Econ 2130 uke 16 (HG)

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Econ 2130 uke 16 (HG)"

Transkript

1 Econ 213 uke 16 (HG) Hypotesetesting I Løvås: ,

2 Testing av µ i uid modellen (situasjon I Z-test ). Grunnbegreper. Eksempel. En lege står overfor følgende problemstilling. Standardbehandling (B) for en litt mindre lidelse gir gjennomsnittlig helbredelsestid 15 dager (regner man med). La Y være helbredelsestid (behandling B) for en vilkårlig pasient. Antakelse basert på erfaring: E( Y ) = 15 og SD( Y ) = var( Y ) = 3. Ny behandling (BNY) foreligger. Legen ønsker å teste BNY. La X være helbredelsestid (BNY) for en vilkårlig pasient. Legen antar: E( X) = µ ( ukjent) SD( X ) = σ = 3 (kjent) DATA: BNY brukt på n = 71 pasienter: x1, x2,, xn x = 14.5 PROBLEM: Tyder dette på at vi kan påstå " µ < 15" med sterk evidens? 2

3 MODELL: X1, X2,, Xn uavhengige og identisk normalfordelte ( N ( µσ, ) ) med E X = ukjent X = = = k t i = 2,, n 2 2 ( i) µ ( ) og var( i) σ 9 3 ( jen ), 1, σ Estimator: ˆ µ = X ˆ µ forventningsrett ( E( ˆ µ ) = µ ) og normalfordelt ( X ~ N( µ, )) n Estimat: ˆ µ = X = x = 14.5 obs obs To hypoteser om den ukjente er aktuelle: H µ H 1 : µ 15 ("null-hypotesen") : µ < 15 ("alternativ hypotese") Vi vet at x µ, men vi vet ikke hvor langt vekk fra µ x er! Merk at µ = 15 er en kjent hypotetisk verdi bestemt av problemstillingen. 3

4 Sett fra et vitenskapelig ståsted: Hypotesene H og H inngår ikke symmetrisk i problemstillingen. 1 Hensiktsmessig valg av mulige konklusjoner: i) Det er sterk evidens i data for å påstå at H : µ < 15 1 er sann. ii) Det er ikke nok informasjon i data til å kunne skille mellom H1 og H med sterk evidens. For å uttrykke dette brukes ofte formuleringer som, Si ingen ting eller Uavklart problem e.l. Eksempel på en beslutningsregel (forkastningsregel): Forkast H, dvs. påstå H1 : µ < 15 dersom X k, der k er kritisk verdi. Ikke si noe hvis X k. Bestem den kritiske verdien k hensiktsmessig. Hvis x faller her, "Ikke si noe" påstå µ < 15 med sterk evidens. PROBLEM: Hvordan bestemme k? 4

5 Bestemme kritisk verdi k Forkastningsregel (= testkriterium): Forkast H hvis X k Ikke si noe hvis X > k X kalles testobservator k kalles kritisk verdi Feiloversikt: Konklusjon Ikke forkast ikke si noe Forkast (påstå ) H 1 H H Den ukjente sannheten H : 15 H : 15 1 feil Feil av type II (ikke så alvorlig) Feil av type I (anses alvorlig) feil Velg k slik at i) og ii) er oppfylt: i) Velg k slik at P(feil I) α der α er liten og subjektivt valgt. Vanlige valg er.5,.1,.1. α kalles signifikansnivå. ii) Velg k slik at P(feil II) blir minst mulig. 5

6 Et viktig hjelpemiddel: Styrkefunksjonen. Definisjon. En (statistisk) test består av et (observerbart) forkastningskriterium som (i prinsippet) formuleres før (a priori) data er kjent. Styrkefunksjonen for en gitt test er definert som P(forkast H) - tolket som en funksjon av de ukjente parameterene i modellen. I eksemplet. Test: Forkast H hvis X k. Styrkefunksjon: P(forkast H) = PX ( k) Utledning: σ X µ X ~ N µ, Z = ~ N(,1) n σ n La som før tabell E.3(D.3) Gx ( ) = PZ ( x) X µ k µ k µ k µ P(forkast H) = PX ( k) = P = P Z = G σ n σ n σ n σ n som er en funksjon av µ ( σ kjent), som vi skriver γ ( µ ) ( γ er "gamma" - gresk g) k µ Styrkefunksjonen i eksemplet: γ ( µ ) = PX ( k) = G σ n 6

7 Det er styrkefunksjonen vi bruker til å vurdere egenskapene til en test. Sammenhengen mellom styrkefunksjonen og feil av type I og II. hvis µ < 15 ( H1) P(feil I) = P(forkast H) = γ ( µ ) hvis µ 15 ( H) P(ikke forkast H) = P(feil II) = 1 γ ( µ ) hvis µ < 15 ( H1) hvis µ 15 ( H) Konklusjon Ikke forkast ikke si noe Forkast H (påstå ) H 1 H Den ukjente sannheten H : µ 15 H : µ < 15 1 feil Feil av type I (anses alvorlig) Feil av type II (ikke så alvorlig) feil Kravene i) og ii) uttrykt ved styrkefunksjonen. i) Velg k slik at P(feil I ) α Velg k slik at γ ( µ ) α hvis µ 15 ( H ) ii) Velg k slik at P(feil II) blir minst mulig Velg k slik at 1 γ ( µ ) blir minst mulig når µ < 15 ( H ) Velg k slik at γ ( µ ) blir størst mulig når µ < 15 ( H ) 1 1 Løsning: Kravene i) og ii) Velg k som løsningen av ligningen γ( 15) = α 7

8 Vi trenger å vite: k µ Styrkefunksjonen i eksemplet γ ( µ ) = G er en avtagende funksjon av µ σ n Fordi: Gz ( ) = PZ ( z) er en stigende funksjon av z. Så, hvis µ øker, vil k σ µ n avta ( ) k µ γ µ = G avtar når µ øker. σ n 8

9 γ ( µ ) To tester med kritisk verdi k = 14.2 og k=14.6 h.h.v. γ ( µ ) for k = 14.2 γ ( µ ) for k = 14.6 γ ( µ ) = P (forkast H ) µ Krav: γ ( µ ) størst mulig her for µ < 15 α α Krav: γ ( µ ) α her µ H 1 H 9

10 Optimal løsning m.h.p. i) og ii) (15) k γ ( µ ) γ = α = γ ( µ ) for k = γ ( µ ) = P (forkast H ) µ γ ( µ ) størst mulig her for µ < α γ (15) H 1 α γ ( µ ) α her H µ 1

11 Kritisk verdi for testen som best oppfyller kravene i) og ii) Bestem k slik at γ (15) = α k 15 k 15 G = P Z = α σ n σ n k 15 = zα σ n k = 15 z α σ n Signifikansnivå 5%.5 tabell E.4(D.4) α =.5 og z = z = α Siden σ = 3 er forutsatt kjent, får vi kritisk verdi 3 k = 15 (1.645) = Styrkefunksjonen for denne testen er γ ( µ ) µ = G

12 Gjennomføring. Skal teste H: µ 15 ( µ ) mot H1: µ < 15 ( µ ) En test med signifikansnivå 5% er Forkast H hvis (forkastningskriterium) X (formulert før data) µ Styrkefunksjon: γ ( µ ) = Pµ (forkast H) = G 3 71 Gjennomføring: Data: n = 71 og X obs = 14.5 Konklusjon: Ikke forkast H dvs. Ikke si noe dvs. Det er ikke nok informasjon i data til å forkaste H. 12

13 Noen egenskaper ved testen. ( kan bestemmes før data er kjent) hvis µ < 15 ( H1) P(feil I) = γ ( µ ) hvis µ 15 ( H) Styrkefunksjonen: γ ( µ ) µ = G γ ( µ ) hvis µ < 15 ( H1) P(feil II) = hvis µ 15 ( H) Sann µ γ ( µ ) P (feil I) P(feil II) H H

14 Reformulering av testen (mest brukt i praksis). Problemet er å teste H: µ µ mot H1: µ < µ ( µ = 15 i eksemplet) Modell (situasjon I): X, X,, X er uid og X ~ N( µσ, ), der E( X ) = µ er ukjent og SD( X ) = σer kjent. 1 2 n i i i Test A med signifikansnivå : σ α " Forkast H hvis X µ zα " n σ testobservator X, kritisk verdi k = µ zα n Har: σ X µ zα X µ zα zα Test B med signifikansnivå : α testobservator n n σ n X µ ˆ µ µ σ n SE( ˆ µ ) σ X µ " Forkast H hvis Z = zα " X σ µ Z = =, kritisk verdi k = zα n Merk. (i) Test A og B er samme test (!), men med forskjellig testobservator og kritisk verdi. (ii) Det er test B som brukes i praksis ( B-kriteriet er mer generaliserbart) 14

15 Gjennomføring med test B i eksemplet: n = 71, α =.5 z = z = α.5 Testkriterium: 15 " Forkast hvis X µ X H Z = = " σ n 3 71 Observert: X obs Konklusjon: Ikke forkast H = 14.5 Zobs = = Typiske konsekvenser (tolkninger) av ikke-forkastning: (Kalles et ikke-signifikant resultat.) (1) Legen vil antakelig fortsette å bruke standardbehandlingen (B). Legen opprettholder antakelsen µ = 15 som arbeidshypotese. (2) Produsenten av BNY tror kanskje fortsatt på H : µ < 15 1, men mener (kanskje) at det ikke var mange nok observasjoner til å avsløre det. Disse to tolkningene motsier hverandre og er avhengig av interessene til ulike aktører. M.a.o., tolkningene er avhengige av konteksten for undersøkelsen som ligger utenfor data. Hva som velges som null-hypotese i en undersøkelse er derfor ikke 15 likegyldig.

16 Egenskaper ved test B (Z-test i situasjon I): X µ Fra før: W = ~ N(,1) uansett µ. σ n Dette brukte vi for å utlede et konfidensintervall for µ. W er ingen observator! Testobservatoren Z X µ X µ + µ µ = = = W σ n σ n µ µ + σ n ~ N µ = µ! (,1) bare hvis Kritisk verdi k = z α bestemt som løsningen av ligningen P (forkast H ) = P ( Z k) = α k = z µ = µ µ = µ α Fordeling for hvis µ < µ Z N (,1) : Fordeling for Z hvis µ = µ 16

17 Vanlige problemstillinger (uid modellen situasjon I). Problem (i): Testobservator H : µ µ mot H : µ < µ 1 Z µ X µ ˆ µ µ = =. α-nivå : Forkast H hvis σ Ensidig problem n SE( ˆ µ ) Problem (ii) H: µ µ mot H1: µ > µ Ensidig problem α-nivå test: " Forkast H hvis Z z " Problem (iii) H: µ = µ mot H1: µ µ α H 1 H test " Z z " H H 1 µ α µ µ `Tosidig problem µ α-nivå test : " Forkast s Z z eller Z z " H hvi α 2 α 2 α = P (forkast H ) = P ( Z z ) + P ( Z z ) = α 2 + α 2 µ = µ µ α 2 µ α 2 Ford. for Z hvis µ = µ H 1 H µ H 1 Ford. for Z hvis µ < µ N (,1) Ford. for Z hvis µ > µ 17

18 Z-testen for µ i uid modellen kan også brukes i den mer generelle situasjonen der σ er ukjent (situasjon II) hvis n er stor ( n 3 ca.) MODELL: X1, X2,, Xn uavhengige og identisk fordelte (vilkårlig fordeling) med E X = ukjent X = ukjent i = 1,2,, n der n 3. 2 ( i) µ ( ) og var( i) σ ( ), Vi kan fremdeles bruke Z- testen for alle tre problemene side 18 der den eneste 2 forskjellen er å bytte ut σ med estimatoren S = Σ( X X) ( n 1) PÅ grunn av sentralgrenseteoremet (bl.a.) har vi som for konfidensintervall (se forelesn. uke 12), at X µ tilnærmet W = ~ N(,1) uansett µ. S n X µ tilnærmet Testobservatoren Z = ~ N(,1) hvis og bare hvis µ = µ, S n som er det eneste vi trenger for å bestemme den kritiske verdien ved i Pµ = µ (forkast H ) = α Dermed kan vi bruke de samme Z testene side 17 med σ erstattet med S. Signifikansnivået er tilnærmet α med disse Z-testene. 18

19 Eksempel. Er feltet drivverdig for utvinning av kadmium? Data stammer fra n = 3 steinprøver. La X være % kadmium i prøve i, i = 1,2,,3 i 2 MODELL: X1, X2,, Xn er uid med E( Xi) = µ ( ukjent), var( Xi) = σ ( ukjent), der µ er gjennomsnittlig % kadmium i feltet. Feltet regnes drivverdig hvis µ > 8. Vi ønsker å teste H : µ 8( µ ) mot H : µ > 8( µ ) 1 X µ = µ = S n tilnærmet Testobservator Z ~ N(,1) hvis 8..1 tabell E4(D4) Velg nivå α =.1 z = %-nivå test: " Forkast H hvis Z z = 2.326"..1 DATA: n = 3, X = 9.6, S = 3.1 obs obs Z obs X obs = = = S obs Konklusjon: Forkast H. (dvs. feltet drivverdig). 19

20 T-test for µ i uid-modellen (situasjon III) Hvis vi i tillegg til forutsetningene under situasjon II, kan forutsette at enkeltobservasjonene kommer fra en normalfordeling, kan vi bruke T-test, som gjelder eksakt for alle n. MODELL: X uavhengige og identisk normalfordelte ( ) der 1, X2,, Xn Xi ~ N ( µσ, ) både µ og σ er ukjente. n er vilkårlig. X µ Som før (for konfidensintervall), W= ~ tn ( 1) fordelt uansett µ. S n X µ Testobservator: T =, som er lik W hvis µ = µ S n T~ tn ( 1) hvis µ = µ (som er nok til å bestemme kritisk verdi). Hvis, f.eks. problemet er H: µ µ mot H1: µ > µ, skal vi forkaste for store verdier av T, dvs. for T k der den kritiske verdien k bestemmes av ligningen P ( T k) k t = = α = µ µ α Eksakt α-nivå test: "Forkast hvis " H T t α (Tilsvarende for de andre problemene side 17 - se regel 6.19 (6.16)). Les eksempel 6.28 ( 6.26) - (uten setningen om p-verdi ) 2

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/ Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for

Detaljer

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

Hypotesetesting. Notat til STK1110. Ørnulf Borgan Matematisk institutt Universitetet i Oslo. September 2007

Hypotesetesting. Notat til STK1110. Ørnulf Borgan Matematisk institutt Universitetet i Oslo. September 2007 Hypotesetesting Notat til STK1110 Ørnulf Borgan Matematisk institutt Universitetet i Oslo September 2007 Teorien for hypotesetesting er beskrevet i kapittel 9 læreboka til Rice. I STK1110 tar vi bare for

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte

Detaljer

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Håvard Rue 73 59 35 20 Håkon Tjelmeland 73 59 35 20 Bjørn Kåre Hegstad 73 59 35 20

Detaljer

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1 Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 11. juni 2007. KLASSE: HIS 05 08. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 5 (innkl. forside)

Detaljer

1 10-2: Korrelasjon. 2 10-3: Regresjon

1 10-2: Korrelasjon. 2 10-3: Regresjon 1 10-2: Korrelasjon 2 10-3: Regresjon Example Krysser y-aksen i 1: b 0 = 1 Stiger med 2 hver gang x øker med 1: b 1 = 2 Formelen til linja er derfor y = 1 + 2x Eksempel Example Vi lar fem personer se en

Detaljer

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

Mer om hypotesetesting

Mer om hypotesetesting Mer om hypotesetesting I underkapittel 36 i læreboka gir vi en kort innføring i tankegangen ved hypotesetesting Vi gir her en grundigere framstilling av temaet Problemstilling Vi forklarer problemstillingen

Detaljer

Første sett med obligatoriske oppgaver i STK1110 høsten 2015

Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Dette er det første obligatoriske oppgavesettet i STK1110 høsten 2015. Oppgavesettet består av fire oppgaver. Du må bruke Matematisk institutts

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 4 Statistikk og kvantitativ metode Kapittel 4 Oppgave 1. La x være antall øyne på terningen. a) Vi får følgende sannsynlighetsfordeling

Detaljer

Løsningsforslag Til Statlab 5

Løsningsforslag Til Statlab 5 Løsningsforslag Til Statlab 5 Jimmy Paul September 6, 007 Oppgave 8.1 Vi skal se på ukentlige forbruk av søtsaker blant barn i et visst område. En pilotstudie gir at standardavviket til det ukentige forbruket

Detaljer

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet 1 8-1: Oversikt 2 8-2: Grunnleggende hypotesetesting 3 Section 8-3: Å teste påstander om andeler 4 Section 8-5: Teste en påstand om gjennomsnittet Definisjoner Hypotese En hypotese er en påstand om noe

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Kapittel 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 4 Statistikk og kvantitativ metode Kapittel 4 Oppgave 1 La være antall øyne på terningen. a) Vi får følgende sannsynlighetsfordeling

Detaljer

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Dette er det andre settet med obligatoriske oppgaver i STK1110 høsten 2010. Oppgavesettet består av fire oppgaver. Det er valgfritt om du vil

Detaljer

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato:

Detaljer

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013 1 Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 013. Skrevet av Stian Lydersen 16 januar 013 Vi antar at vårt utvalg er et tilfeldig og representativt utvalg for

Detaljer

Regler i statistikk STAT 100

Regler i statistikk STAT 100 TORIL FJELDAAS RYGG - VÅREN 2010 Regler i statistikk STAT 100 Innhold side Sannsynlighetsregning 3 - Uttrykk 3 - Betinget sannsynlighet 4 - Regler for sannsynlighet 4 - Bayes teorem 4 - Uavhengige begivenheter

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 16. juni 2009. KLASSE: HIS 07 10. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 innkl. forside)

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Oppgave 1: Feil på mobiltelefoner

Oppgave 1: Feil på mobiltelefoner Oppgave 1: Feil på mobiltelefoner a) Sannsynlighetene i oppgaven blir P (F 1 F 2 ) P (F 1 ) + P (F 2 ) P (F 1 F 2 ) P (F 1 ) + 1 P (F2 C ) P (F 1 F 2 ) 0.080 + 0.075 0.006 0.149 P (F 1 F 2 ) P (F 1 F 2

Detaljer

EKSAMENSOPPGAVE. Eksamen i: STA- 0001 Brukerkurs i statistikk 1 Mandag 03. juni 2013 Kl 09:00 13:00 Åsgårdvegen 9

EKSAMENSOPPGAVE. Eksamen i: STA- 0001 Brukerkurs i statistikk 1 Mandag 03. juni 2013 Kl 09:00 13:00 Åsgårdvegen 9 FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: STA- 0001 Brukerkurs i statistikk 1 Dato: Tid: Sted: Mandag 03. juni 2013 Kl 09:00 13:00 Åsgårdvegen 9 Tillatte hjelpemidler: Alle trykte

Detaljer

1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver. 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver

1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver. 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver 1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver 3 Oppvarming til kap 10: Rette linjer Sammenligne to populasjoner Data fra to

Detaljer

Kap. 5.2: Utvalgsfordelinger for antall og andeler

Kap. 5.2: Utvalgsfordelinger for antall og andeler Kap. 5.2: Utvalgsfordelinger for antall og andeler Binære data (1/0, Ja/Nei, Suksess/Feil) Utvalgsundersøkelser: Ja/Nei-spørsmål Tilstedeværelse av arter: Tilstede/Ikke-tilstede (1/0) Overlevelse etter

Detaljer

Løsningsforlag statistikk, FO242N, AMMT, HiST 2.årskurs, 7. desember 2006 side 1 ( av 8) LØSNINGSFORSLAG

Løsningsforlag statistikk, FO242N, AMMT, HiST 2.årskurs, 7. desember 2006 side 1 ( av 8) LØSNINGSFORSLAG Løsningsforlag statistikk, FO4N, AMMT, HiST.årskurs, 7. desember 006 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr:

Detaljer

Oppgaver til Studentveiledning 4 MET 3431 Statistikk

Oppgaver til Studentveiledning 4 MET 3431 Statistikk Oppgaver til Studentveiledning 4 MET 3431 Statistikk 8. mai 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 22/11/2011: Oppgave 1-7. Eksamensoppgaven fra 11/2011 er

Detaljer

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00.

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER

Detaljer

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger. H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.

Detaljer

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9 TMA424 Statistikk Vår 214 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II Oppgave 1 Matlabkoden linearreg.m, tilgjengelig fra emnets hjemmeside, utfører

Detaljer

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32).

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32). Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 16. november 2009 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

7.2 Sammenligning av to forventinger

7.2 Sammenligning av to forventinger 7.2 Sammenligning av to forventinger To-utvalgs z-observator To-utvalgs t-prosedyrer To-utvalgs t-tester To-utvalgs t-konfidensintervall Robusthet To-utvalgs t-prosedyrerår variansene er like Sammenlikning

Detaljer

1 Section 6-2: Standard normalfordelingen. 2 Section 6-3: Anvendelser av normalfordelingen. 3 Section 6-4: Observator fordeling

1 Section 6-2: Standard normalfordelingen. 2 Section 6-3: Anvendelser av normalfordelingen. 3 Section 6-4: Observator fordeling 1 Section 6-2: Standard normalfordelingen 2 Section 6-3: Anvendelser av normalfordelingen 3 Section 6-4: Observator fordeling 4 Section 6-5: Sentralgrenseteoremet Oversikt Kapittel 6 Kontinuerlige tilfeldige

Detaljer

Konfidensintervall for µ med ukjent σ (t intervall)

Konfidensintervall for µ med ukjent σ (t intervall) Forelesning 3, kapittel 6 Konfidensintervall for µ med ukjent σ (t intervall) Konfidensintervall for µ basert på n observasjoner fra uavhengige N( µ, σ) fordelinger når σ er kjent : Hvis σ er ukjent har

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK 1000 Innføring i anvendt statistikk. Eksamensdag: Mandag 4. desember 2006. Tid for eksamen: 14.30 17.30. Oppgavesettet er

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4 november 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg m.fl.

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg m.fl. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA 1081 og REA1081F EKSAMENSDATO: 1. juni 2011. KLASSE: Flexibel ingeniørutdanning, 2kl. Bygg m.fl. TID: kl. 9.00 12.00. FAGLÆRER: Hans Petter Hornæs

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG27 EKSAMENSDATO: 27. mai 211. KLASSE: HIS 8 11. TID: kl. 8. 13.. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 innkl. forside) TILLATTE

Detaljer

1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene

1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene 1 Sec 3-2: Hvordan beskrive senteret i dataene 2 Sec 3-3: Hvordan beskrive spredningen i dataene Todeling av statistikk Deskriptiv statistikk Oppsummering og beskrivelse av den stikkprøven du har. Statistisk

Detaljer

Normalfordeling. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 7

Normalfordeling. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 7 Ueoppgaver i BtG207 Statisti, ue 7 : Normalfordeling. 1 Høgsolen i Gjøvi Avdeling for tenologi, øonomi og ledelse. Statisti Ueoppgaver ue 7 Normalfordeling. Oppgave 1 Anta Z N(0, 1), dvs. Z er standard

Detaljer

Eksamensoppgåve i ST1201/ST6201 Statistiske metoder

Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Fagleg kontakt under eksamen: Tlf: Eksamensdato: august 2015 Eksamenstid (frå til): Hjelpemiddelkode/Tillatne hjelpemiddel:

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. desember 8 EKSAMEN I MATEMATIKK, Utsatt røve Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig).

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

Faktor - en eksamensavis utgitt av ECONnect

Faktor - en eksamensavis utgitt av ECONnect Faktor - en eksamensavis utgitt av ECONnect Løsningsforslag: SØK1004 Statistikk for økonomer Eksamen: Våren 009 Antall sider: 16 SØK1004 - Løsningsforslag Om ECONnect: ECONnect er en frivillig studentorganisasjon

Detaljer

Definisjoner av begreper Eks.: interesse for politikk

Definisjoner av begreper Eks.: interesse for politikk Måling SOS1120 Kvantitativ metode Forelesningsnotater 5. forelesning høsten 2005 Per Arne Tufte Måling er å knytte teoretiske begreper til empiriske indikatorer Operasjonell definisjon Angir hvordan et

Detaljer

Løsningsforslag til obligatorisk innlevering 3.

Løsningsforslag til obligatorisk innlevering 3. svar3.nb 1 Løsningsforslag til obligatorisk innlevering 3. Oppgave 1 * Vi skal sammenlikne to sensoere A og B. Begge har rettet den samme oppgaven. Hvis populasjonen er eksamensoppgavene, har vi altså

Detaljer

Skadeprosenten hvor tilfeldig er den?

Skadeprosenten hvor tilfeldig er den? Skadeprosenten hvor tilfeldig er den? NFT 2/1996 av cand.scient. Jon Holtan, aktuar i UNI Storebrand AS Jon Holtan Artikkelen analyserer skadeprosentens tilfeldige variasjon innenfor en vilkårlig skadeforsikringsportefølje.

Detaljer

Utvalgsstørrelse, styrke

Utvalgsstørrelse, styrke Utvalgsstørrelse, styrke Lise Lund Håheim DDS, PhD Professor II, Forskerlinjen, UiO Seniorforsker, Nasjonalt kunnskapssenter for helsetjenesten, Oslo Seniorforsker, Institutt for oral biologi, UiO Introduksjonskurset,

Detaljer

EKSAMEN. EMNEANSVARLIG: Terje Bokalrud og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler.

EKSAMEN. EMNEANSVARLIG: Terje Bokalrud og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler. KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Kvalitetsledelse med Statistikk. SMF2121 EKSAMENSDATO: 1. juni 2010 KLASSE: Ingeniørutdanning TID: kl. 9.00 13.00. EMNEANSVARLIG: Terje Bokalrud og Hans Petter

Detaljer

STUDIEÅRET 2014/2015. Utsatt individuell skriftlig eksamen i. STA 200- Statistikk. Mandag 24. august 2015 kl. 10.00-12.00

STUDIEÅRET 2014/2015. Utsatt individuell skriftlig eksamen i. STA 200- Statistikk. Mandag 24. august 2015 kl. 10.00-12.00 STUDIEÅRET 2014/2015 Utsatt individuell skriftlig eksamen i STA 200- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator. Formelsamling blir delt ut på eksamen Eksamensoppgaven består

Detaljer

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger Kontinuerlig uniform fordeling f() = B A, A B. En kontinuerlig størrelse (vekt, lengde, tid), som aldri kan bli mindre enn

Detaljer

Oppgaver til Studentveiledning 3 MET 3431 Statistikk

Oppgaver til Studentveiledning 3 MET 3431 Statistikk Oppgaver til Studentveiledning 3 MET 3431 Statistikk 24. april 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 01/06/2011: Oppgave 1-7. Eksamensoppgaven fra 06/2011

Detaljer

201303 ECON2200 Obligatorisk Oppgave

201303 ECON2200 Obligatorisk Oppgave 201303 ECON2200 Obligatorisk Oppgave Oppgave 1 Vi deriverer i denne oppgaven de gitte funksjonene med hensyn på alle argumenter. a) b) c),, der d) deriveres med hensyn på både og. Vi kan benytte dee generelle

Detaljer

Metodisk arbeid. Strukturert arbeidsmåte for å nå målet

Metodisk arbeid. Strukturert arbeidsmåte for å nå målet Metodisk arbeid Strukturert arbeidsmåte for å nå målet Strukturen Forarbeid - planleggingen Hvem, hva, hvor, når, hvorfor, hvordan.. Arbeid - gjennomføringen Utføre det planlagte operative arbeidet Etterarbeid

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer

FORMELSAMLING STATISTIKK, HiG

FORMELSAMLING STATISTIKK, HiG Høgskolen i Gjøvik Avdeling for ingeniørfag Versjon fra mai 2007 FORMELSAMLING STATISTIKK, HiG Hans Petter Hornæs hans.hornaes@hig.no ISSN:??????? Innledning. Denne formelsamlingen er skrevet for bruk

Detaljer

b) i) Finn sannsynligheten for at nøyaktig 2 av 120 slike firmaer går konkurs.

b) i) Finn sannsynligheten for at nøyaktig 2 av 120 slike firmaer går konkurs. Eksamen i: MET 040 Statistikk for økonomer Eksamensdag: 31 Mai 2007 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

Standardavvik. Varians. Utfallsrom (sannsynlighet)

Standardavvik. Varians. Utfallsrom (sannsynlighet) Standardavvik Median Varians n = partall Utfallsrom (sannsynlighet) Persentil er verdien definert ved at minst 100% * p% lav observasjonene ligger nedenfor denne verdien En stokatisk variabel X er en funksjon

Detaljer

EKSAMEN I TMA4240 Statistikk

EKSAMEN I TMA4240 Statistikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Henning Omre (909 37848) Mette Langaas (988 47649) EKSAMEN I TMA4240 Statistikk 18.

Detaljer

Eksamen REA3028 S2, Høsten 2012

Eksamen REA3028 S2, Høsten 2012 Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x

Detaljer

Oppgaver til Studentveiledning I MET 3431 Statistikk

Oppgaver til Studentveiledning I MET 3431 Statistikk Oppgaver til Studentveiledning I MET 3431 Statistikk 20. mars 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Konfidensintervaller Vi ser på inntekten til en tilfeldig valgt person (i tusen

Detaljer

Eksamensoppgave i ST3001

Eksamensoppgave i ST3001 Det medisinske fakultet Institutt for kreftforskning og molekylær medisin Eksamensoppgave i ST3001 Onsdag 16. desember 2010, kl. 9.00 13:00 ntall studiepoeng: 7.5 Tillatte hjelpemidler: Kalkulator og alle

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!

Detaljer

Tilfeldig utvalg [8.1] U.i.f. Statistisk inferens. Kapittel 8 og 9

Tilfeldig utvalg [8.1] U.i.f. Statistisk inferens. Kapittel 8 og 9 3 Tilfeldig utvalg [8.1] DEF 8.1: En populasjon er mengden av observasjoner som vi ønsker å studere, dvs. alle observasjoner det er mulig å gjøre. (Dersom elementene i populasjonen har fordeling f(x),

Detaljer

Heuristiske søkemetoder III

Heuristiske søkemetoder III Heuristiske søkemetoder III Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Eksempel: Bildebehandling, segmentering: Hva er segmentering? Klassisk metode, terskling.

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. mai 8 EKSAMEN I MATEMATIKK Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig). Hjelemidler:

Detaljer

Matematikk med TI-83

Matematikk med TI-83 Matematikk med TI-83 3MX/Y Brukerveiledning knyttet til eksempler av Eystein Raude Arbeidet bygger på Matematikk med TI-83 på GK og VKI Eksemplene oppfyller læreplanens mål Læreplanens mål 1 Mål 3 Funksjonslære

Detaljer

STUDIEÅRET 2014/2015. Individuell skriftlig eksamen i STA 200- Statistikk. Torsdag 16. april 2015 kl. 10.00-12.00

STUDIEÅRET 2014/2015. Individuell skriftlig eksamen i STA 200- Statistikk. Torsdag 16. april 2015 kl. 10.00-12.00 STUDIEÅRET 2014/2015 Individuell skriftlig eksamen i STA 200- Statistikk Torsdag 16. april 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator. Formelsamling blir delt ut på eksamen Eksamensoppgaven består av

Detaljer

Faktor - en eksamensavis utgitt av ECONnect

Faktor - en eksamensavis utgitt av ECONnect Faktor - en eksamensavis utgitt av ECONnect Eksamensbesvarelse: SØK1004 Statistikk for økonomer Eksamen: Våren 2010 Antall sider: 7 SØK1004 Eksamensbesvarelse Om ECONnect: ECONnect er en frivillig studentorganisasjon

Detaljer

TMA4240 Statistikk Høst 2012

TMA4240 Statistikk Høst 2012 TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving blokk II Oppgave 1 Oppgave 11.3 fra læreboka. Oppgave 2 Oppgave 11.19 fra læreboka. Oppgave

Detaljer

b) Hva er sannsynligheten for at re tilfeldig utvalgte bilmotorer alle har en levetid på minst 17 år?

b) Hva er sannsynligheten for at re tilfeldig utvalgte bilmotorer alle har en levetid på minst 17 år? Oppgave 1 Levetiden T til en bestemt type bilmotor er normalfordelt med forventning µ = 15 år og standardavvik σ = 3 år. a) Vis at sannsynligheten for at en tilfeldig utvalgt bilmotor har en levetid på

Detaljer

~ hsgskolen i oslo. Demissie Aleda I Marl Mehlcn

~ hsgskolen i oslo. Demissie Aleda I Marl Mehlcn hsgskolen i oslo Utarbeidet av Kontrollert av (en av disse): Studieleders/ (faglzrer): Annen Izrer Sensor Studielederl FagkoordinatOrs Fagkoordlnator underskrlft: Demissie Aleda I Marl Mehlcn, Avdellng

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59

Detaljer

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005 SOS1120 Kvantitativ metode Regresjonsanalyse Forelesningsnotater 11. forelesning høsten 2005 Per Arne Tufte Lineær sammenheng I Lineær sammenheng II Ukelønn i kroner 4000 3500 3000 2500 2000 1500 1000

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Tirsdag 2. juni 2009. Tid for eksamen: 14.30 17.30. Oppgavesettet

Detaljer

1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent

1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent 1 Section 7-2: Estimere populasjonsandelen 2 Section 7-4: Estimere µ når σ er ukjent Kapittel 7 Nå begynner vi med statistisk inferens! Bruke stikkprøven til å 1 Estimere verdien til en parameter i populasjonen.

Detaljer

Eksamensoppgave i SØK1004 - Statistikk for økonomer

Eksamensoppgave i SØK1004 - Statistikk for økonomer Institutt for samfunnsøkonomi Eksamensoppgave i SØK1004 - Statistikk for økonomer Faglig kontakt under eksamen: Hildegunn E. Stokke, tlf 73591665 Bjarne Strøm, tlf 73591933 Eksamensdato: 01.12.2014 Eksamenstid

Detaljer

> 6 7 ) = 1 Φ( 1) = 1 0.1587 = 0.8413 P (X < 7 X < 8) P (X < 8) < 7 6 1 ) < 8 6 1 ) = Φ(2) = 0.8413

> 6 7 ) = 1 Φ( 1) = 1 0.1587 = 0.8413 P (X < 7 X < 8) P (X < 8) < 7 6 1 ) < 8 6 1 ) = Φ(2) = 0.8413 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Oppgave Sykkelruter a) P (Y > 6) P (Y > 6) P ( Y 7 > 6 7 ) Φ( ) 0.587 0.843 b) Hypoteser: H 0 : µ µ 2 H : µ < µ 2

Detaljer

3.A IKKE-STASJONARITET

3.A IKKE-STASJONARITET Norwegian Business School 3.A IKKE-STASJONARITET BST 1612 ANVENDT MAKROØKONOMI MODUL 5 Foreleser: Drago Bergholt E-post: Drago.Bergholt@bi.no 11. november 2011 OVERSIKT - Ikke-stasjonære tidsserier - Trendstasjonaritet

Detaljer

Matteknologisk utdanning

Matteknologisk utdanning Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 5) HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato: 30. mai 2007

Detaljer

KJ1042 Øving 5: Entalpi og entropi

KJ1042 Øving 5: Entalpi og entropi KJ1042 Øving 5: Entalpi og entropi Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hva er varmekapasitet og hva er forskjellen på C P og C? armekapasiteten til et stoff er en målbar fysisk størrelse

Detaljer

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) P(B oga)+p(b ogā) P(B A)P(A)+P(B Ā)P(Ā) ST0202 Statistikk for samfunnsvitere Bo Lindqvist

Detaljer

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ

Detaljer

Vurdering av kvaliteten på undersøkelser om virkninger av trafikksikkerhetstiltak

Vurdering av kvaliteten på undersøkelser om virkninger av trafikksikkerhetstiltak Sammendrag: Vurdering av kvaliteten på undersøkelser om virkninger av trafikksikkerhetstiltak TØI-rapport 984/2008 Forfatter(e): Rune Elvik Oslo 2008, 140 sider Denne rapporten presenterer en undersøkelse

Detaljer

Innledning. Noen relevante statistiske konsepter. Utvalg og populasjon, estimat og parameter

Innledning. Noen relevante statistiske konsepter. Utvalg og populasjon, estimat og parameter Innhold Innledning... 3 Noen relevante statistiske konsepter... 3 Utvalg og populasjon, estimat og parameter... 3 Gjennomsnittsverdier med tilhørende konfidensintervaller Studieprogrammene fra pilotundersøkelsen...

Detaljer

Enkel Keynes-modell for en lukket økonomi uten offentlig sektor

Enkel Keynes-modell for en lukket økonomi uten offentlig sektor Forelesningsnotat nr 3, januar 2009, Steinar Holden Enkel Keynes-modell for en lukket økonomi uten offentlig sektor Notatet er ment som supplement til forelesninger med sikte på å gi en enkel innføring

Detaljer

EKSAMEN I TMA4245 Statistikk

EKSAMEN I TMA4245 Statistikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Turid Follestad (98 06 68 80/73 59 35 37) Hugo Hammer (45 21 01 84/73 59 77 74) Eirik

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4. juni 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 5 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 25. NOVEMBER 2003 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ

Detaljer

Profil Lavpris Supermarked Hypermarked Totalt. Coop Prix 4 4. Coop Extra 13 5. Coop Mega 7 7. Coop Obs 5 13. Rimi 24 24. Ica Supermarked 7 7

Profil Lavpris Supermarked Hypermarked Totalt. Coop Prix 4 4. Coop Extra 13 5. Coop Mega 7 7. Coop Obs 5 13. Rimi 24 24. Ica Supermarked 7 7 Vedlegg 1 - Regresjonsanalyser 1 Innledning og formål (1) Konkurransetilsynet har i forbindelse med Vedtak 2015-24, (heretter "Vedtaket") utført kvantitative analyser på data fra kundeundersøkelsen. I

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER VARIGHET: 4 TIMER DATO: 27. FEBRUAR 2004 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 5

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST00 STATISTIKK FOR SAMFUNNSVITERE Torsdag

Detaljer

Oppgaver til Studentveiledning II MET 3431 Statistikk

Oppgaver til Studentveiledning II MET 3431 Statistikk Oppgaver til Studentveiledning II MET 3431 Statistikk 10. april 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Prøve-eksamen A fra 2010: Oppgave 6-7. Prøve-eksamen A fra 2010

Detaljer