Innledning Beslutningsteori Parametriske metoder Ikke-parametriske metoder Diskriminantfunksjoner Evaluering Ikke-ledet læring Klyngeanalyse Oversikt
|
|
- Rudolf Kristoffersen
- 7 år siden
- Visninger:
Transkript
1 Oversikt Innhold i kurset Beslutningsteori (desisjonsteori) Parametriske metoder Ikke-parametriske metoder Lineære og generaliserte diskriminantfunksjoner Feilrateestimering og evaluering av klassifikatorer Ikke-ledet læring Klyngeanalyse.
2 Klassifiseringsproblemet Eksempel - objekter fra to klasser Todimensjonalt egenskapsrom med sampler fra to klasser (syntetiske data).
3 Klassifiseringsproblemet Eksempel - objekter fra to klasser (2) Det samme egenskapsrommet delt i to desisjonsregioner ved hjelp av en ikke-lineær desisjonsgrense.
4 Mønstergjenkjenningsmetoder
5 Oversikt Innhold i kurset Beslutningsteori (desisjonsteori) Parametriske metoder Ikke-parametriske metoder Lineære og generaliserte diskriminantfunksjoner Feilrateestimering og evaluering av klassifikatorer Ikke-ledet læring Klyngeanalyse.
6 Grunnleggende begreper Beslutningsteori - grunnleggende begreper Objekter skal tilordnes klasser/tilstander: w 1,w 2,...,w c der c er antall klasser i problemet. Til hver klasse hører en ápriorisannsynlighet: P(w 1 ),P(w 2 ),...,P(w c ) som er sannsynligheten for at hver klasse skal opptre (før målinger er foretatt). Til hver klasse hører også klassebetingede sannsynlighetstetthetsfunksjoner: p(x w i ), i = 1,...,c. Her er vektoren: x =[x 1,x 2,...,x d ] t en målt egenskapsvektor for det aktuelle objektet.
7 Grunnleggende begreper Sannsynlighetstetthetsfunksjoner (klassebetingede) Klassebetingede tetthetsfunksjoner for to klasser. Det grønne arealet tilsvarer sannsynligheten for at et vilkårlig sample fra (i dette tilfellet) w 2 skal opptre med egenskapsverdi x i intervallet mellom a og b.
8 Grunnleggende begreper Bayes regel Bayes regel for áposteriorisannsynlighet: P(w i x)= p(x w i)p(w i ) c p(x w j )P(w j ) Â j=1, i = 1,...,c knytter sammen á priori sannsynligheter og klassebetingede tetthetsfunksjoner. P(w i x) er sannsynligheten for at klasse w i skal opptre, gitt den målte egenskapsvektoren x.
9 Handlinger, kostnader og risiko Handlinger Handlinger (events): a 1,a 2,...,a a er noe som utføres på bakgrunn av den målte egenskapsvektoren. Hvor mange handlinger? Vanligvis er a = c, dvs. én-til-én sammenheng mellom klasser og handlinger (handlingen a i består i å klassifisere til klasse w i ), Generelt er a 6= c, f.eks. a = c + 1derhandlinga c+1 tilsvarer forkasting (ingen klassifisering). Desisjonsfunksjonen: a(x)! a 1,a 2,...,a a er en funksjon av egenskapsvektoren x, som har én av de mulige handlingene som utfall.
10 Handlinger, kostnader og risiko Kostnader knyttet til handlinger Kostfunksjonen: l(a i w j ), der i = 1,...,a og j = 1,...,c, angir kostnaden (tapet) ved å velge handlingen a i når w j er sann klasse. Det kan f.eks. være et større tap forbundet ved å klassifisere bjørk som ask enn omvendt, slik at kostnadene for disse tilfellene kan være: l(velg bjørk ask)=1 l(velg ask bjørk)=10 mens kostnadene for riktig valg av handling som oftest vil settes til null, dvs. l(velg bjørk bjørk)=l(velg ask ask)=0.
11 Handlinger, kostnader og risiko Risiko knyttet til handlinger Betinget risk (forventet tap) er kostnaden forbundet ved en gitt handling, gitt en måling (dvs. egenskapsvektoren for et ukjent objekt): Total risk er gitt ved: R(a i x)= c  j=1 l(a i w j )P(w j x), i=1,...,a. Z R = R(a(x) x)p(x)dx R d for en gitt desisjonsfunksjon a(x) med utfallene a 1,a 2,...,a a. Den totale risken skal minimaliseres ved å velge a i slik at den betingede risken R(a(x) x) er minimum for enhver x.
12 Desisjonsregler Bayes desisjonsregel Minimalisering av total risk R leder til Bayes desisjonsregel, som kan skrives som: Velg a m hvis R(a m x) apple R(a j x), j = 1,...,a. Utfallet av desisjonsfunksjonen er da a m, dvs.: a(x)=a m. Dette er det valg av handling som gir minimum betinget risk og sikrer minimum total risk, dvs. minimum-risk klassifisering.
13 Desisjonsregler Minimum feilrate og maksimum tiltro Ved å velge en null-én kostfunksjon (og sette a=c): ( 0 i = j (ingen kost for riktig klassifisering) l(a i w j )=l ij = 1 i 6= j (lik kost for alle typer feilklassifiseringer) reduseres den betingede risken til: R(a i x)=1 P(w i x) som gir minimum feilrate desisjonsregelen: Velg w i hvis P(w i x) P(w j x), j = 1,...,c. Dersom P(w i )=1/c (like á priori sannsynligheter) forenkles denne ytterligere til maksimum tiltro regelen: Velg w i hvis p(x w i ) p(x w j ), j = 1,...,c.
14 Desisjonsregioner Feilrate og desisjonsregioner Feilsannsynligheten (feilraten) kan skrives som: P(feil)=1 P(rett)= c  j=1 P(rett), der sannsynligheten for riktig valg er Z p(x w j )P(w j )dx R j P(rett) maksimaliseres (og feilraten P(feil) minimaliseres) ved å velge R i, i = 1,...,c slik at: p(x w i )P(w i ) p(x w j )P(w j ), j = 1,...,c for alle x 2 R i. De optimale desisjonsgrensene går da gjennom punkter x der p(x w i )P(w i )=p(x w j )P(w j ) for i 6= j forutsatt at p(x w i )P(w i ) er maksimum over alle w 1,...,w c. For to klasser kan feilraten skrives som: Z Z P(feil)= p(x w 1 )P(w 1 )dx + p(x w 2 )P(w 2 )dx. R 2 R 1
15 Desisjonsregioner Inndeling i desisjonsregioner - univariat problem Veiede tetthetsfunksjoner for problem med tre klasser. Desisjonsgrensene deler det éndimensjonale egenskapsrommet inn i tre desisjonsregioner, men er ikke optimale.
16 Desisjonsregioner Optimale desisjonsgrenser - minimum feilrate Veiede tetthetsfunksjoner for problem med tre klasser. Desisjonsgrensene gir en optimal inndeling av egenskapsrommet i tre desisjonsregioner.
17 Diskriminantfunksjoner Diskriminantfunksjoner Diskriminantfunksjoner er et sett av funksjoner av egenskapsvektoren x: g i (x), i = 1,...,c (én funksjon for hver klasse) slik at beslutningsregeler kan skrives på generell (kanonisk) form: Velg w i hvis g i (x)=max{g j (x)} j Eksempler: g i (x)=p(w i x)= p(x w i)p(w i ) Â c j=1 p(x w j)p(w j ) g i (x)=p(x w i )P(w i ) g i (x)=ln[p(x w i )P(w i )] = lnp(x w i )+lnp(w i ) g i (x)= R(a i x) x g 1(x) g 2(x) g c(x) Klassifiseringsmaskin.
18 Normalfordelingen - eksempler på diskriminantfunksjoner Normalfordelingen Univariat normalfordeling (Gaussfordelingen): p(x µ,s 2 )= 1 p 2ps e (x µ) 2 2s 2 = N(µ,s 2 ) der µ er forventningsverdien og s 2 variansen. Multivariat normalfordeling: apple 1 p(x µ, )= (2p) d/2 exp 1/2 1 2 (x µ)t 1 (x µ) = N(µ, ) der µ er forventningsvektoren og er kovariansmatrisen.
Unik4590/Unik9590/TTK Mønstergjenkjenning
Sammendrag og eksempler Universitetssenteret på Kjeller Høsten 2016 (17. august 2016) Hva er mønstergjenkjenning? Formålet med mønstergjenkjenning Gjenkjenne objekter - tilordne objekter til én av flere
DetaljerGeneralisering til mange klasser - feilrettingsmetodene
Mange klasser Generalisering til mange klasser - feilrettingsmetodene Kesslers konstruksjon - omskriving av c-klasseproblemet til et toklasseproblem. Her innføres en sammensatt vektvektor a og et sett
DetaljerNormalfordelingen. Univariat normalfordeling (Gaussfordelingen): der µ er forventningsverdien og σ 2 variansen. Multivariat normalfordeling:
Normalfordelingen Univariat normalfordeling (Gaussfordelingen): p(x µ,σ 2 ) = 1 µ)2 (x e 2σ 2 = N(µ,σ 2 ) 2πσ der µ er forventningsverdien og σ 2 variansen. Multivariat normalfordeling: [ 1 p(x µ,σ) =
DetaljerInnledning Beslutningsteori Parametriske metoder Ikke-parametriske metoder Diskriminantfunksjoner Evaluering Ikke-ledet læring Klyngeanalyse Oversikt
Oversikt Innhold i kurset Beslutningsteori (desisjonsteori) Parametriske metoder Ikke-parametriske metoder Lineære og generaliserte diskriminantfunksjoner Feilrateestimering og evaluering av klassifikatorer
DetaljerDimensjonalitetsproblemer (3)
Dimensjonalitetsproblemer Dimensjonalitetsproblemer (3) Ved å inkludere flere uavhengige egenskaper der µ i1 6= µ i2 i egenskapsvektoren vil r 2 øke og P(e) avta, slik at: P d+1 (e) apple P d (e). Dette
DetaljerTEK5020/TEK Mønstergjenkjenning
Sammendrag og eksempler Innledning UiO : Institutt for teknologisystemer Høsten 2018 (18. august 2018) Hva er mønstergjenkjenning? Formålet med mønstergjenkjenning Gjenkjenne objekter - tilordne objekter
DetaljerUnik4590/Unik9590/TTK Mønstergjenkjenning
Sammendrag og eksempler UiO : Institutt for teknologisystemer Høsten 2017 (14. august 2017) Hva er mønstergjenkjenning? Formålet med mønstergjenkjenning ˆ Gjenkjenne objekter - tilordne objekter til én
DetaljerUnik4590/Unik9590/TTK Mønstergjenkjenning
Sammendrag og eksempler Universitetssenteret på Kjeller Høsten 2016 (15. oktober 2016) Hva er mønstergjenkjenning? Formålet med mønstergjenkjenning Gjenkjenne objekter - tilordne objekter til én av flere
DetaljerDiskrete egenskaper. Egenskapsvektoren x antar kun diskrete verdier: v 1,v 2,...,v m. Endringer fra det kontinuerlige tilfellet er at:
Iledig Beslutigsteori Parametriske metoder Ikke-parametriske metoder Diskrimiatfuksjoer Evaluerig Ikke-ledet lærig Klygeaalyse Diskrete egeskaper Diskrete egeskaper Egeskapsvektore x atar ku diskrete verdier:
DetaljerBayesisk estimering. Tettheten i punkt x er her gitt ved: der p(q X ) er áposterioriparameterfordelinggitt ved: p(q X )=
Bayesisk estimering Bayesisk estimering Tettheten i punkt x er her gitt ved: Z p(x X )= p(x q)p(q X )dq der p(q X ) er áposterioriparameterfordelinggitt ved: p(q X )= p(x q)p(q) R p(x q)p(q)dq og p(x q)
DetaljerSuffisient observator
Iledig Beslutigsteori Parametriske metoder Ikke-parametriske metoder Diskrimiatfuksjoer Evaluerig Ikke-ledet lærig Klygeaalyse Suffisiete observatorer Suffisiet observator Statistisk størrelse s som ieholder
DetaljerTEK5020/TEK Mønstergjenkjenning
Sammendrag og eksempler Lineære diskriminantfunksjoner (Gradientsøk, perceptronmetoden) UiO : Institutt for teknologisystemer Høsten 2018 (22. oktober 2018) Diskriminantfunksjoner Utvidet egenskapsrom
DetaljerEkstraoppgaver for STK2120
Ekstraoppgaver for STK2120 Geir Storvik Vår 2011 Ekstraoppgave 1 Anta X 1 og X 2 er uavhengige med X 1 N(1.0, 1.0) og X 2 N(2.0, 1.5). La X = (X 1, X 2 ) T. Definer c = ( ) 2.0 3.0, A = ( ) 1.0 0.5 0.0
DetaljerLØSNINGSFORSLAG ) = Dvs
LØSNINGSFORSLAG 12 OPPGAVE 1 D j er differansen mellom måling j med metode A og metode B. D j N(µ D, 0.1 2 ). H 0 : µ D = 0 mot alternativet H 1 : µ D > 0. Vi forkaster om ˆµ D > k Under H 0 er ˆµ D =
Detaljerx λe λt dt = 1 e λx for x > 0 uavh = P (X 1 v)p (X 2 v) = F X (v) 2 = (1 e λv ) 2 = 1 2e λv + e 2λv = 2 1 λ 1 2λ = 3
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 7 Løsningsskisse Oppgave 1 a) Regner først ut den kumulative fordelingsfunksjonen til X: F X (x) = x λe λt dt
DetaljerLikningssystem for maksimum likelihood løsning
Maksimum likelihood metode Likigssystem for maksimum likelihood løsig Treig av klassifikator ute merket treigssett. Atakelser (i første omgag): Atall klasser c er kjet, ÁpriorisasyligheteeP(w i ), i =
DetaljerTo-dimensjonale kontinuerlige fordelinger
To-dimensjonale kontinuerlige fordelinger Noen resultater for diskrete fordelinger Vi har tidligere definert punktsannsynligheten p(x, y) for en todimensjonal variabel (X, Y ) som p(x, y) = P ({X = x}
DetaljerSTK Oppsummering
STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter
DetaljerEcon 2130 uke 16 (HG)
Econ 213 uke 16 (HG) Hypotesetesting I Løvås: 6.4.1 6, 6.5.1-2 1 Testing av µ i uid modellen (situasjon I Z-test ). Grunnbegreper. Eksempel. En lege står overfor følgende problemstilling. Standardbehandling
DetaljerFORMELSAMLING TIL STK1100 OG STK1110
FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 11. november 2017) 1. Sannsynlighet La A, B, A 1, A 2,..., B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål
DetaljerECON240 Vår 2018 Oppgaveseminar 1 (uke 6)
ECON240 Vår 2018 Oppgaveseminar 1 (uke 6) Oppgaver til prerequisites og kapittel 1 fra læreboken Example P.1, P.5, P.6, P.7, P.8, P.9, P.11, P.12, P.13, og P.14 Example 1.1, 1.2, 1.3, 1.4, 1.6, 1.7, 1.9,
DetaljerIkke-separable problemer
Feilrettingsmetoder Ikke-separable problemer Feilrettingsmetodene konvergerer under gitte betingelser til løsningsvektorer for lineært separable problemer, men kan også gi gode resultater på ikke-separable
DetaljerKapittel 3: Studieopplegg
Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg
DetaljerForelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind
Forelesning 5: Kontinuerlige fordelinger, normalfordelingen Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Kontinuerlige fordelinger 2. Uniform fordeling 3. Normal-fordelingen 1. Kontinuerlige fordelinger
DetaljerTMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 0, blokk II Løsningsskisse Oppgave Surhetsgrad i ferskvann Eksamen august 00, oppgave av 3 a) En god estimator
DetaljerTMA4240 Statistikk Høst 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av
DetaljerMØNSTERGJENKJENNING. Forelesningsnotater til kurset Unik4590/Unik9590/TTK4205
MØNSTERGJENKJENNING Forelesigsotater til kurset Uik4590/Uik9590/TTK4205 Idar Dyrdal Uiversitetsseteret på Kjeller idar@uik.o Høste 2016 (oppdatert 15. oktober 2016) Faget møstergjekjeig deles valigvis
DetaljerLøsningsforslag statistikkeksamen desember 2014
Løsningsforslag statistikkeksamen desember 2014 Oppgave 1 a i. To hendelser er disjunke hvis det er intet overlapp mellom hendelsene, altså hvis A B = Ø. Siden vi har en sannsynlighet for å finne A B som
DetaljerSiden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden.
Estimeringsmetoder Momentmetoden La X, X 2,..., X n være uavhengige variable som er rektangulært fordelte på intervallet [0, θ]. Vi vet da at forventningsverdiene til hver observasjon og forventningen
DetaljerFORMELSAMLING TIL STK1100 OG STK1110
FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål
DetaljerNormalfordeling. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 7
Ueoppgaver i BtG207 Statisti, ue 7 : Normalfordeling. 1 Høgsolen i Gjøvi Avdeling for tenologi, øonomi og ledelse. Statisti Ueoppgaver ue 7 Normalfordeling. Oppgave 1 Anta Z N(0, 1), dvs. Z er standard
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Mandag 1. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet
DetaljerEcon 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling
Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling 1 Geometrisk fordeling Binomisk forsøks-serie En serie likeartete forsøk med to mulige utfall, S og F, i hvert. (Modell) forutsetninger
DetaljerNormal- og eksponentialfordeling.
Ukeoppgaver i Statistikk, uke 8 : Normal- og eksponentialfordeling. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 8 I løpet av uken blir løsningsforslag lagt
DetaljerKapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering
Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett
DetaljerLøsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007
Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Oppgave 1: Pengespill a) For hver deltaker har vi følgende situasjon: Deltakeren får en serie oppgaver. Hver runde har to mulige utfall: Deltakeren
DetaljerStokastiske prosesser i kontinuerlig tid
Stokastiske prosesser i kontinuerlig tid Kjell Arne Brekke October 29, 2001 1 Brownsk bevegelse Vi starter med å definere en Brownsk bevegelse. Denne prosessen bruker vi så senere til å definere en større
DetaljerEksamensoppgåve i Løsningsskisse TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgåve i Løsningsskisse TMA4245 Statistikk Fagleg kontakt under eksamen: Gunnar Taraldsen a, Torstein Fjeldstad b Tlf: a 464 32 506, b 962 09 710 Eksamensdato: 23
DetaljerECON240 Høst 2017 Oppgaveseminar 1 (uke 35)
ECON40 Høst 017 Oppgaveseminar 1 (uke 35) Oppgaver til prerequisites og kapittel 1 fra læreboken Example P.1, P.5, P.6, P.7, P.8, P.9, P.11, P.1, P.13, og P.14 Example 1.1, 1., 1.3, 1.4, 1.6, 1.7, 1.9,
DetaljerLøsningsforslag Eksamen S2, høsten 2017 Laget av Tommy O. Sist oppdatert: 26. november 2017
Løsningsforslag Eksamen S, høsten 017 Laget av Tommy O. Sist oppdatert: 6. november 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 4x 3. Vi bruker regelen samt regelen (x n ) = nx
DetaljerFasit for tilleggsoppgaver
Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x
DetaljerHøgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen
Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:
DetaljerOppgave 1: Feil på mobiltelefoner
Oppgave 1: Feil på mobiltelefoner a) Sannsynlighetene i oppgaven blir P (F 1 F 2 ) P (F 1 ) + P (F 2 ) P (F 1 F 2 ) P (F 1 ) + 1 P (F2 C ) P (F 1 F 2 ) 0.080 + 0.075 0.006 0.149 P (F 1 F 2 ) P (F 1 F 2
DetaljerGeneraliserte Lineære Modeller
Lineær regresjon er en GLM Generaliserte Lineære Modeller Responser (Y i -er) fra normalfordelinger Lineær komponent η i = β 0 + β 1 x i1 + + β p x ip E[Y i ] = µ i = η i, dvs. linkfunksjonen g(µ i ) =
DetaljerKapittel 2: Hendelser
Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en
DetaljerEKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 1. juni 2010. KLASSE: HIS 08 11. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside)
DetaljerNotat 3 - ST februar 2005
Notat 3 - ST1301 1. februar 2005 1 Simulering fra modell Når vi skal analysere et gitt konkret innsamlet datasett vil vi gjøre dette med utgangspunkt i en statistisk modell. Vi kan si at en slik statistisk
DetaljerTMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Løsningsskisse Oppgave X er kontinuerlig fordelt med sannsynlighetstetthet f X (x) = { x exp( x ) x
DetaljerTMA4240 Statistikk Eksamen desember 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet
DetaljerInferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - "Fornuftig verdi"
Inferens STK1110 - Repetisjon av relevant stoff fra STK1100 Geir Storvik 12. august 2015 Data x 1,..., x n evt også y 1,..., y n Ukjente parametre θ kan være flere Vi ønsker å si noe om θ basert på data.
DetaljerSTK juni 2006
Løsningsforslag til eksamen i STK11 8. juni 26 Oppgave 1 a) Vi har at Z (Y µ)/ er standardnormalfordelt. For > er derfor den kumulative fordelingen til X gitt ved F () P (X ) P (log X log ) P (Y log )
DetaljerTMA4240 Statistikk H2010
TMA4240 Statistikk H2010 3.3: Kontinuerlige sannsynlighetsfordelinger 4.1: Matematisk forventing (univariat del) Mette Langaas Foreleses mandag 6. september 2010 2 3.1 Stokastisk variabel (repetisjon)
Detaljer3.1 Stokastisk variabel (repetisjon)
TMA4240 Statistikk H2010 3.3: Kontinuerlige sannsynlighetsfordelinger 4.1: Matematisk forventing (univariat del) Mette Langaas Foreleses mandag 6. september 2010 2 3.1 Stokastisk variabel (repetisjon)
DetaljerDet anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
ECON 0 EKSAMEN 0 VÅR TALLSVAR Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i
DetaljerDET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE. Studieprogram/spesialisering: Kybernetikk Vårsemesteret, 2012
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE Studieprogram/spesialisering: Kybernetikk Vårsemesteret, 2012 Konfidensiell Student/studenter:... Thomas Ivesdal-Tronstad... signatur(er) Fagansvarlig:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2120 Statistiske metoder og dataanalyse 2. Eksamensdag: Fredag 7. juni 2013. Tid for eksamen: 14.30 18.30. Oppgavesettet er
DetaljerForeleses onsdag 8. september 2010
TMA4240 Statistikk H200 4.2: Varians (univariat del) 4.4: Chebyshevs teorem 3.4: Simultanfordelinger Mette Langaas Foreleses onsdag 8. september 200 Mette.Langaas@math.ntnu.no, TMA4240H200 2 4.2 Varians
DetaljerPrøveeksamen STK2100 (fasit) - vår 2018
Prøveeksamen STK2100 (fasit) - vår 2018 Geir Storvik Vår 2018 Oppgave 1 (a) Vi har at E = Y Ŷ =Xβ + ε X(XT X) 1 X T (Xβ + ε) =[I X(X T X) 1 X T ]ε Dette gir direkte at E[E] = 0. Vi får at kovariansmatrisen
DetaljerEksamen - INF 283 Maskinlæring
Eksamen - INF 283 Maskinlæring 23 feb. 2016 Tid: 3 timer Eksamen inneholder 15 oppgaver, som vil bli vektet likt ved evaluering. 1 Table 1 attributt antall personer forsørget av låntaker månedlig inntekt
DetaljerLitt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians.
H. Goldstein Revidert januar 2008 Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians. Dette notatet er ment å illustrere noen begreper fra Løvås, kapittel
DetaljerMinimalisering av kriteriefunksjon - gradientsøk
Trening av vektvektor - gradientsøk Minimalisering av kriteriefunksjon - gradientsøk En kriteriefunksjon J(a) skal minimaliseres for å finne en otimal vektvektor. Gradientsøk: a 1 = vilkårlig startverdi
DetaljerTMA4240 Statistikk H2015
TMA4240 Statistikk H2015 Funksjoner av stokastiske variabler (kapittel 7+notat) Fokus på start med kumulativ fordeling 7.2 Funksjon av en SV (inkludert en-entydighet). Fordeling til max/min (fra notat).
DetaljerSTK Oppsummering
STK1110 - Oppsummering Geir Storvik 11. November 2015 STK1110 To hovedtemaer Introduksjon til inferensmetoder Punktestimering Konfidensintervall Hypotesetesting Inferens innen spesifikke modeller/problemer
DetaljerLøsningsforslag eksamen 25. november 2003
MOT310 Statistiske metoder 1 Løsningsforslag eksamen 25. november 2003 Oppgave 1 a) Vi har µ D = µ X µ Y. Sangere bruker generelt trapesius-muskelen mindre etter biofeedback dersom forventet bruk av trapesius
DetaljerGeneraliserte Lineære Modeller
Eksponensiell klasse Generaliserte Lineære Modeller Y i f(y i ;θ i ) = c(y i ;φ) exp((θ i y i a(θ i ))/φ) µ i = E[Y i ] = a (θ i ) σ 2 i = Var[Y i ] = φa (θ i ) = φv (µ i ) STK3100-4. september 2011 Geir
DetaljerDiskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Forventning (gjennomsnitt) (X=antall mynt i tre kast)
Diskret sannsynlighetsfordeling (kap 1.1-1.6) Oversikt Utfallsrom (sample space) Sannsynlighetsfordeling Forventning (expectation), E(X), populasjonsgjennomsnitt Bruk av figurer og histogram Binomialfordelingen
DetaljerForelesning 4 STK3100
! * 2 2 2 Bevis : Anta Forelesning 4 STK3 september 27 S O Samuelsen Plan for annen forelesning: Likelihood-egenskaper 2 Konsistens for ML 3 Tilnærmet fordeling for ML 4 Likelihoodbaserte tester 5 Multivariat
DetaljerForelening 1, kapittel 4 Stokastiske variable
Forelening 1, kapittel 4 Stokastiske variable Eksempel X = "antall kron på kast med to mynter (før de er kastet)" Uniformt utfallsrom {MM, MK, KM, KK}. X = x beskriver hendelsen "antall kron på kast med
DetaljerTMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag
TMA4245 Statistikk Vår 2017 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3 Dette er den første av to innleveringer i blokk 2 Denne øvingen skal oppsummere pensum
DetaljerTerningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6
Terningkast Halvor Aarnes, UiO, 2014 Innhold Ett terningkast og utfallsrom... 1 Union og snitt... 4 Betinget sannsynlighet... 5 Forventningsverdi E(X) og varianse Var(X)... 5 Konfidensintervall for proporsjoner...
DetaljerNotasjon. Løsninger. Problem. Kapittel 7
3 Notasjon Kapittel 7 Funksjoner av stokastiske variabler Har n stokastiske variabler, X 1, X 2,..., X n, med kjent fordeling f( 1, 2,..., n ) og kumulativ fordeling F( 1, 2,..., n ). Ser på Y = u(x 1,
DetaljerLøsningsforslag for eksamen i AA6516 Matematikk 2MX - 4. desember eksamensoppgaver.org
Løsningsforslag for eksamen i AA6516 Matematikk 2MX - 4. desember 2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det
DetaljerTyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4
3 Tyngdepunkt Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4240 H2006: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF
DetaljerEKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 10. juni Ingeniørutdanning. TID: kl EMNEANSVARLIG: Hans Petter Hornæs
KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Statistikk. Rea181 EKSAMENSDATO: 1. juni 28 KLASSE: Ingeniørutdanning. TID: kl. 9. 13.. EMNEANSVARLIG: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl.
DetaljerFra første forelesning:
2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen
DetaljerOppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir
DetaljerDa vil summen og gjennomsnittet være tilnærmet normalfordelte : Summen: X 1 +X X n ~N(nµ,nσ 2 ) Gjennomsnittet: X 1 +X
Me me me me metallic hvit 4.4: Tilnærming til normalfordeling Tilnærming til normalfordeling: binomisk og Poisson kan tilnærmes v.h.a. normalfordeling under bestemte forhold (ved "mange" delforsøk/hendelser)
DetaljerRegneregler for forventning og varians
Regneregler for forventning og varians Det fins regneregler som er til hjelp når du skal finne forventningsverdier og varianser. Vi skal her se nærmere på disse reglene. Vi viser deg også hvordan reglene
Detaljereksamensoppgaver.org 4 2e x = 7 e x = 7 2 ln e x = ln 2 x = ln 7 ln 2 ln x 2 ln x = 2 2 ln x ln x = 2 ln x = 2 x = e 2
eksamensoppgaver.org 4 oppgave a..i) e x = 7 e x = 7 ( ) 7 ln e x = ln x = ln 7 ln a..ii) ln x ln x = ln x ln x = ln x = x = e a..i) cos x =.8 x [, 6 ] x = arccos(.8) x 6.9 x 6 6.9 x 6.9 x. a..ii) Løserdennemedabc-formelen
DetaljerDatamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)
Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variable (5.2) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel.
DetaljerLøsningsforslag Eksamen i Statistikk SIF5060 Aug 2002
Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Oppgave 1 a) En god estimator er forventningsrett og har liten varians. Vi tester forventningsretthet: E[ˆµ] E[Y ] µ E[ µ] E[ 1 2 X + 1 2 Y ] 1 2 E[X]
Detaljeri x i
TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale
DetaljerSeksjon 1.3 Tetthetskurver og normalfordelingen
Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver
DetaljerEKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA1081 EKSAMENSDATO: 11. juni 2007. KLASSE: Ingeniørklasser. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.
DetaljerTMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 8, blokk II Løsningsskisse Oppgave 1 Da komponentene danner et parallellsystem, vil systemet fungere dersom minst
DetaljerEksamensoppgave i TMA4267 Lineære statistiske modeller
Institutt for matematiske fag Eksamensoppgave i TMA4267 Lineære statistiske modeller Faglig kontakt under eksamen: Tlf: Eksamensdato: August 2014 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte hjelpemidler:
DetaljerUNIVERSITETET I OSLO Matematisk Institutt
UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.
ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling
DetaljerTransformasjoner av stokastiske variabler
Transformasjoner av stokastiske variabler Notasjon merkelapper på fordelingene Sannsynlighetstettheten og den kumulative fordelingen til en stokastisk variabel X betegnes hhv. f X og F X. Indeksen er altså
DetaljerTMA4240 Statistikk Høst 2008
TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har
DetaljerLøsningsforslag Eksamen M100 Høsten 1998
Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim
DetaljerOm eksamen. Never, never, never give up!
I dag I dag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve 3 a og b (inkl SME) Om eksamen (Truleg) 10 punkt.
DetaljerTMA4240 Statistikk H2010 (20)
TMA4240 Statistikk H2010 (20) 10.5: Ett normalfordelt utvalg, kjent varians (repetisjon) 10.4: P-verdi 10.6: Konfidensintervall vs. hypotesetest 10.7: Ett normalfordelt utvalg, ukjent varians Mette Langaas
DetaljerLa U og V være uavhengige standard normalfordelte variable og definer
Binormalfordelingen Definisjon Noe av hensikten med å innføre begrepet betinget sannsynlighet er at kompliserte modeller ofte kan bygges ut fra enkle betingede modeller. Når man spesifiserer betingelser
DetaljerLøsning eksamen desember 2016
Løsning eksamen desember 016 Oppgave 1 a) En drone har to uavhengige motorer. Vi innfører hendelsene A: motor 1 svikter B: motor svikter Dronen er avhengig av at begge virker, slik at sannsynligheten for
DetaljerEmnenavn: Grunnleggende matematikk og statistikk
Høgskolen i østfold EKSAMEN Emnekode: IR13511 Emnenavn: Grunnleggende matematikk og statistikk Dato: 14.06.2016 Eksamenstid: 0900-1300 Sensurfrist: 05.07.2016 Antall oppgavesider: 3 Faglærer: Mikjel Thorsrud,
DetaljerTMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:
TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og
Detaljer