Generalisering til mange klasser - feilrettingsmetodene

Størrelse: px
Begynne med side:

Download "Generalisering til mange klasser - feilrettingsmetodene"

Transkript

1 Mange klasser Generalisering til mange klasser - feilrettingsmetodene Kesslers konstruksjon - omskriving av c-klasseproblemet til et toklasseproblem. Her innføres en sammensatt vektvektor a og et sett av c 1 samplevektorer h ij, alle av dimensjon c ˆd: a 1 y 6 7 a = 4. 5 og h ij =. a c y i. j. c j = 1,...,c, j 6= i der samplevektoren y står i posisjon i, mens y står i posisjon j. Problemet består i å finne en vektvektor a som tilfredsstiller ulikhetene: a t h ij > 0 8i,j, j 6= i.

2 Mange klasser Generalisert fast inkrement regel Mangeklasseproblemet er omformulert til et toklasseproblem der dimensjonen på vektrommet er multiplisert med c og antall sampler med c 1. Fast inkrement regelen for mange klasser blir da: a 1 (1),...,a c (1)=vilkårlige startvektorer a i (k + 1)=a i (k)+y k 9 (sann klasse) >= a j (k + 1)=a j (k) y k (feil klasse) >; k = 1,2,... a l (k + 1)=a l (k), l 6= i,j Her endres kun vektvektoren til klassen det feilklassifiserte samplet faktisk tilhører og den klassen det er blitt feilaktig klassifisert til. Vektvektorene for de andre klassene endres ikke. De øvrige feilrettingsmetodene kan generaliseres på tilsvarende måte.

3 Mange klasser Perceptron-algoritmen på datasett med fem klasser Stykkevis lineære desisjonsgrenser på ikke-separabelt datasett.

4 Mange klasser Generalisering til mange klasser - Minste kvadraters metode Innfører datamatrise Y og vektmatrise A for mangeklasseproblemet: 2 3 Y 1 2 Y 2 y t 3 1 Y = = (n ˆd) og A =[a 1,a 2,...,a c ] (ˆd c). Y c y t n I tillegg defineres en matrise B der søylene inneholder marginene for hver klasse: B B 2 B = (n c) der B i = (n i c), B c dvs. en matrise med enere i søyle nr. i og nuller ellers. i

5 Mange klasser Generalisering av minste kvadraters metode Her skal likningssystemet: YA = B løses med hensyn til vektmatrisen A. Normalt er dette overbestemt (ingen eksakt løsning). En minste kvadraters løsning finnes ved å minimalisere: Tr {(YA B) t (YA B)} = c  i=1 ky a i b i k 2 (kan vises). Dette svarer til å minimalisere hvert ledd i summen, som for toklasseproblemet, dvs: a i = Y b i, i = 1,...,c eller A = Y B. Her er Y =(Y t Y ) 1 Y t den pseudoinverse til Y, som tidligere.

6 Mange klasser Minste kvadraters metode på datasett med fem klasser Stykkevis lineære desisjonsgrenser på ikke-separabelt datasett (Pseudoinvers metode).

7 Oversikt Innhold i kurset Beslutningsteori (desisjonsteori) Parametriske metoder Ikke-parametriske metoder Lineære og generaliserte diskriminantfunksjoner Feilrateestimering og evaluering av klassifikatorer Ikke-ledet læring Klyngeanalyse.

8 Feilrateestimering Feilrateestimering Anta at vi har trent opp en klassifikator vha. en av teknikkene beskrevet tidligere. Spørsmålet er da: Er denne klassifikatoren god nok? Finnes andre klassifikatorer som er bedre? + Behov for å kunne bestemme feilraten til klassifikatoren. To hovedmetoder: Parametrisk metode, Empirisk metode.

9 Feilrateestimering Parametrisk metode - eksempel med to klasser For et toklasseproblem er feilraten gitt ved: P(e)=P(w 1 ) Z p(x w 1 )dx + P(w 2 ) R 2 Z p(x w 2 )dx R 1 der R 1 og R 1 er desisjonsregionene bestemt av klassifikatoren. Feilraten kan beregnes fra uttrykket ved å sette inn estimater for á priori sannsynlighetene og tetthetsfunksjonene (antar f.eks. p(x w i )=N(ˆµ i, ˆ i ) der ˆµ i og ˆ i er bestemt fra treningssettet). Ulemper: Resultatet ofte for optimistisk fordi samme antakelser om statistikken ofte brukes ved treningen av klassifikatoren. Den parametriske modellen kan i seg selv også være tvilsom. Den numeriske beregningen av integralene i uttrykket ofte komplisert, selv om tetthetsfunksjonene er kjente.

10 Feilrateestimering Empirisk metode Det er mest vanlig å gjøre feilrateestimeringen ved hjelp av et uavhengig testsett med sampler der klassetilhørigheten er kjent (som for treningssettet). Feilraten kan da uttrykkes ved: ˆP(e)= k n = Antall feilklassifiseringer Totalt antall sampler som er et maksimum likelihood estimat med kjente konfidensintervaller. Dilemma: Man ønsker flest mulig sampler i både treningssett og testsett, mens det totale antall merkede sampler vanligvis er mye mindre enn man kunne ønske. Samplene må derfor fordeles på en gunstig måte.

11 Feilrateestimering Vanlige løsninger Dele settet tilfeldig (eller systematisk), f.eks. i to omtrent like store deler (50/50). Gjennomføre prosessen oppdeling, trening, feilrateestimering flere ganger med forskjellige oppdelinger, og midle estimatene av feilraten til slutt. Leave-one-out metoden. Her benyttes ett sample til testing av klassifikatoren, som trenes opp på de øvrige n 1 samplene i det totale settet. Prosessen gjentas n ganger, der et nytt sample utelates hver gang. Feilraten finnes ved å summere antall feilklassifiseringer i de n testene som er foretatt og dividere med n. Når egenskapskombinasjon og klassifikatortype er valgt ut fra tester som ovenfor, foretas endelig trening vha. hele datasettet.

12 Dimensjonalitetsproblemer Dimensjonalitetsproblemer Ofte behov for titals eller hundretalls egenskaper, der hver egenskap forhåpentligvis gir bidrag til klassifikatorens diskrimineringsevne. Feilraten for to klasser er gitt ved: P(e)=P(w 1 ) Z p(x w 1 )dx + P(w 2 ) R 2 Z p(x w 2 )dx R 1 der R 1 og R 1 er optimale (minimum feilrate) desisjonsregioner. Anta nå at statistikken i dette toklasseproblemet er gitt ved: P(w 1 )=P(w 2 )=1/2 p(x w i )=N(µ i, i ),i = 1,...,c i =,i = 1,...,c.

13 Dimensjonalitetsproblemer Dimensjonalitetsproblemer (2) Feilraten blir da: P(e)= 1 p 2p Z r/2 e 1 2 u2 du (dvs. Bayes optimale feilrate) der: r 2 =(µ 1 µ 2 ) t 1 (µ 1 µ 2 ) (Mahalanobis avstand) Feilraten vil derved avta med økende r. For uavhengige egenskaper vil kovariansmatrisen være diagonal: = diag(s 2 1,...,s 2 d ) slik at: r 2 = d  i=1 (µ i1 µ i2 ) 2 s 2 i

14 Dimensjonalitetsproblemer Dimensjonalitetsproblemer (3) Ved å inkludere flere uavhengige egenskaper der µ i1 6= µ i2 i egenskapsvektoren vil r 2 øke og P(e) avta, slik at: P d+1 (e) apple P d (e). Dette forutsetter imidlertid kjent statistikk (uendelig stort treningssett)! I praksis er statistikken ukjent og må estimeres vha. et endelig treningssett. Estimert feilrate som funksjon av d vil da typisk avta opp til en gitt dimensjon, og deretter øke. Dette er tegn på overtrening, der klassifikatoren blir stadig mer spesialisert til gjenkjenning av treningssamplene, og mister evnen til å generalisere til nye data. Feilraten estimert ved hjelp av treningssettet vil derimot som regel gå mot null. Dette beskrives nærmere under Problemmidlet feilrate i lærebøkene.

Dimensjonalitetsproblemer (3)

Dimensjonalitetsproblemer (3) Dimensjonalitetsproblemer Dimensjonalitetsproblemer (3) Ved å inkludere flere uavhengige egenskaper der µ i1 6= µ i2 i egenskapsvektoren vil r 2 øke og P(e) avta, slik at: P d+1 (e) apple P d (e). Dette

Detaljer

Innledning Beslutningsteori Parametriske metoder Ikke-parametriske metoder Diskriminantfunksjoner Evaluering Ikke-ledet læring Klyngeanalyse Oversikt

Innledning Beslutningsteori Parametriske metoder Ikke-parametriske metoder Diskriminantfunksjoner Evaluering Ikke-ledet læring Klyngeanalyse Oversikt Oversikt Innhold i kurset Beslutningsteori (desisjonsteori) Parametriske metoder Ikke-parametriske metoder Lineære og generaliserte diskriminantfunksjoner Feilrateestimering og evaluering av klassifikatorer

Detaljer

Innledning Beslutningsteori Parametriske metoder Ikke-parametriske metoder Diskriminantfunksjoner Evaluering Ikke-ledet læring Klyngeanalyse Oversikt

Innledning Beslutningsteori Parametriske metoder Ikke-parametriske metoder Diskriminantfunksjoner Evaluering Ikke-ledet læring Klyngeanalyse Oversikt Oversikt Innhold i kurset Beslutningsteori (desisjonsteori) Parametriske metoder Ikke-parametriske metoder Lineære og generaliserte diskriminantfunksjoner Feilrateestimering og evaluering av klassifikatorer

Detaljer

Ikke-separable problemer

Ikke-separable problemer Feilrettingsmetoder Ikke-separable problemer Feilrettingsmetodene konvergerer under gitte betingelser til løsningsvektorer for lineært separable problemer, men kan også gi gode resultater på ikke-separable

Detaljer

Unik4590/Unik9590/TTK Mønstergjenkjenning

Unik4590/Unik9590/TTK Mønstergjenkjenning Sammendrag og eksempler Universitetssenteret på Kjeller Høsten 2016 (17. august 2016) Hva er mønstergjenkjenning? Formålet med mønstergjenkjenning Gjenkjenne objekter - tilordne objekter til én av flere

Detaljer

TEK5020/TEK Mønstergjenkjenning

TEK5020/TEK Mønstergjenkjenning Sammendrag og eksempler Lineære diskriminantfunksjoner (Gradientsøk, perceptronmetoden) UiO : Institutt for teknologisystemer Høsten 2018 (22. oktober 2018) Diskriminantfunksjoner Utvidet egenskapsrom

Detaljer

Unik4590/Unik9590/TTK Mønstergjenkjenning

Unik4590/Unik9590/TTK Mønstergjenkjenning Sammendrag og eksempler Universitetssenteret på Kjeller Høsten 2016 (15. oktober 2016) Hva er mønstergjenkjenning? Formålet med mønstergjenkjenning Gjenkjenne objekter - tilordne objekter til én av flere

Detaljer

Unik4590/Unik9590/TTK Mønstergjenkjenning

Unik4590/Unik9590/TTK Mønstergjenkjenning Sammendrag og eksempler UiO : Institutt for teknologisystemer Høsten 2017 (14. august 2017) Hva er mønstergjenkjenning? Formålet med mønstergjenkjenning ˆ Gjenkjenne objekter - tilordne objekter til én

Detaljer

TEK5020/TEK Mønstergjenkjenning

TEK5020/TEK Mønstergjenkjenning Sammendrag og eksempler Innledning UiO : Institutt for teknologisystemer Høsten 2018 (18. august 2018) Hva er mønstergjenkjenning? Formålet med mønstergjenkjenning Gjenkjenne objekter - tilordne objekter

Detaljer

Normalfordelingen. Univariat normalfordeling (Gaussfordelingen): der µ er forventningsverdien og σ 2 variansen. Multivariat normalfordeling:

Normalfordelingen. Univariat normalfordeling (Gaussfordelingen): der µ er forventningsverdien og σ 2 variansen. Multivariat normalfordeling: Normalfordelingen Univariat normalfordeling (Gaussfordelingen): p(x µ,σ 2 ) = 1 µ)2 (x e 2σ 2 = N(µ,σ 2 ) 2πσ der µ er forventningsverdien og σ 2 variansen. Multivariat normalfordeling: [ 1 p(x µ,σ) =

Detaljer

Minimalisering av kriteriefunksjon - gradientsøk

Minimalisering av kriteriefunksjon - gradientsøk Trening av vektvektor - gradientsøk Minimalisering av kriteriefunksjon - gradientsøk En kriteriefunksjon J(a) skal minimaliseres for å finne en otimal vektvektor. Gradientsøk: a 1 = vilkårlig startverdi

Detaljer

Diskrete egenskaper. Egenskapsvektoren x antar kun diskrete verdier: v 1,v 2,...,v m. Endringer fra det kontinuerlige tilfellet er at:

Diskrete egenskaper. Egenskapsvektoren x antar kun diskrete verdier: v 1,v 2,...,v m. Endringer fra det kontinuerlige tilfellet er at: Iledig Beslutigsteori Parametriske metoder Ikke-parametriske metoder Diskrimiatfuksjoer Evaluerig Ikke-ledet lærig Klygeaalyse Diskrete egeskaper Diskrete egeskaper Egeskapsvektore x atar ku diskrete verdier:

Detaljer

STK Oppsummering

STK Oppsummering STK1110 - Oppsummering Geir Storvik 11. November 2015 STK1110 To hovedtemaer Introduksjon til inferensmetoder Punktestimering Konfidensintervall Hypotesetesting Inferens innen spesifikke modeller/problemer

Detaljer

STK Oppsummering

STK Oppsummering STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter

Detaljer

Bayesisk estimering. Tettheten i punkt x er her gitt ved: der p(q X ) er áposterioriparameterfordelinggitt ved: p(q X )=

Bayesisk estimering. Tettheten i punkt x er her gitt ved: der p(q X ) er áposterioriparameterfordelinggitt ved: p(q X )= Bayesisk estimering Bayesisk estimering Tettheten i punkt x er her gitt ved: Z p(x X )= p(x q)p(q X )dq der p(q X ) er áposterioriparameterfordelinggitt ved: p(q X )= p(x q)p(q) R p(x q)p(q)dq og p(x q)

Detaljer

Prøveeksamen STK2100 (fasit) - vår 2018

Prøveeksamen STK2100 (fasit) - vår 2018 Prøveeksamen STK2100 (fasit) - vår 2018 Geir Storvik Vår 2018 Oppgave 1 (a) Vi har at E = Y Ŷ =Xβ + ε X(XT X) 1 X T (Xβ + ε) =[I X(X T X) 1 X T ]ε Dette gir direkte at E[E] = 0. Vi får at kovariansmatrisen

Detaljer

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - "Fornuftig verdi"

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - Fornuftig verdi Inferens STK1110 - Repetisjon av relevant stoff fra STK1100 Geir Storvik 12. august 2015 Data x 1,..., x n evt også y 1,..., y n Ukjente parametre θ kan være flere Vi ønsker å si noe om θ basert på data.

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

Econ 2130 uke 16 (HG)

Econ 2130 uke 16 (HG) Econ 213 uke 16 (HG) Hypotesetesting I Løvås: 6.4.1 6, 6.5.1-2 1 Testing av µ i uid modellen (situasjon I Z-test ). Grunnbegreper. Eksempel. En lege står overfor følgende problemstilling. Standardbehandling

Detaljer

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. FORMELSAMLING TIL STK2100 (Versjon Mai 2017) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)

Detaljer

Ekstraoppgaver for STK2120

Ekstraoppgaver for STK2120 Ekstraoppgaver for STK2120 Geir Storvik Vår 2011 Ekstraoppgave 1 Anta X 1 og X 2 er uavhengige med X 1 N(1.0, 1.0) og X 2 N(2.0, 1.5). La X = (X 1, X 2 ) T. Definer c = ( ) 2.0 3.0, A = ( ) 1.0 0.5 0.0

Detaljer

Kapittel 3: Studieopplegg

Kapittel 3: Studieopplegg Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere

Detaljer

Tilleggsoppgaver for STK1110 Høst 2015

Tilleggsoppgaver for STK1110 Høst 2015 Tilleggsoppgaver for STK0 Høst 205 Geir Storvik 22. november 205 Tilleggsoppgave Anta X,..., X n N(µ, σ) der σ er kjent. Vi ønsker å teste H 0 : µ = µ 0 mot H a : µ µ 0 (a) Formuler hypotesene som H 0

Detaljer

LØSNINGSFORSLAG ) = Dvs

LØSNINGSFORSLAG ) = Dvs LØSNINGSFORSLAG 12 OPPGAVE 1 D j er differansen mellom måling j med metode A og metode B. D j N(µ D, 0.1 2 ). H 0 : µ D = 0 mot alternativet H 1 : µ D > 0. Vi forkaster om ˆµ D > k Under H 0 er ˆµ D =

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

Prøveeksamen STK vår 2017

Prøveeksamen STK vår 2017 Prøveeksamen STK2100 - vår 2017 Geir Storvik Vår 2017 Oppgave 1 Anta en lineær regresjonsmodell p Y i = β 0 + β j x ij + ε i, j=1 ε i uif N(0, σ 2 ) Vi kan skrive denne modellen på vektor/matrise-form:

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

TMA4240 Statistikk Høst 2018

TMA4240 Statistikk Høst 2018 TMA4240 Statistikk Høst 2018 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 5 Dette er andre av tre innleveringer i blokk 2. Denne øvingen skal oppsummere pensum

Detaljer

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:

Detaljer

Klassisering. Insitutt for matematiske fag, NTNU 21. august Klassiseringsproblemet. Notat for TMA4240/TMA4245 Statistikk

Klassisering. Insitutt for matematiske fag, NTNU 21. august Klassiseringsproblemet. Notat for TMA4240/TMA4245 Statistikk Klassisering Notat for TMA4240/TMA4245 Statistikk Insitutt for matematiske fag, NTNU 21. august 2012 Innen maskinlæring studerer man algoritmer som tillater datamaskiner å utvikle atferd på grunnlag av

Detaljer

Fra første forelesning:

Fra første forelesning: 2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen

Detaljer

Øving 3 Determinanter

Øving 3 Determinanter Øving Determinanter Determinanten til en x matrise er definert som Clear@a, b, c, dd K a b OF c d ad -bc Determinanten til en matrise er derfor et tall. Du skal se at det viktige for oss er om tallet er

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) Mette Langaas Foreleses mandag 11.oktober,

Detaljer

Eksamen - INF 283 Maskinlæring

Eksamen - INF 283 Maskinlæring Eksamen - INF 283 Maskinlæring 23 feb. 2016 Tid: 3 timer Eksamen inneholder 15 oppgaver, som vil bli vektet likt ved evaluering. 1 Table 1 attributt antall personer forsørget av låntaker månedlig inntekt

Detaljer

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor

Detaljer

Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent)

Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) TMA440 Statistikk H010 Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) Mette Langaas Foreleses mandag 11.oktober,

Detaljer

Likningssystem for maksimum likelihood løsning

Likningssystem for maksimum likelihood løsning Maksimum likelihood metode Likigssystem for maksimum likelihood løsig Treig av klassifikator ute merket treigssett. Atakelser (i første omgag): Atall klasser c er kjet, ÁpriorisasyligheteeP(w i ), i =

Detaljer

H 0 : Null hypotese. Konservativ. H 1 : Alternativ hypotese. Endring. Kap.10 Hypotesetesting

H 0 : Null hypotese. Konservativ. H 1 : Alternativ hypotese. Endring. Kap.10 Hypotesetesting Hypotesetesting H 0 : Null hypotese. Konservativ. H 1 : Alternativ hypotese. Endring. Rettsvesen hypotese Tiltalte er uskyldig inntil det motsatte er bevist. Hypoteser H 0 : Tiltalte er uskyldig H 1 :

Detaljer

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11)

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Knut Mørken 22. november 2004 Vi har tidligere i kurset sett litt på numerisk derivasjon

Detaljer

Kort overblikk over kurset sålangt

Kort overblikk over kurset sålangt Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente

Detaljer

Notat 3 - ST februar 2005

Notat 3 - ST februar 2005 Notat 3 - ST1301 1. februar 2005 1 Simulering fra modell Når vi skal analysere et gitt konkret innsamlet datasett vil vi gjøre dette med utgangspunkt i en statistisk modell. Vi kan si at en slik statistisk

Detaljer

Inferens i regresjon

Inferens i regresjon Strategi som er fulgt hittil: Inferens i regresjon Deskriptiv analyse og dataanalyse først. Analyse av en variabel før studie av samvariasjon. Emne for dette kapittel er inferens når det er en respons

Detaljer

Suffisient observator

Suffisient observator Iledig Beslutigsteori Parametriske metoder Ikke-parametriske metoder Diskrimiatfuksjoer Evaluerig Ikke-ledet lærig Klygeaalyse Suffisiete observatorer Suffisiet observator Statistisk størrelse s som ieholder

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

Ferdig før tiden 4 7 Ferdig til avtalt tid 12 7 Forsinket 1 måned 2 6 Forsinket 2 måneder 4 4 Forsinket 3 måneder 6 2 Forsinket 4 måneder 0 2

Ferdig før tiden 4 7 Ferdig til avtalt tid 12 7 Forsinket 1 måned 2 6 Forsinket 2 måneder 4 4 Forsinket 3 måneder 6 2 Forsinket 4 måneder 0 2 Besvar alle oppgavene. Hver deloppgave har lik vekt. Oppgave I En kommune skal bygge ny idrettshall og vurderer to entreprenører, A og B. Begge gir samme pristilbud, men kommunen er bekymret for forsinkelser.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2120 Statistiske metoder og dataanalyse 2. Eksamensdag: Fredag 7. juni 2013. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

Oppsummering av STK2120. Geir Storvik

Oppsummering av STK2120. Geir Storvik Oppsummering av STK2120 Geir Storvik Vår 2011 Hovedtemaer Generelle inferensmetoder Spesielle modeller/metoder Bruk av R Vil ikke bli testet på kommandoer, men må forstå generelle utskrifter Generelle

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2100 - FASIT Eksamensdag: Torsdag 15. juni 2017. Tid for eksamen: 09.00 13.00. Oppgavesettet er på 5 sider. Vedlegg: Tillatte

Detaljer

Mer om Markov modeller

Mer om Markov modeller Høyere ordens Markov modeller Mer om Markov modeller p h mnr = Pr( Y j+ 3 = ah Y j+ 2 = am, Y j+ 1 = an, Y j = a : r For en k-te ordens Markov modell som modellerer en DNA prosess vil det være 3*4 k mulige

Detaljer

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1 ECON 0 EKSAMEN 004 VÅR SENSORVEILEDNING Oppgaven består av 0 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom

Detaljer

Øving 2 Matrisealgebra

Øving 2 Matrisealgebra Øving Matrisealgebra Gå til menyen Edit Preferences... og sett Format type of new output cells til TraditionalForm hvis det ikke allerede er gjort. Start med to eksempelmatriser med samme dimensjon: In[]:=

Detaljer

Da vil summen og gjennomsnittet være tilnærmet normalfordelte : Summen: X 1 +X X n ~N(nµ,nσ 2 ) Gjennomsnittet: X 1 +X

Da vil summen og gjennomsnittet være tilnærmet normalfordelte : Summen: X 1 +X X n ~N(nµ,nσ 2 ) Gjennomsnittet: X 1 +X Me me me me metallic hvit 4.4: Tilnærming til normalfordeling Tilnærming til normalfordeling: binomisk og Poisson kan tilnærmes v.h.a. normalfordeling under bestemte forhold (ved "mange" delforsøk/hendelser)

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Homogene lineære ligningssystem, Matriseoperasjoner

Homogene lineære ligningssystem, Matriseoperasjoner Homogene lineære ligningssystem, Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2010 Antall løsninger til et lineær ligningssystem Teorem Et lineært ligningssytem har

Detaljer

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y Statistiske metoder 1 høsten 004. Løsningsforslag Oppgave 1: a) Begge normalplottene gir punkter som ligger omtrent på ei rett linje så antagelsen om normalfordeling ser ut til å holde. Konfidensintervall

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1 ECON 0 EKSMEN 007 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom >. Oppgave. La begivenhetene BC,, være slik at og

Detaljer

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens

Detaljer

HMM-tagging INF4820 H2008. Jan Tore Lønning. 30. september. Institutt for Informatikk Universitetet i Oslo

HMM-tagging INF4820 H2008. Jan Tore Lønning. 30. september. Institutt for Informatikk Universitetet i Oslo INF4820 H2008 Institutt for Informatikk Universitetet i Oslo 30. september Outline 1 2 3 4 5 Outline 1 2 3 4 5 Flertydighet Example "" "fisk" subst appell mask ub fl @løs-np "fisker" subst appell

Detaljer

Løsningsforslag eksamen 25. november 2003

Løsningsforslag eksamen 25. november 2003 MOT310 Statistiske metoder 1 Løsningsforslag eksamen 25. november 2003 Oppgave 1 a) Vi har µ D = µ X µ Y. Sangere bruker generelt trapesius-muskelen mindre etter biofeedback dersom forventet bruk av trapesius

Detaljer

Forelesning 6: Punktestimering, usikkerhet i estimering. Jo Thori Lind

Forelesning 6: Punktestimering, usikkerhet i estimering. Jo Thori Lind Forelesning 6: Punktestimering, usikkerhet i estimering Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Trekke utvalg 2. Estimatorer og observatorer som stokastiske variable 3. Egenskapene til en estimator

Detaljer

Presentasjon av Field II. Teori om simuleringsmetoden

Presentasjon av Field II. Teori om simuleringsmetoden Presentasjon av Field II Teori om simuleringsmetoden Oversikt Lineære system Romlig impulsrespons Field II teori Opprinnelig simuleringsmetode/implementering Oppdeling av aperture i rektangulære element

Detaljer

5.8 Iterative estimater på egenverdier

5.8 Iterative estimater på egenverdier 5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til

Detaljer

Forelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind

Forelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind Forelesning 5: Kontinuerlige fordelinger, normalfordelingen Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Kontinuerlige fordelinger 2. Uniform fordeling 3. Normal-fordelingen 1. Kontinuerlige fordelinger

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 0, blokk II Løsningsskisse Oppgave Surhetsgrad i ferskvann Eksamen august 00, oppgave av 3 a) En god estimator

Detaljer

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for

Detaljer

Statistikk for språk- og musikkvitere 1

Statistikk for språk- og musikkvitere 1 Statistikk for språk- og musikkvitere 1 Mitt navn: Åsne Haaland, Vitenskapelig databehandling USIT Ikke nøl, avbryt med spørsmål! Hva oppnår en med statistikk? Få oversikt over data: typisk verdi, spredning,

Detaljer

Polynomisk interpolasjon

Polynomisk interpolasjon Polynomisk interpolasjon Hans Munthe-Kaas 1. jaunar 2002 Abstract Dette notatet tar for seg interpolasjon med polynomer. Notatet er ment som et tillegg til læreboken i I162, og forsøker å framstille dette

Detaljer

FFI-RAPPORT. Teknologiske muligheter for Tolletaten. mønstergjenkjenning og maskinlæring

FFI-RAPPORT. Teknologiske muligheter for Tolletaten. mønstergjenkjenning og maskinlæring FFI-RAPPORT 17/17026 Teknologiske muligheter for Tolletaten mønstergjenkjenning og maskinlæring - Idar Dyrdal Lars Aurdal Kristin Hammarstrøm Løkken Thor Engøy Teknologiske muligheter for Tolletaten mønstergjenkjenning

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til

Detaljer

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper Bo Lindqvist Institutt for matematiske fag 2 Kapittel 8: Sammenligning av grupper Situasjon: Vi ønsker

Detaljer

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s. 1. Oppgave 1

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s. 1. Oppgave 1 Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s AR2-modell: Oppgave X t φ X t φ 2 X t 2 Z t Antas å være kausal slik at X t ψ j Z t j er ukorrelert med Z t+,

Detaljer

I enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x

I enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x Multiple regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable.det er fortsatt en responsvariabel. Måten dette gjøre på er nokså naturlig. Prediktoren

Detaljer

Om eksamen. Never, never, never give up!

Om eksamen. Never, never, never give up! I dag I dag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve 3 a og b (inkl SME) Om eksamen (Truleg) 10 punkt.

Detaljer

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden.

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden. Estimeringsmetoder Momentmetoden La X, X 2,..., X n være uavhengige variable som er rektangulært fordelte på intervallet [0, θ]. Vi vet da at forventningsverdiene til hver observasjon og forventningen

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA1081 EKSAMENSDATO: 11. juni 2007. KLASSE: Ingeniørklasser. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.

Detaljer

Vektorligninger. Kapittel 3. Vektorregning

Vektorligninger. Kapittel 3. Vektorregning Kapittel Vektorligninger I denne uken skal vi bruke enkel vektorregning til å analysere lineære ligningssystemer. Vi skal ha et spesielt fokus på R, for det går an å visualisere; klarer man det, går det

Detaljer

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. FORMELSAMLING TIL STK2100 (Versjon Mai 2018) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar

Detaljer

TMA4245 Statistikk Høst 2016

TMA4245 Statistikk Høst 2016 TMA5 Statistikk Høst 6 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving Løsningsskisse Oppgave a) Den tilfeldige variabelen X er kontinuerlig fordelt med sannsynlighetstetthet

Detaljer

Om eksamen. Never, never, never give up!

Om eksamen. Never, never, never give up! Plan vidare Onsdag Gjere ferdig kap 11 + repetisjon Fredag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve

Detaljer

Forelesning 3. april, 2017

Forelesning 3. april, 2017 Forelesning 3. april, 2017 APPENDIX TIL KAP. 6 Sentralgrenseteoremet AVSNITT 6.3 Anvendelser av sentralgrenseteoremet Histogrammer S-kurver Q-Q-plot Diverse eksempler MGF for følger av uavhengige identisk

Detaljer

Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen

Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen gir testobservatoren t mer spredning enn testobservatoren

Detaljer

Eksamensoppgåve i Løsningsskisse TMA4245 Statistikk

Eksamensoppgåve i Løsningsskisse TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgåve i Løsningsskisse TMA4245 Statistikk Fagleg kontakt under eksamen: Gunnar Taraldsen a, Torstein Fjeldstad b Tlf: a 464 32 506, b 962 09 710 Eksamensdato: 23

Detaljer

Reelle tall på datamaskin

Reelle tall på datamaskin Reelle tall på datamaskin Knut Mørken 5. september 2007 1 Innledning Tirsdag 4/9 var tema for forelesningen hvordan reelle tall representeres på datamaskin og noen konsekvenser av dette, særlig med tanke

Detaljer

Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister.

Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister. ECON230: EKSAMEN 20 VÅR - UTSATT PRØVE 2 TALLSVAR. Oppgave Da Anne var på besøk i Roma, fikk hun raskt problemer med språket. Anne snakker engelsk, men ikke italiensk, og kun av 5 italienere behersker

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 9.6: Prediksjonsintervall 9.8: To utvalg, differanse µ 1 µ 2 Mette Langaas Foreleses mandag 18.oktober, 2010 2 Prediksjonsintervall for fremtidig observasjon,

Detaljer

4 Matriser TMA4110 høsten 2018

4 Matriser TMA4110 høsten 2018 Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Gunnar Taraldsen a, Torstein Fjeldstad b Tlf: a 464 32 506, b 962 09 710 Eksamensdato: 23. mai 2018 Eksamenstid

Detaljer

Sensitivitet og kondisjonering

Sensitivitet og kondisjonering Sensitivitet og kondisjonering Gitt en lineær likningssystem Ax = b vi skal studere effekten av perturbasjoner av input data: 1/19 på output data: Man kan A, b x perturbere bare b perturbere b og A samtidig.

Detaljer

7.4 Singulærverdi dekomposisjonen

7.4 Singulærverdi dekomposisjonen 7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon

Detaljer

Computers in Technology Education

Computers in Technology Education Computers in Technology Education Beregningsorientert matematikk ved Høgskolen i Oslo Skisse til samlet innhold i MAT1 og MAT2 JOHN HAUGAN Både NTNU og UiO har en god del repetisjon av videregående skoles

Detaljer

Løsningsforslag Eksamen S2, høsten 2015 Laget av Tommy O. Sist oppdatert: 25. mai 2017

Løsningsforslag Eksamen S2, høsten 2015 Laget av Tommy O. Sist oppdatert: 25. mai 2017 Løsningsforslag Eksamen S2, høsten 215 Laget av Tommy O. Sist oppdatert: 25. mai 217 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere funksjonen f(x) = x 3 + 2x. Formelen vi må bruke er (x n ) =

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Sjette forelesning Lilja Øvrelid 27 februar, 2017 1 Sannsynlighet Sannsynlighet spiller en svært viktig rolle i språkteknologi... og også i dette

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 202 Statistiske slutninger for den eksponentielle fordelingsklasse. Eksamensdag: Fredag 15. desember 1995. Tid for eksamen:

Detaljer

Introduksjon til inferens

Introduksjon til inferens Introduksjon til inferens Hittil: Populasjon der verdien til et individ/enhet beskrives med en fordeling. Her inngår vanligvis ukjente parametre, μ, p,... Enkelt tilfeldig utvalg (SRS), observator p =

Detaljer

Oppgave 1: Feil på mobiltelefoner

Oppgave 1: Feil på mobiltelefoner Oppgave 1: Feil på mobiltelefoner a) Sannsynlighetene i oppgaven blir P (F 1 F 2 ) P (F 1 ) + P (F 2 ) P (F 1 F 2 ) P (F 1 ) + 1 P (F2 C ) P (F 1 F 2 ) 0.080 + 0.075 0.006 0.149 P (F 1 F 2 ) P (F 1 F 2

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b5 Løsningsskisse Oppgave 1 Vi ønsker å finne ut om et nytt serum kan stanse leukemi.

Detaljer