) 3 +. = = k=11 = =??? Forventet gevinst er uendelig stor! Men du må være villig til å delta i uendelig mange runder. Jfr Løvås for forklaring 15

16 Egenskaper for forventet verdi (regel 4.7) X og Y er stokastiske variabler, a og b er konstanter. Det er lett å bevise at E(a) = a E(b.X) = b.e(x) E(aX + by) = a.e(x) + b.e(y) ************************** Forventning mer generelt: X er en diskret s.v., g(x) er en generell funksjon E[g(X)] = alle i g(x i ).P(X=x i ) NB E(X 2 ) = alle i (x i ) 2.P(X=xi) {E(X)} 2 = { alle i x i.p(x=x i )} 2 16

17 Varians og standardavvik En bestemt type forventning forekommer ofte: varians X er en s.v.. Varians til X defineres som forventet verdi til avvikskvadraten Avvik = avstand mellom X og dens forventning Definisjon: Var(X) = E[(X μ) 2 ] der μ = E(X) er forventning til X Egenskap: Var(X) = E[X 2 ] - μ 2 = alle i (x i ) 2.P(X=x i ) - μ 2 Bevis: Var(X) = E[(X μ) 2 ] = E[X 2-2μX + μ 2 ] = E[X 2 ] - 2μE[X] + μ 2 = E[X 2 ] - μ 2 Definisjon: standardavvik = kvadratrot av varians SD(X) = Var(X) Standardavvik skrives ofte som σ, varians som σ 2 17

18 Eksempel 4.10, tabell 4.7 Papirfabrikk X = antall dager med produksjonsstans i løpet av en uke Verdi x Sannsynlighet P(X=x) Verdi.Sannsynlighet x.p(x=x) Verdi 2.Sannsynlighet x 2.P(X=x) 0 0, ,22 0,22 0,22 2 0,27 0,54 1,08 3 0,17 0,51 1,53 4 0,12 0,48 1,92 5 0,07 0,35 1,75 6 0,03 0,18 1,08 7 0,01 0,07 0,49 Sum 1 E(X) = 2,35 E(X 2 ) = 8,07 E(X) = μ = forventet antall dager med produksjonsstans i løpet av en uke = 2,35 Tolkning: 100 uker, kan forvente 235 dager med produksjonsstans Var(X) = E[X 2 ] μ 2 = 8,07 2,35 2 = 2,55 dager 2 SD(X) = 2,55 = 1,60 dager (trykkfeil i boka) NB Måle-enhet for SD(X) er den samme som for X her: dager 18

19 Egenskaper for varians og standardavvik: forskyvning og skala-endring (Fig. 4.9) X er en s.v., E(X)=4, Var(X)=2, SD(X)=1,41 Forskyvning: Definer en ny s.v.: Y = X + 15 Nå er E(Y) = E(X) + 15 = 19 Var(X) = Var(Y) = 2 Skala-endring: Definer W = 2X E(W) = E(2X) = 2E(X) = 8 Var(W) = E[W 2 ] {E(W)} 2 = E[(2X) 2 ] 4.{E(X)} 2 = 4.Var(X) = 8 SD(W) = Var(W) = (4.Var(X)) = 2. Var(X) = 2.SD(X) = 2,81 19

20 Forskyvning og skala-endring samtidig Z= X E(X) SD(X) Lett å bevise at E(Z) = 0, SD(Z) = 1 Vi kaller Z for den standardiserte s.v. m.h.t. X: Z har forventning null og varians/standardavvik lik én 20

21 Generelt : X er en s.v., a,b er konstanter Var(X) 0 Var(X+a) = Var(X) Var(bX) = b 2.Var(X) SD(X) 0 SD(X+a) = SD(X) SD(bX) = b.sd(x) NB: Absoluttverdi til b F. eks. SD(-2.X) = 2.SD(X) 21

22 Kontinuerlige sannsynlighetsmodeller s.v. X: kroppshøyde til en tilfeldig mann Histogrammet blir mer nøyaktig med flere intervaller Konturen nærmer seg en glatt kurve Sannsynlighetsfordelingen for en kontinuerlig variabel heter sannsynlighetstetthet 22

23 Sannsynlighetstetthet f(x) for en kontinuerlig s.v. X beskriver sannsynlighetsfordelingen til X, og har følgende egenskaper: a) det totale arealet under kurven f(x) er lik 1; b) P(a X b) er lik arealet under kurven f(x) mellom x=a og x=b; c) f(x) 0. Alternativt for b): P(a X b) = b a f x dx areal bestemt integral X og x er kontinuerlige variabler. Dermed er P(X = x) lik null! Arealet til et uendelig smalt intervall er null. Det gir ikke mening å snakke om sannsynligheten for at en kontinuerlig variabel X har en bestemt verdi x. Intervaller! 23

24 Prognose for Norges befolkning i 2050 publisert i 2012 SSB: «Framskrevet folkemengde 1. jan er personer» X: folkemengde Norge i 2050, s.v. X er en kontinuerlig variabel (i praksis): P(X=x) 0 Sjansen er nærmest null at SSBs prognose treffer mål! Bedre å gi prognose i form av et intervall. Stokastisk befolkningsprognose: f. eks. P(6 mln X 7 mln) = 59% også P( X ) = 80% «80% prognoseintervall» 24

25 Kumulativ sannsynlighetsfordeling F X er en kontinuerlig s.v. Definisjon: F(x i ) = P(X x i ) = x i f x dx areal under f(x)-kurven til venstre for et fast punkt x i Derfor f(x) = F (x) tetthet f(x) = første deriverte av fordeling F(x) NB Integraler ikke pensum, tolk P(a<X<b) eller P(X<b) som areal under tetthetskurven 25

26 Kroppshøyde er en kontinuerlig s.v. Skriv denne s.v. som X Fordelingsfunksjon F(x) viser sannsynligheten for at en tilfeldig valgt person har kroppshøyde mindre eller lik x cm. m.a.o. F(x) = P(X x) 26

27 Regneregler for kumulativ fordeling F(x) P(X b) = P(X < b) = F(b) P(X > b) = 1- F(b) P(a X b) = F(b) F(a) (a < b) 27

28 Forventning og varians for en kontinuerlig s.v. Forventning og varians defineres på samme måte som for en diskret s.v., men integral ( ) i stedet for sum ( ) E(X) = μ = + x.f x dx Var(X) = σ 2 + = x μ 2 +.f x dx=[ x 2.f x dx] μ 2 28

29 Eksempel 4.12 joggetur X er punktet der nøkkelen ligger, 0 X 9, med like stor sannsynlighet for hver X. X måles i km fra startpunktet. Tettheten til X må være f(x) = 1/9, 0 x 9 f(x) = 0 ellers P(4,6 < X < 6,3) = F(6,3) F(4,6) Hva er F? F(x) er arealet under «kurven» f(x) til venstre for punktet X=x. = høyde. bredde = 1/9. (x-0) = x/9, 0 x 9 Sjekk: F(9) må være 1, F(0) må være 0 stemmer F(6,3) F(4,6) = 6,3/9 4,6/9 = 1,7/9 = 0,188 19% sjanse for at nøkkelen ligger mellom X = 4,6 km og X = 6,3 km 29

30 Dessuten forventning 9 9 E X = x.f x dx = x. 1 9 dx = 1 9.½x2 9 0 = Forventer å finne nøkkelen ca. halvveis = 4,5 km Også varians 9 σ 2 = x 2 f x dx 4,5 2 = x dx 4,52 = 1 9.⅓x3 ] 9 0 (4,5)2 = 6,75 km slik at standardavvik SD(X) = 6,75 = 2,60 km. Stor spredning rundt midtpunktet 4,5. Langt fra sikkert at nøkkelen ligger i nærheten av midtpunktet på 4,5 km. 30

31 Uniform fordeling Fordelingen til X i dette eksemplet kalles for en «uniform fordeling» Generelt: Tettheten til en uniform fordelt variabel X er f(x) = 1/(b-a), a x b f(x) = 0 ellers E(X) = (a + b)/2 Var(X) = (b a) 2 /12 Flere slike sannsynlighetsmodeller (f. eks. binomisk fordeling, Poissonfordeling, normalfordeling) i kap. 5 31

32 Median og prosentiler for en kontinuerlig s.v. X Medianen x deler tettheten i to deler, hver med areal lik ½ M.a.o. F(x) = ½ Median kalles også for 50-prosentil Generelt: p-prosentil (0<p<100) deler tettheten i to deler. Delen til venstre for p-prosentilet har areal p%, til høyre (100-p)% F(p) = p/100 Jfr. kap. 2 32

33 Oppsummering P(X = x i ) f(x) Både diskret og kontinuerlig: Forventning E(X) skrives ofte som μ Kontinuerlig: V x har uendelig mange verdier for X, selv på et begrenset intervall Varians Var(X) skrives ofte som σ 2 33

34 To eller flere stokastiske variabler samtidig Fokus på to stokastiske variabler, stort sett diskrete s.v. X Y P(X=x og Y=y) for alle x og y heter den simultane fordelingen til X og Y Er en funksjon av både x og y Sier noe om sammenhengen mellom s.v. ene X og Y 34

35 Eksempel trykkeribedrift: tabell 4.8, fig X: antall henvendelser i morgen Y: antall nye bestillinger i morgen Vi ser at X og Y henger sammen: det er en tendens til at store verdier for X går sammen med store verdier for Y, og omvendt x 0 1 y P(X=x) P(X=x,Y=y) P(X=x,Y=y) P(Y=y)

36 Legg merke til 1) sum over alle x og alle y av P(X=x,Y=y) = 1, alle x alle y P(X=x,Y=y) = 1 2) P(X=x) = alle y P(X=x,Y=y) er den marginale fordelingen til X (funksjon av x, ikke av y) på samme måte: P(Y=y) = alle x P(X=x,Y=y) marginal fordeling til Y x 0 1 y P(X=x) P(X=x,Y=y) P(Y=y)

37 3) Forventningene til X og til Y beregnes på vanlig måte, basert på de marginale fordelingene til X og Y μ X = 0 * 0, * 0, * 0, * 0, * 0,03 = 2,61 μ Y = 0 * 0, * 0, * 0, * 0, * 0,03 = 1,12 også variansene σ 2 X og σ 2 Y fra de marginale fordelingene x 0 1 y P(X=x) P(X=x,Y=y) P(Y=y)

38 4) Hendelser der både X og Y er involvert, f. eks. X + Y = 4 P(X+Y=4) = 0,01 + 0,09 + 0,07 = 0,17 Generelt kan vi definere sannsynligheten P(X+Y = z) for z = 0, 1, 2,, 11 og utlede sannsynlighetsfordelingen for Z=X+Y ved hjelp av P(X=x,Y=y) x 0 1 y P(X=x) P(X=x,Y=y) P(Y=y)

39 5) Betinget sannsynlighetsfordeling P(X=x Y=y) bruk definisjon for betinget sannsynlighet f. eks. P(X=3 Y=2) = P(X=3 og Y=2)/P(Y=2) = 0,03/0,19 = 0,158 16% sjanse for at X = 3, gitt at Y = 2 Betinget forventning til X beregnes ved hjelp av betinget fordeling P(X=x Y=y), er derfor en funksjon av y; skrives som E(X y) Samme for betinget varians Var(X y) Også omvendt: P(Y=y X=x), betinget forventning/varians til Y etc. x 0 1 y P(X=x) P(X=x,Y=y) P(Y=y)

40 Definer ny s.v. som Z = X + Y E(Z) = E(X) + E(Y) Mer generelt Regel 4.12: gitt en rekke s.v. er X i og konstanter a i, i = 1,2, n E(a 1 X 1 +a 2 X 2 + +a n X n ) = a 1 E(X 1 ) + a 2 E(X 2 ) + + a n E(X n ) gjelder både for diskrete og kontinuerlige variabler Eksempel: befolkningsprognose 2050 X, Y, Z er s.v. er som representerer befolkningen i aldersgruppene 0-19, og 65+ i år 2050 E(X) = E(Y) = E(Z) = Folkemengde totalt i 2050 har forventning E(X+Y+Z) = E(X) + E(Y) + E(Z) =

41 Kovarians og korrelasjon Samvariasjon for to (eller flere) s.v. er X og Y (Z, ) Variablene kan være diskrete eller kontinuerlige Grad av samvariasjon uttrykkes ved hjelp av begrepet kovarians («varierer samtidig»). Skrives som Cov(X,Y) Definisjon: Cov(X,Y) = E[(X-μ X )(Y- μ Y )], der μ X =E(X) og μ Y =E(Y) Egenskap: Cov(X,Y) = E(X.Y) - μ X.μ Y (vis selv) To diskrete s.v. er X og Y: E(X.Y) = alle x alle y x.y.p(x=x,y=y) Kovarians trenges når du skal beregne varians til en sum av to eller flere s.v. er 41

42 Trykkeri-eksemplet: beregn Cov(X,Y) E(X.Y) = 1.1.0, , , ,01 = 4,24 (lilla celler bidrar ikke til produktet X.Y) Fra før hadde vi at μ X = 2,61, μ Y = 1,12 Cov(X,Y) = E(X.Y) - μ X.μ Y = 4,24 2,61.1,12 = 1,32 Vanskelig å tolke. Lettere hvis vi tar høyde for SD(X) og SD(Y). Da innfører vi begrepet korrelasjon x 0 1 y P(X=x) P(X=x,Y=y) P(Y=y)

43 Korrelasjon mellom X og Y Corr X,Y = Cov(X,Y) SD X.SD(Y) den skrives også som ρ(x,y) Uttrykker hvor sterk lineær sammenheng det er mellom X og Y -1 ρ +1 ρ > 0 positiv sammenheng mellom X og Y: store verdier for X går sammen med store verdier for Y ρ = +1 perfekt lineær positiv sammenheng ρ < 0 negativ sammenheng mellom X og Y: store verdier for X går sammen med små verdier for Y, og omvendt ρ = -1 perfekt lineær negativ sammenheng ρ = 0 ingen (lineær) sammenheng mellom X og Y 43

44 Trykkeri-eksemplet Cov(X,Y) = 1,32 Var(X) = 3,08 => SD(X) = 1,755 Var(Y) = 1,15 => SD(Y) = 1,072 Nå blir ρ(x,y) lik 1,32/(1,755 x 1,072) = 0,70 Rimelig sterk grad av positiv sammenheng NB Cov(X,X) =? ρ(x,x)=? 44

45 Eksempel: befolkningsprognose 2050 X, Y, Z er s.v. er som hhv. representerer befolkning i aldersgruppene 0-19, og 65+ i år 2050 Det viser seg at Corr(X,Y) = 0,537. Befolkning i alder 0-19 positivt korrelert med befolkning i alder Corr(Y,Z) = 0,190. Aldersgruppene og 65+ er svakt korrelerte (men positivt) 45

46 Varians til en sum av s.v. er (regel 4.15) Var(X + Y) = Var(X) + Var(Y) + 2.Cov(X,Y) Positiv (negativ) kovarians øker (reduserer) varians i summen Generelt: Var(aX + by) = a 2.Var(X) + b 2.Var(Y) + 2.a.b.Cov(X,Y) 46

47 Trykkeri-eksemplet X = antall henvendelser kostnader 20 kr / henvendelse Y = antall bestillinger fortjeneste 100 kr / bestilling konstante kostnader 10 kr Forventet overskudd? Definer s.v. Z: Z = 100Y 20X 10 E(Z) = 100.E(Y) 20.E(X) 10 = = 100.1, ,61-10 = 49,8 kr. Fra før har vi Var(X) = 3,08 Var(Y) = 1,15 Cov(X,Y) = 1,32 Hvor stor er variansen til Z? Var(Z) = Var(100Y 20X 10) = Var(Y) Var(X) +2.( 20).100 Cov(X,Y) = = 7452 SD(Z) = 86,3 kr.: stor spredning rundt forventet overskudd på 49,8 kr. 47

48 Uavhengige stokastiske variabler Fra før: to hendelser A og B er uavhengige når P(A B) = P(A) eller P(B A) = P(B) eller P(A B) = P(A). P(B) Helt analogt for to stokastiske variabler: Definisjon: X og Y er uavhengige hvis og bare hvis P(X=x,Y=y) = P(X=x). P(Y=y) for alle (x,y) Mao den simultane sannsynligheten kan skrives som produkt av sannsynlighetene for X og Y 48

49 Egenskap: To uavhengige s.v er X og Y er ukorrelerte, d.v.s. ρ(x,y)=0 Bevis: Cov(X,Y) = E(X.Y) - μ X.μ Y (definisjon av kovarians) = [Σ x Σ y x.y.p(x=x,y=y)] - μ X.μ Y (definisjon av forventning) = [Σ x Σ y x.y.p(x=x).p(y=y)] - μ X.μ Y (pga antatt uavhengighet) = [Σ x Σ y x.p(x=x).y.p(y=y)] - μ X.μ Y = [Σ x x.p(x=x)].[σ y y.p(y=y)] - μ X.μ Y = μ X.μ Y - μ X.μ Y = 0 Dermed blir også korrelasjonen lik null. Men: når ρ(x,y)= 0, er X og Y ikke nødvendigvis uavhengige 49

50 Regneregel Hvis X 1, X 2,, X n er uavhengige s.v. er, og a 1, a 2,, a n er konstanter, så er Var(a 1 X 1 + a 2 X 2 + a n X n ) = a 12 Var(X 1 ) + a 22 Var(X 2 ) + + a n2 Var(X n ) fordi alle parvise kovarianser er lik null. 50

51 Eksempel 4.10, tabell 4.7 en gang til. Papirfabrikk X i = antall dager med produksjonsstans i uke nr. i. Vi fant at E(X i ) = 2,35 dager og at Var(X i ) = 2,55 dager 2 Definer s.v. T som antall dager med stans i løpet av et år. Beregn E(T) og SD(T) T = X 1 + X 2 + X 52 E(T) = 52.E(X i ) = 122,2 dager Var(T) = Var( i X i ). Anta at X i -ene er uavhengige (drøft) Var( i X i ) = i Var(X i ) = 52.Var(X i ) = 132,6 og SD(T) = 11,5 dager NB Ett år: SD(T)/E(T) = 11,5/122,2 = 0,094 = 9,4% En uke: SD(X i )/E(X i ) = 1,56/2,35 = 0,664 = 66,4% Den relative variasjonen over en lang periode er mindre enn over en kort periode, p.g.a. (antatt) uavhengighet. 51

52 Forventning til et produkt av uavhengige variabler Anta at X og Y er uavhengige stokastiske variabler. Da er E(X.Y) = E(X). E(Y) Bevis: X og Y er uavhengige Cov(X,Y) = 0 = E(X.Y) - E(X).E(Y) Gjelder også flere uavhengige s.v. er E(X 1. X 2. X 3. X n ) = E(X 1 ). E(X 2 ). E(X 3 ). E(X n ). 52

Statistikk 1 kapittel 4

Statistikk 1 kapittel 4 Statistikk 1 kapittel 4 Nico Keilman ECON 2130 Vår 2015 Kapittel 4 Stokastiske (tilfeldige) variabler Anta 1) Vi kjenner sannsynligheter for ulike utfall knyttet til et forsøk 2) Hvert utfall har en (meningsfull)

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning

Detaljer

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4245 V2007: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF 4.1: La X være

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2014 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene

Detaljer

Statistikk 1. Nico Keilman. ECON 2130 Vår 2014

Statistikk 1. Nico Keilman. ECON 2130 Vår 2014 Statistikk 1 Nico Keilman ECON 2130 Vår 2014 Pensum Kap 1-7.3.6 fra Løvås «Statistikk for universiteter og høgskoler» 3. utgave 2013 (eventuelt 2. utgave) Se overspringelsesliste på emnesiden Supplerende

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

Kontinuerlige sannsynlighetsfordelinger.

Kontinuerlige sannsynlighetsfordelinger. Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x er sannsynlighetstettheten til en kontinuerlig X dersom:. f(x 0 for alle x R 2. f(xdx = 3. P (a

Detaljer

FORMELSAMLING STATISTIKK, HiG

FORMELSAMLING STATISTIKK, HiG Høgskolen i Gjøvik Avdeling for ingeniørfag Versjon fra mai 2007 FORMELSAMLING STATISTIKK, HiG Hans Petter Hornæs hans.hornaes@hig.no ISSN:??????? Innledning. Denne formelsamlingen er skrevet for bruk

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

Løsningsforslag til seminar 4 Undervisningsfri uke

Løsningsforslag til seminar 4 Undervisningsfri uke Løsningsforslag til seminar 4 Undervisningsfri uke Iman Ghayoornia February 22, 2016 Oppgave 2.1 Se Excel-filen som er tilgjengelig på emnesiden. Hvis du lurer på hvordan jeg fikk verdiene i cellene så

Detaljer

TMA4245 Statistikk Vår 2007

TMA4245 Statistikk Vår 2007 TMA4245 Statistikk Vår 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har lært.

Detaljer

Statistikk 1 kapittel 3

Statistikk 1 kapittel 3 Statistikk 1 kapittel 3 Nico Keilman ECON 2130 Vår 2014 Kapittel 3 Sannsynlighetsregning Formål: å kvantifisere usikkerhet ved hjelp av sannsynligheter Viktige begreper stokastisk forsøk: et forsøk der

Detaljer

Motivasjon for kurset. ÅMA110 Sannsynlighetsregning med statistikk, våren 2008. Oppsummering. ÅMA110 Sannsynlighetsregning med statistikk våren 2008

Motivasjon for kurset. ÅMA110 Sannsynlighetsregning med statistikk, våren 2008. Oppsummering. ÅMA110 Sannsynlighetsregning med statistikk våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Oppsummering ÅMA0 Sannsynlighetsregning med statistikk våren 008 Pensum: Pensumbok: Per Chr. Hagen: "Innføring i sannsynlighetsregning og statistikk",

Detaljer

Eksamen i. MAT110 Statistikk 1

Eksamen i. MAT110 Statistikk 1 Avdeling for logistikk Eksamen i MAT110 Statistikk 1 Eksamensdag : Torsdag 28. mai 2015 Tid : 09:00 13:00 (4 timer) Faglærer/telefonnummer : Molde: Per Kristian Rekdal / 924 97 051 Kristiansund: Terje

Detaljer

Kontinuerlige stokastiske variable.

Kontinuerlige stokastiske variable. Kontinuerlige stokastiske variable. I forelesning har vi sett på en kontinuerlig stokastisk variabel med sannsynlighetstetthet f() =2 og sannsynlighetsfunksjon F () = 2 for. Der hadde jeg et reint regneteknisk

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4 november 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 11. juni 2007. KLASSE: HIS 05 08. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 5 (innkl. forside)

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!

Detaljer

Sannsynlighetsregning og Statistikk.

Sannsynlighetsregning og Statistikk. Sannsynlighetsregning og Statistikk. Leksjon Velkommen til dette kurset i sannsynlighetsregning og statistikk! Vi vil som lærebok benytte Gunnar G. Løvås:Statistikk for universiteter og høyskoler. I den

Detaljer

Innhold. Innledning. Del I

Innhold. Innledning. Del I Innhold Del I Innledning 1 Hva er statistikk?...17 1.1 Bokas innhold 18 1.1.1 Noen eksempler 18 1.1.2 Historie 21 1.1.3 Bokas oppbygning 22 1.2 Noen viktige begreper 23 1.2.1 Populasjon og utvalg 23 1.2.2

Detaljer

Regler i statistikk STAT 100

Regler i statistikk STAT 100 TORIL FJELDAAS RYGG - VÅREN 2010 Regler i statistikk STAT 100 Innhold side Sannsynlighetsregning 3 - Uttrykk 3 - Betinget sannsynlighet 4 - Regler for sannsynlighet 4 - Bayes teorem 4 - Uavhengige begivenheter

Detaljer

Kapittel 4: Sannsynlighet - Studiet av tilfeldighet

Kapittel 4: Sannsynlighet - Studiet av tilfeldighet Kapittel 4: Sannsynlighet - Studiet av tilfeldighet Vi så i forrige kapittel at utvalgsfordeling til en statistikk (observator) er fordelingen av verdiene til statistikken over alle utvalg av samme størrelse

Detaljer

Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005

Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005 SOS110 Kvantitativ metode Forelesningsnotater 6 forelesning høsten 005 Statistisk beskrivelse av enkeltvariabler (Univariat analyse) Per Arne Tufte Disposisjon Datamatrisen Variabler Datamatrisen Frekvensfordelinger

Detaljer

Sannsynlighetsregning og kombinatorikk

Sannsynlighetsregning og kombinatorikk Sannsynlighetsregning og kombinatorikk Introduksjon Formålet med sannsynlighet og kombinatorikk er å kunne løse problemer i statistikk, somoftegårutpååfattebeslutninger i situasjoner der tilfeldighet rår.

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Oppgave 1 Oljeleting a) Siden P(A

Detaljer

1 Section 6-2: Standard normalfordelingen. 2 Section 6-3: Anvendelser av normalfordelingen. 3 Section 6-4: Observator fordeling

1 Section 6-2: Standard normalfordelingen. 2 Section 6-3: Anvendelser av normalfordelingen. 3 Section 6-4: Observator fordeling 1 Section 6-2: Standard normalfordelingen 2 Section 6-3: Anvendelser av normalfordelingen 3 Section 6-4: Observator fordeling 4 Section 6-5: Sentralgrenseteoremet Oversikt Kapittel 6 Kontinuerlige tilfeldige

Detaljer

En kort innføring i sannsynlighetsregning

En kort innføring i sannsynlighetsregning En kort innføring i sannsynlighetsregning Harald Goldstein Sosialøkonomisk institutt Januar 2000 Innhold 1 Innledning 1 2 Begivenheter og sannsynlighet 4 2.1 Matematiskbeskrivelseavbegivenheter... 4 2.2

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 11. juni HiS Jørstadmoen. TID: kl EMNEANSVARLIG: Hans Petter Hornæs

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 11. juni HiS Jørstadmoen. TID: kl EMNEANSVARLIG: Hans Petter Hornæs KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Statistikk. BtG27 EKSAMENSDATO: 11. juni 28 KLASSE: HiS 6-9 Jørstadmoen. TID: kl. 8. 13.. EMNEANSVARLIG: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.

Detaljer

Øving 7: Statistikk for trafikkingeniører

Øving 7: Statistikk for trafikkingeniører NTNU Veg og samferdsel EVU kurs Trafikkteknikk Oslo / høsten 2007 Øving 7: Statistikk for trafikkingeniører Det anbefales generelt å arbeide i grupper med 2-3 studenter i hver gruppe. Bruk gjerne Excel

Detaljer

H ØGSKOLEN I BERGEN Avdeling for ingeniørutdanning

H ØGSKOLEN I BERGEN Avdeling for ingeniørutdanning H ØGSKOLEN I BERGEN Avdeling for ingeniørutdanning EKSAMEN KLASSAR FOA 172 Statistikk : alle DATO : 5. desember 2007 TAL pa OPPGAVER TAL pa SIDER VEDLEGG HJELPEMIDDEL TID MALFORM FAGLÆRARAR : 4 : 3 (inkludert

Detaljer

Kap. 5.2: Utvalgsfordelinger for antall og andeler

Kap. 5.2: Utvalgsfordelinger for antall og andeler Kap. 5.2: Utvalgsfordelinger for antall og andeler Binære data (1/0, Ja/Nei, Suksess/Feil) Utvalgsundersøkelser: Ja/Nei-spørsmål Tilstedeværelse av arter: Tilstede/Ikke-tilstede (1/0) Overlevelse etter

Detaljer

Medisinsk statistikk Del I høsten 2008:

Medisinsk statistikk Del I høsten 2008: Medisinsk statistikk Del I høsten 2008: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Noen tips Boka Summary etter hvert kapittel forteller hvor dere har vært og hva som er sentralt Øvingene Overdriv

Detaljer

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) P(B oga)+p(b ogā) P(B A)P(A)+P(B Ā)P(Ā) ST0202 Statistikk for samfunnsvitere Bo Lindqvist

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 4 Statistikk og kvantitativ metode Kapittel 4 Oppgave 1. La x være antall øyne på terningen. a) Vi får følgende sannsynlighetsfordeling

Detaljer

Binomisk fordeling. Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Binomisk fordeling. Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilfeldige variabler Når vi kaster to terninger er det 36 utfall Vi ser på X = «sum antall øyne» De mulige verdiene

Detaljer

b) i) Finn sannsynligheten for at nøyaktig 2 av 120 slike firmaer går konkurs.

b) i) Finn sannsynligheten for at nøyaktig 2 av 120 slike firmaer går konkurs. Eksamen i: MET 040 Statistikk for økonomer Eksamensdag: 31 Mai 2007 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

Beskrivende statistikk.

Beskrivende statistikk. Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke I løpet av uken blir løsningsforslag lagt ut

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00.

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER

Detaljer

Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004. eksamensoppgaver.org Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Statistikk 1 kapittel 3

Statistikk 1 kapittel 3 Statistikk 1 kapittel 3 Nico Keilman ECON 2130 Vår 2016 Kapittel 3 Sannsynlighetsregning Formål: å kvantifisere usikkerhet ved hjelp av sannsynligheter Viktige begreper stokastisk forsøk: et forsøk der

Detaljer

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger Kontinuerlig uniform fordeling f() = B A, A B. En kontinuerlig størrelse (vekt, lengde, tid), som aldri kan bli mindre enn

Detaljer

ST0103 Brukerkurs i statistikk Høst 2014

ST0103 Brukerkurs i statistikk Høst 2014 Norges teknisk naturvitenskapelige univsitet Institutt for matematiske fag ST0103 Brukkurs i statistikk Høst 2014 Løsningsforslag Øving 6 5.2 Antall sprukne pøls X binomialfordelt med n 8 og p 0.2, og

Detaljer

Sannsynlighetsbegrepet

Sannsynlighetsbegrepet Sannsynlighetsbegrepet Notat til STK1100 Ørnulf Borgan Matematisk institutt Universitetet i Oslo Januar 2004 Formål Dette notatet er et supplement til kapittel 1 i Mathematical Statistics and Data Analysis

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 05.12.2008 AA6524/AA6526 Matematikk 3MX Elevar og privatistar / Elever og privatister Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler: Vedlegg: Andre opplysninger: Framgangsmåte

Detaljer

MA155 Statistikk TI-nspire cx Kalkulator Guide

MA155 Statistikk TI-nspire cx Kalkulator Guide MA155 Statistikk TI-nspire cx Kalkulator Guide Magnus T. Ekløff, Kristoffer S. Tronstad, Henrik G. Fauske, Omer A. Zec Våren 2016 1 Innhold 1 Basics... 4 2 1.1 Dokumenter... 4 1.1.1 Regneark... 4 1.1.2

Detaljer

Faktor - en eksamensavis utgitt av ECONnect

Faktor - en eksamensavis utgitt av ECONnect Faktor - en eksamensavis utgitt av ECONnect Løsningsforslag: SØK1004 Statistikk for økonomer Eksamen: Våren 009 Antall sider: 16 SØK1004 - Løsningsforslag Om ECONnect: ECONnect er en frivillig studentorganisasjon

Detaljer

EKSAMENSOPPGAVER SV SØ 232: METODE II

EKSAMENSOPPGAVER SV SØ 232: METODE II EKSAMENSOPPGAVER SV SØ 232: METODE II H-1998 Gjør rede for følgende begreper: 1. Stokastisk variabel 2. Sannsynlighet 3. Estimator 4. Estimat 5. Forventning 6. Varians 7. Kovarians Gjør rede for trinnene

Detaljer

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres?

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres? Fagdag Plan Fagdag - 08.01.0 1,2 time: Repetisjon kapittel 3 - Sannsynlighet Oppgaver Teori (lesestoff) 3, time: Arbeide med.1 og.2: 16, 17, 18, 1 3, time: Ekstra vurdering før terminoppgjør Repetisjon

Detaljer

Velkommen til eksamenskurs i matematikk 1

Velkommen til eksamenskurs i matematikk 1 Velkommen til eksamenskurs i matematikk 1 Haakon C. Bakka Institutt for matematiske fag 4.-5. desember 2010 Program I dag og i morgen skal vi holde på fra 10-16 med en pause fra 13-14. Vi skal gjennom:

Detaljer

EKSAMEN I TMA4240 Statistikk

EKSAMEN I TMA4240 Statistikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Henning Omre (909 37848) Mette Langaas (988 47649) EKSAMEN I TMA4240 Statistikk 18.

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 4 Statistikk og kvantitativ metode Kapittel 4 Oppgave 1 La være antall øyne på terningen. a) Vi får følgende sannsynlighetsfordeling

Detaljer

EKSAMEN I TMA4245 Statistikk

EKSAMEN I TMA4245 Statistikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Turid Follestad (98 06 68 80/73 59 35 37) Hugo Hammer (45 21 01 84/73 59 77 74) Eirik

Detaljer

Oppgaver til Studentveiledning 4 MET 3431 Statistikk

Oppgaver til Studentveiledning 4 MET 3431 Statistikk Oppgaver til Studentveiledning 4 MET 3431 Statistikk 8. mai 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 22/11/2011: Oppgave 1-7. Eksamensoppgaven fra 11/2011 er

Detaljer

Geogebra hjelp - S2. Funksjonsanalyse. Innhold. Kommando. Funksjonsanalyse 1. Undersøke om dataene er normalfordelt 1.

Geogebra hjelp - S2. Funksjonsanalyse. Innhold. Kommando. Funksjonsanalyse 1. Undersøke om dataene er normalfordelt 1. Geogebra hjelp - 4. mai 2012 Innhold Funksjonsanalyse 1 Komandoer 1 Undersøke om dataene er normalfordelt 1 Finne sannsynlighetsfordeling 2 Binomisk fordeling...........................................

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG27 EKSAMENSDATO: 27. mai 211. KLASSE: HIS 8 11. TID: kl. 8. 13.. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 innkl. forside) TILLATTE

Detaljer

Hypergeometrisk modell

Hypergeometrisk modell Hpergeometrisk modell Tilnærming til binomisk fordeling - enklere å beregne binomiske sannsnligheter Dersom n er liten i forhold til N, er det tilnærmet uavhengighet mellom resultatene i ulike trekninger/

Detaljer

Regresjon med GeoGebra

Regresjon med GeoGebra Praksis og Teori Askim videregående skole 14.08.14 1 Lærplanmål 2 Punkter og Lister 3 Regresjon 4 Teori 5 Nytt verktøy Læreplanmål i 2P Modellering gjere målingar i praktiske forsøk og formulere matematiske

Detaljer

6.2 Normalfordeling. Høyde kvinner og menn. 6.1 Kontinuerlig uniform fordeling. Kapittel 6

6.2 Normalfordeling. Høyde kvinner og menn. 6.1 Kontinuerlig uniform fordeling. Kapittel 6 3 6.2 Normalfordeling Kapittel 6 Noen kontinuerlige sannsynlighetsfordelinger TMA4245 V2007: Eirik Mo Normalfordeling: Sannsynlighetstettheten til en normalfordelt stokastisk variabel, X, med forventning

Detaljer

Forelesning 7 Statistiske beskrivelser av enkeltvariabler. Mål for sentraltendens

Forelesning 7 Statistiske beskrivelser av enkeltvariabler. Mål for sentraltendens Forelesning 7 Statistiske beskrivelser av enkeltvariabler Statistiske mål for univariate fordelinger: Sentraltendens Verdien for fordelingens tyngdepunkt Spredning Hvor nært opp til tyngdepunktet ligger

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Jo Eidsvik og Arild Brandrud Næss Tlf: 90 12 74 72 og 99 53 82 94 Eksamensdato: 9. desember 2013 Eksamenstid

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON2130 Statistikk 1 UNIVERSITETET I OSLO ØONOIS INSTITUTT Eksamensdag: 01.06.2015 Sensur kunngjøres: 22.06.2015 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider Tillatte hjelpemidler:

Detaljer

4: Sannsynlighetsregning

4: Sannsynlighetsregning Plan for hele året: - Kapittel 5: Januar - Kapittel 6: Februar - Kapittel 7: Februar/mars 4: Sannsynlighetsregning - Kapittel 8: Mars/april - Repetisjon: April/mai - Økter, prøver, prosjekter: Mai - juni

Detaljer

a ) Forventningen estimeres med gjennomsnittet: x = 1 12 (x 1 + + x 12 ) = 1 (755 + 708 + + 748) = 8813/12 = 734.4

a ) Forventningen estimeres med gjennomsnittet: x = 1 12 (x 1 + + x 12 ) = 1 (755 + 708 + + 748) = 8813/12 = 734.4 ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 011, s. 1 (Det tas forbehold om feil i løsningsforslaget. Oppgave 1 Vi betrakter dataene x 1,..., x 1 somutfall av n = 1 u.i.f.

Detaljer

Prøve 6 1T 24.02.12 80 minutter. Alle hjelpemidler

Prøve 6 1T 24.02.12 80 minutter. Alle hjelpemidler Prøve 6 T 24.02.2 80 minutter. Alle hjelpemidler Oppgave I boks A er det 6 svarte og 2 hvite kuler. I boks B er det 8 svarte og 4 hvite kuler. Vi trekker en kule fra en av krukkene. a) va er sannsynligheten

Detaljer

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I 4 Kombinatorikk Vi må lære tellemetoder når valgtrær, som vi brukte tidligere, blir for store og vanskelig å håndtere.

Detaljer

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

MATEMATIKK 1 (for 8. 10. trinn) Emnebeskrivelser for studieåret 2014/2015

MATEMATIKK 1 (for 8. 10. trinn) Emnebeskrivelser for studieåret 2014/2015 MATEMATIKK 1 (for 8. 10. trinn) Emnebeskrivelser for studieåret 2014/2015 Emnenavn Grunnleggende matematikk Precalculus MA6001 Undervisningssemester Høst 2014 Professor Petter Bergh petter.bergh@math.ntnu.no

Detaljer

6 Sannsynlighetsregning

6 Sannsynlighetsregning MATEMATIKK: 6 Sannsynlighetsregning 6 Sannsynlighetsregning 6.1 Forsøk. Utfallsrom. Sannsynlighet (sjanse). Sannsynlighetsmodell Ved ett kast med en terning vet vi at terningen vil vise enten ett, to,

Detaljer

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma.

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. TMA4240 Statistikk H2010 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. Mette Langaas Foreleses mandag 27. september 2010 2

Detaljer

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger. H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.

Detaljer

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab For grunnleggende bruk av Matlab vises til slides fra basisintroduksjon til Matlab som finnes på kursets hjemmeside. I denne øvingen skal vi analysere

Detaljer

Statistikk 2. Tabellen nedenfor viser oljeproduksjonen i et OPEC-land i perioden 1990 til 2005. Produksjonen er i 1000 tonn.

Statistikk 2. Tabellen nedenfor viser oljeproduksjonen i et OPEC-land i perioden 1990 til 2005. Produksjonen er i 1000 tonn. Statistikk Innledning Begrepet statistikk skriver seg fra tiden da en stat samlet inn opplysninger som myndighetene hadde bruk for. Opplysningene eller dataene som ble samlet inn, dreide seg for det meste

Detaljer

Forelesning 5, kapittel 3. : 3.5: Uavhengige hendelser.

Forelesning 5, kapittel 3. : 3.5: Uavhengige hendelser. Forelesning 5, kapittel 3. : 3.5: Uavhengige hendelser. Kast med to terninger, A er sekser på første terning og B er sekser på andre terning. Sekser på begge terningene er Fra definisjonen av betinget

Detaljer

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU 3 Utfallsrom og hendelser Kapittel 2: Sannsynlighet 2., 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel DEF 2. Ufallsrom:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning i (sannsynlighetsteori) t i) 2.5 Betinget sannsynlighet 1 Betinget sannsynlighet (kp. 2.5) - innledning Eks.: Et terningkast;

Detaljer

2 Om å lære matematikk og litt om vurdering av måloppnåelse/kompetanse

2 Om å lære matematikk og litt om vurdering av måloppnåelse/kompetanse Fagdag 5-3MX Innhold: 1. Tilbakemelding på første termin 2. Om å lære matematikk og vurdering 3. Sannsynlighetsfordelinger (7.2), forventning og varians (7.3, 7.4): Gjennomgåelse 4. Oppgaver 1 Tilbakemelding

Detaljer

NR. 2-2005 11. årgang

NR. 2-2005 11. årgang nytt NR. - 005 11. årgang FX-9860G SD Casio lanserer i nær framtid et nytt tilskudd på stammen av grafiske lommeregnere spesielt beregnet for videregående skole. Den svart hvite skjermen, er blitt større

Detaljer

Standardavvik. Varians. Utfallsrom (sannsynlighet)

Standardavvik. Varians. Utfallsrom (sannsynlighet) Standardavvik Median Varians n = partall Utfallsrom (sannsynlighet) Persentil er verdien definert ved at minst 100% * p% lav observasjonene ligger nedenfor denne verdien En stokatisk variabel X er en funksjon

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

Normalfordeling. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 7

Normalfordeling. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 7 Ueoppgaver i BtG207 Statisti, ue 7 : Normalfordeling. 1 Høgsolen i Gjøvi Avdeling for tenologi, øonomi og ledelse. Statisti Ueoppgaver ue 7 Normalfordeling. Oppgave 1 Anta Z N(0, 1), dvs. Z er standard

Detaljer

1 Stokastisk variabel

1 Stokastisk variabel FY1/TFY415 Innføring i kvantefysikk - Notat om sannsynlegheit 1 1 Stokastisk variabel Før vi byrjar på oppgåvene gjev vi ein liten briefing om stokastiske variable, middelverdiar, usikkerheiter osb. Ein

Detaljer

Skrivne og trykte hjelpemiddel samt kalkulator er tillate. Ta med all mellomrekning som trengst for å grunngje svaret.

Skrivne og trykte hjelpemiddel samt kalkulator er tillate. Ta med all mellomrekning som trengst for å grunngje svaret. Eksamen 7. mai 2014 Eksamenstid 4 timar IR201812 Statistikk og Simulering Skrivne og trykte hjelpemiddel samt kalkulator er tillate. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve

Detaljer

Innledning kapittel 4

Innledning kapittel 4 Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne

Detaljer

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om 1 Eksponentielt vekst: En størrelse vokser eller avtar med en fast prosent per tidsenhet. Eulers tall e: En matematisk konstant, e=2,7 1828.. ln a gir det tallet du må opphøye Eulers tall e i for å få

Detaljer

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org Løsningsforslag AA654/AA656 Matematikk 3MX Elever/Privatister - 7. desember 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis,

Detaljer

STUDIEÅRET 2014/2015. Utsatt individuell skriftlig eksamen i. STA 200- Statistikk. Mandag 24. august 2015 kl. 10.00-12.00

STUDIEÅRET 2014/2015. Utsatt individuell skriftlig eksamen i. STA 200- Statistikk. Mandag 24. august 2015 kl. 10.00-12.00 STUDIEÅRET 2014/2015 Utsatt individuell skriftlig eksamen i STA 200- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator. Formelsamling blir delt ut på eksamen Eksamensoppgaven består

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

Simulering - Sannsynlighet

Simulering - Sannsynlighet Simulering - Sannsynlighet Når regnearket skal brukes til simulering, er det et par grunninnstillinger som må endres i Excel. Hvis du får feilmelding om 'sirkulær programmering', betyr det vanligvis at

Detaljer

Konfidensintervall for µ med ukjent σ (t intervall)

Konfidensintervall for µ med ukjent σ (t intervall) Forelesning 3, kapittel 6 Konfidensintervall for µ med ukjent σ (t intervall) Konfidensintervall for µ basert på n observasjoner fra uavhengige N( µ, σ) fordelinger når σ er kjent : Hvis σ er ukjent har

Detaljer

Høgskolen i Gjøviks notatserie, 2001 nr 5

Høgskolen i Gjøviks notatserie, 2001 nr 5 Høgskolen i Gjøviks notatserie, 2001 nr 5 5 Java-applet s for faget Statistikk Tor Slind Avdeling for Teknologi Gjøvik 2001 ISSN 1501-3162 Sammendrag Dette notatet beskriver 5 JAVA-applets som demonstrerer

Detaljer

1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene

1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene 1 Sec 3-2: Hvordan beskrive senteret i dataene 2 Sec 3-3: Hvordan beskrive spredningen i dataene Todeling av statistikk Deskriptiv statistikk Oppsummering og beskrivelse av den stikkprøven du har. Statistisk

Detaljer

Nasjonale prøver i lesing, regning og engelsk på 5. trinn 2015

Nasjonale prøver i lesing, regning og engelsk på 5. trinn 2015 Nasjonale prøver i lesing, regning og engelsk på 5. trinn 2015 Resultater fra nasjonale prøver på 5. trinn høsten 2015 er nå publisert i Skoleporten. Her er et sammendrag for Nord-Trøndelag: - I snitt

Detaljer

EKSAMEN. EMNEANSVARLIG: Inger Gamme og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler.

EKSAMEN. EMNEANSVARLIG: Inger Gamme og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler. KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Kvalitetsledelse med Statistikk. SMF2121 EKSAMENSDATO: 1. juni 2011 KLASSE: Ingeniørutdanning TID: kl. 9.00 13.00. EMNEANSVARLIG: Inger Gamme og Hans Petter

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer