Innledning Beslutningsteori Parametriske metoder Ikke-parametriske metoder Diskriminantfunksjoner Evaluering Ikke-ledet læring Klyngeanalyse Oversikt

Størrelse: px
Begynne med side:

Download "Innledning Beslutningsteori Parametriske metoder Ikke-parametriske metoder Diskriminantfunksjoner Evaluering Ikke-ledet læring Klyngeanalyse Oversikt"

Transkript

1 Oversikt Innhold i kurset Beslutningsteori (desisjonsteori) Parametriske metoder Ikke-parametriske metoder Lineære og generaliserte diskriminantfunksjoner Feilrateestimering og evaluering av klassifikatorer Ikke-ledet læring Klyngeanalyse.

2 Oversikt Lineære og generaliserte diskriminantfunksjoner Lineære diskriminantfunksjoner for c klasser: Parametre (vekter): g i (x)=w t i x + w i0, i = 1,...,c w i - vektvektor (d komponenter) for klasse w i w i0 - tersklingsvekt (skalar) for klasse w i. Lineære diskriminantfunksjoner kan i noen tilfeller gi den optimale løsningen. Beslutningsregel: Velg w m hvis g m (x)=max{g i (x)} i

3 Toklasseproblemet To klasser Lineær toklasse diskriminantfunksjon: g(x)=g 1 (x) g 2 (x) =(w1x t + w 10 ) (w2x t + w 20 ) =(w 1 w 2 ) t +(w 10 w 20 ) =w t x + w 0 Her er: w t = w 1 w 0 = w 10 w 2 vektvektoren og w 20 tersklingsvekten. Desisjonsregelen blir da: Velg w 1 hvis g(x) > 0, w 2 ellers

4 Toklasseproblemet Desisjonsgrensen er et hyperplan w x p x Avstanden fra et punkt x til hyperplanet er: r = g(x) kwk. dvs. proporsjonal med verdien til diskriminantfunksjonen i x. Avstanden mellom origo og hyperplanet blir derved: 8 d = g(0) kwk = w >< w 0 > 0 : origo på positiv side av hyperplanet 0 kwk ) w 0 = 0 : hyperplanet gjennom origo >: w 0 < 0 : origo på negativ side av hyperplanet

5 Toklasseproblemet Hyperplan med w 0 > 0 w Origo ligger på den positive siden av hyperplanet (d > 0).

6 Toklasseproblemet Hyperplan med w 0 = 0 w Hyperplanet går gjennom origo (d = 0).

7 Toklasseproblemet Hyperplan med w 0 < 0 w Origo ligger på den negative siden av hyperplanet (d < 0).

8 Mange klasser Lineær maskin Diskriminantfunksjoner på formen: g 1 (x) g i (x)=w t i x + w i0, i = 1,...,c x g 2 (x) med beslutningsregelen: Velg w i hvis g i (x)=max{g j (x)} j g c (x) Lineær maskin. Alternativer: Dele inn problemet i c toklasseproblemer (hver klasse mot alle de andre), Behandle alle c(c 1)/2 par av klasser hver for seg. Begge alternativer leder til udefinerte eller tvetydige regioner i egenskapsrommet.

9 Mange klasser Eksempel - Minste avstand klassifisering Klassifisering til klassen med nærmeste forventningsverdi (mht. Euclidsk avstand) gir diskriminantfunksjonene: g i (x)= kx µ i k 2 = x t x + 2x t µ i µ t i µ i Første leddet er felles for alle klasser og kan sløyfes, slik at diskriminantfunksjonene kan skrives som: apple 1 = ai t y. x Her er: g i (x)=2x t µ i kµ i k 2 =[ kµ i k 2,2µ t i {z } ] ai t a i utvidet vektvektor for klasse w i og y utvidet egenskapsvektor. {z} y

10 Mange klasser Stykkevis lineære desisjonsgrenser - tre klasser Todimensjonale desisjonsregioner for minimum avstand klassifisering.

11 Mange klasser Stykkevis lineære desisjonsgrenser - fem klasser Todimensjonale desisjonsregioner for minimum avstand klassifisering.

12 Generalisering Generaliserte lineære diskriminantfunksjoner Lineær diskriminantfunksjon: g(x)=w t x + w 0 = w 0 + Generalisering til høyere orden: g(x)=w 0 + = ˆd  i=1 d  i=1 w i x i + a i y i (x)=a t y d  i=1 d d   i=1 j=1 w i x i w ij x i x j + (klasseangivelse utelatt) d d d    i=1 j=1 k=1 (rekkeutvikling til orden ˆd). w ijk x i x j x k +... Dette er en lineær diskriminantfunksjon i y med utvidede vektorer: a 1 y 1 (x) a 2 y 2 (x) a = 6 7 (vektvektor) og y = (egenskapsvektor). a ˆd y ˆd(x)

13 Generalisering Lineære diskriminantfunksjoner Skal bruke lineære diskriminantfunksjoner transformert til y-rommet: g i (x)=wi t d x 1 x + w i0 = w i0 + Â w ij x ij =[w i0,w i1,...,w id ] = a i t y. j=1 Avbildning fra d! d + 1dimensjonererder: a = utvidet vektvektor y = utvidet egenskapsvektor Sampler fra x-rommet ligger i d-dimensjonalt underrom i y-rommet. Desisjonsregelen velger klassen med størst skalarprodukt av utvidet vektvektor med utvidet egenskapsvektor. x d

14 Generalisering Toklasseproblemet Den felles diskriminantfunksjonen for toklasseproblemet kan skrives på formen: g(x)=g 1 (x) g 2 (x)=a1y t a2y t =(a1 t a2)y t = a t y, der a = a 1 a 2 normalvektor til desisjonsflaten (generelt et hyperplan), Hyperplanet går gjennom origo i y-rommet. Desisjonsregel: Velg w 1 hvis a t y > 0ogw 2 hvis a t y apple 0

15 Utvidet egenskapsrom Transformasjon fra x-rom til y-rom Separerende hyperplan a Éndimensjonalt datasett i x-rom og y-rom (grønne sirkler fra w 1 og røde kvadrater fra w 2 ). I y-rommet kan klassene her separeres vha. et hyperplan gjennom origo, med a som normalvektor.

16 Utvidet egenskapsrom Separerende hyperplan, løsningsvektor og løsningsregion Separerende hyperplan Løsningsregion a

17 Utvidet egenskapsrom Representasjon i y-rom med fortegnskonvensjon Separerende hyperplan Løsningsregion a

18 Trening av vektvektor - gradientsøk Minimalisering av kriteriefunksjon - gradientsøk En kriteriefunksjon J(a) skal minimaliseres for å finne en optimal vektvektor. Gradientsøk: a 1 = vilkårlig startverdi a k+1 = a k r k J(a k ), k = 1,2,... der r k er en positiv skrittlengde (inkrementet). Forhåpentligvis oppnås konvergens mot et globalt minimum, men løsningen vil avhenge av J(a),a 1 og r k. For stort inkrement kan gi divergens, mens for liten verdi kan føre til langsom konvergens.

TEK5020/TEK Mønstergjenkjenning

TEK5020/TEK Mønstergjenkjenning Sammendrag og eksempler Lineære diskriminantfunksjoner (Gradientsøk, perceptronmetoden) UiO : Institutt for teknologisystemer Høsten 2018 (22. oktober 2018) Diskriminantfunksjoner Utvidet egenskapsrom

Detaljer

Innledning Beslutningsteori Parametriske metoder Ikke-parametriske metoder Diskriminantfunksjoner Evaluering Ikke-ledet læring Klyngeanalyse Oversikt

Innledning Beslutningsteori Parametriske metoder Ikke-parametriske metoder Diskriminantfunksjoner Evaluering Ikke-ledet læring Klyngeanalyse Oversikt Oversikt Innhold i kurset Beslutningsteori (desisjonsteori) Parametriske metoder Ikke-parametriske metoder Lineære og generaliserte diskriminantfunksjoner Feilrateestimering og evaluering av klassifikatorer

Detaljer

Generalisering til mange klasser - feilrettingsmetodene

Generalisering til mange klasser - feilrettingsmetodene Mange klasser Generalisering til mange klasser - feilrettingsmetodene Kesslers konstruksjon - omskriving av c-klasseproblemet til et toklasseproblem. Her innføres en sammensatt vektvektor a og et sett

Detaljer

Dimensjonalitetsproblemer (3)

Dimensjonalitetsproblemer (3) Dimensjonalitetsproblemer Dimensjonalitetsproblemer (3) Ved å inkludere flere uavhengige egenskaper der µ i1 6= µ i2 i egenskapsvektoren vil r 2 øke og P(e) avta, slik at: P d+1 (e) apple P d (e). Dette

Detaljer

Minimalisering av kriteriefunksjon - gradientsøk

Minimalisering av kriteriefunksjon - gradientsøk Trening av vektvektor - gradientsøk Minimalisering av kriteriefunksjon - gradientsøk En kriteriefunksjon J(a) skal minimaliseres for å finne en otimal vektvektor. Gradientsøk: a 1 = vilkårlig startverdi

Detaljer

Ikke-separable problemer

Ikke-separable problemer Feilrettingsmetoder Ikke-separable problemer Feilrettingsmetodene konvergerer under gitte betingelser til løsningsvektorer for lineært separable problemer, men kan også gi gode resultater på ikke-separable

Detaljer

Unik4590/Unik9590/TTK Mønstergjenkjenning

Unik4590/Unik9590/TTK Mønstergjenkjenning Sammendrag og eksempler Universitetssenteret på Kjeller Høsten 2016 (15. oktober 2016) Hva er mønstergjenkjenning? Formålet med mønstergjenkjenning Gjenkjenne objekter - tilordne objekter til én av flere

Detaljer

TEK5020/TEK Mønstergjenkjenning

TEK5020/TEK Mønstergjenkjenning Sammendrag og eksempler Innledning UiO : Institutt for teknologisystemer Høsten 2018 (18. august 2018) Hva er mønstergjenkjenning? Formålet med mønstergjenkjenning Gjenkjenne objekter - tilordne objekter

Detaljer

Unik4590/Unik9590/TTK Mønstergjenkjenning

Unik4590/Unik9590/TTK Mønstergjenkjenning Sammendrag og eksempler UiO : Institutt for teknologisystemer Høsten 2017 (14. august 2017) Hva er mønstergjenkjenning? Formålet med mønstergjenkjenning ˆ Gjenkjenne objekter - tilordne objekter til én

Detaljer

Unik4590/Unik9590/TTK Mønstergjenkjenning

Unik4590/Unik9590/TTK Mønstergjenkjenning Sammendrag og eksempler Universitetssenteret på Kjeller Høsten 2016 (17. august 2016) Hva er mønstergjenkjenning? Formålet med mønstergjenkjenning Gjenkjenne objekter - tilordne objekter til én av flere

Detaljer

Normalfordelingen. Univariat normalfordeling (Gaussfordelingen): der µ er forventningsverdien og σ 2 variansen. Multivariat normalfordeling:

Normalfordelingen. Univariat normalfordeling (Gaussfordelingen): der µ er forventningsverdien og σ 2 variansen. Multivariat normalfordeling: Normalfordelingen Univariat normalfordeling (Gaussfordelingen): p(x µ,σ 2 ) = 1 µ)2 (x e 2σ 2 = N(µ,σ 2 ) 2πσ der µ er forventningsverdien og σ 2 variansen. Multivariat normalfordeling: [ 1 p(x µ,σ) =

Detaljer

RF5100 Lineær algebra Leksjon 12

RF5100 Lineær algebra Leksjon 12 RF5100 Lineær algebra Leksjon 12 Lars Sydnes, NITH 26. november 2013 I. GAUSS-ELIMINASJON 2x + 3y + z = 1 2x + 5y z = 1 4x + 7y + 4z = 3 x + 3/2 y + 1/2 z = 1/2 x + 2z = 2 y z = 1 3z = 2 x + 2z = 2 y z

Detaljer

+ (y b) F y. Bruker vi det siste på likningen z = f(x, y) i punktet (a, b, f(a, b)) kan vi velge F (x, y, z) = f(x, y) z.

+ (y b) F y. Bruker vi det siste på likningen z = f(x, y) i punktet (a, b, f(a, b)) kan vi velge F (x, y, z) = f(x, y) z. Vi husker fra sist Gradientvektoren F ( a) peker i den retningen u der den retningsderiverte D u F ( a) er størst, og der er D u F ( a) = u F ( a) = F ( a). Gradientvektoren er normalvektoren til (hyper)flata

Detaljer

Oppgave 14 til 9. desember: I polynomiringen K[x, y] i de to variable x og y over kroppen K definerer vi undermengdene:

Oppgave 14 til 9. desember: I polynomiringen K[x, y] i de to variable x og y over kroppen K definerer vi undermengdene: HJEMMEOPPGAVER utgave av 8-12-2002): Oppgave 15 til 16 desember: La H være mengden av alle matriser på formen A = a 1 a 12 a 13 a 1n 0 a 2 0 0 0 0 a 3 0 0 0 a n der a 1 a 2 a n 0 Videre la SH være matrisene

Detaljer

Kap. 6 Ortogonalitet og minste kvadrater

Kap. 6 Ortogonalitet og minste kvadrater Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Med forebehold om feil Hvis du finner en, ta kontakt med Karin Kapittel 4 8 Vi benevner matrisen vi skal frem til

Detaljer

Diskrete egenskaper. Egenskapsvektoren x antar kun diskrete verdier: v 1,v 2,...,v m. Endringer fra det kontinuerlige tilfellet er at:

Diskrete egenskaper. Egenskapsvektoren x antar kun diskrete verdier: v 1,v 2,...,v m. Endringer fra det kontinuerlige tilfellet er at: Iledig Beslutigsteori Parametriske metoder Ikke-parametriske metoder Diskrimiatfuksjoer Evaluerig Ikke-ledet lærig Klygeaalyse Diskrete egeskaper Diskrete egeskaper Egeskapsvektore x atar ku diskrete verdier:

Detaljer

Optimeringsmetoder anvendt på klassifikasjon av hyperspektrale data. Hovedoppgave. Bjørn Terjei Austenaa

Optimeringsmetoder anvendt på klassifikasjon av hyperspektrale data. Hovedoppgave. Bjørn Terjei Austenaa Universitetet i Oslo Institutt for informatikk Optimeringsmetoder anvt på klassifikasjon av hyperspektrale data Hovedoppgave Bjørn Terjei Austenaa 2. mai 2006 Forord Formålet med denne oppgaven har vært

Detaljer

Prøveeksamen STK2100 (fasit) - vår 2018

Prøveeksamen STK2100 (fasit) - vår 2018 Prøveeksamen STK2100 (fasit) - vår 2018 Geir Storvik Vår 2018 Oppgave 1 (a) Vi har at E = Y Ŷ =Xβ + ε X(XT X) 1 X T (Xβ + ε) =[I X(X T X) 1 X T ]ε Dette gir direkte at E[E] = 0. Vi får at kovariansmatrisen

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;

Detaljer

Denne veka. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon

Denne veka. Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Denne veka Kap 7: Funksjonar av stokastiske variable Transformasjon av variable Moment Momentgenererande funksjon Notat: Ordningsvariable og ekstremvariable Ordnings variable Maksimum Minumum Transformasjon

Detaljer

Test, 1 Geometri. 1.2 Regning med vektorer. X Riktig. X Galt. R2, Geometri Quiz løsning. Grete Larsen. 1) En vektor har lengde.

Test, 1 Geometri. 1.2 Regning med vektorer. X Riktig. X Galt. R2, Geometri Quiz løsning. Grete Larsen. 1) En vektor har lengde. Test, 1 Geometri Innhold 1.2 Regning med vektorer... 1 1.3 Vektorer på koordinatform... 6 1.4 Vektorproduktet... 11 1.5 Linjer i rommet... 16 1.6 Plan i rommet... 18 1.7 Kuleflater... 22 Grete Larsen 1.2

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Karakterer. Kapittel Homomorfier av grupper. 8.2 Representasjoner

Karakterer. Kapittel Homomorfier av grupper. 8.2 Representasjoner Kapittel 8 Karakterer 8. Homomorfier av grupper I forrige kapittel definerte vi begrepet abstrakt gruppe, som en abstrakt versjon av begrepet symmetrigruppe. For å studere forbindelsen mellom abstrakte

Detaljer

Arne B. Sletsjøe. Oppgaver, MAT 1012

Arne B. Sletsjøe. Oppgaver, MAT 1012 Arne B. Sletsjøe Oppgaver, MAT 101 1 En-variabel kalkulus 1.1 I de følgende oppgavene, i) finn alle kritiske punkter til f(x), ii) beskriv monotoniegenskapene til funksjonene ved å se på fortegnet til

Detaljer

A.3.e: Ortogonale egenfunksjonssett

A.3.e: Ortogonale egenfunksjonssett TFY4250/FY2045 Tillegg 2 1 Tillegg 2: A.3.e: Ortogonale egenfunksjonssett Ikke-degenererte egenverdier La oss først anta at en operator ˆF har et diskret og ikke-degeneret spektrum. Det siste betyr at

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

Mer om Histogramprosessering og Convolution/Correlation

Mer om Histogramprosessering og Convolution/Correlation Mer om Histogramprosessering og Convolution/Correlation Lars Vidar Magnusson January 30, 2017 Delkapittel 3.3 Histogram Processing Delkapittel 3.4 Fundementals of Spatial Filtering Lokal Histogramprosessering

Detaljer

Lineær uavhengighet og basis

Lineær uavhengighet og basis Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c

Detaljer

Bayesisk estimering. Tettheten i punkt x er her gitt ved: der p(q X ) er áposterioriparameterfordelinggitt ved: p(q X )=

Bayesisk estimering. Tettheten i punkt x er her gitt ved: der p(q X ) er áposterioriparameterfordelinggitt ved: p(q X )= Bayesisk estimering Bayesisk estimering Tettheten i punkt x er her gitt ved: Z p(x X )= p(x q)p(q X )dq der p(q X ) er áposterioriparameterfordelinggitt ved: p(q X )= p(x q)p(q) R p(x q)p(q)dq og p(x q)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i Eksamensdag: 9. april,. Tid for eksamen: : :. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus og

Detaljer

9 Lineærtransformasjoner TMA4110 høsten 2018

9 Lineærtransformasjoner TMA4110 høsten 2018 9 Lineærtransformasjoner MA4 høsten 8 I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige

Detaljer

P(x, y) ) x. Dette er sirkellikningen. Et punkt P(x, y) ligger på denne sirkelen hvis og bare hvis koordinatene passer i likningen.

P(x, y) ) x. Dette er sirkellikningen. Et punkt P(x, y) ligger på denne sirkelen hvis og bare hvis koordinatene passer i likningen. 5.9 Sirkellikningen Fra kapittel 4.3 vet vi at sirkelen er det geometriske stedet for de punktene som har en bestemt avstand r fra et fast punkt S. Avstanden r kaller vi radien, og punktet S kaller vi

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG SIF5045 NUMERISK LØSNING AV DIFFERENSIALLIGNINGER

LØSNINGSFORSLAG TIL EKSAMEN I FAG SIF5045 NUMERISK LØSNING AV DIFFERENSIALLIGNINGER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Faglig kontakt under eksamen: Syvert P. Nørsett 7 59 5 45 LØSNINGSFORSLAG TIL EKSAMEN I FAG SIF545 NUMERISK LØSNING

Detaljer

MAT feb feb feb MAT Våren 2010

MAT feb feb feb MAT Våren 2010 Våren 2010 Mandag 15. februar 2010 Forelesning Vi begynner med et eksempel på bruk av partiell derivasjon for å gjøre såkalt lineær regresjon, eller minste kvadraters metode. Dette er en anvendelse av

Detaljer

Emne 7. Vektorrom (Del 1)

Emne 7. Vektorrom (Del 1) Emne 7. Vektorrom (Del 1) Første del av dette emnet innholder lite nytt regnemessig, men vi innfører en rekke nye begreper. Avbildning (image). R m T R n n image(t) Vi kan starte med samme skjematiske

Detaljer

Likningssystem for maksimum likelihood løsning

Likningssystem for maksimum likelihood løsning Maksimum likelihood metode Likigssystem for maksimum likelihood løsig Treig av klassifikator ute merket treigssett. Atakelser (i første omgag): Atall klasser c er kjet, ÁpriorisasyligheteeP(w i ), i =

Detaljer

1 Mandag 15. februar 2010

1 Mandag 15. februar 2010 1 Mandag 15. februar 2010 Vi begynner med et eksempel på bruk av partiell derivasjon for å gjøre såkalt lineær regresjon, eller minste kvadraters metode. Dette er en anvendelse av teorien vi har gjennomgått

Detaljer

1 Mandag 22. februar 2010

1 Mandag 22. februar 2010 1 Mandag 22. februar 2010 Vi begynner med litt repetisjon fra forrige gang, med å sjekke om et vektorfelt er konservativt og dersom svaret er ja, regne ut potensialfunksjonen. Videre skal vi se på en variant

Detaljer

Midtveiseksamen. INF Digital Bildebehandling

Midtveiseksamen. INF Digital Bildebehandling INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Midtveiseksamen INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Tirsdag 21. mars 2017 Tidspunkt for eksamen:

Detaljer

MAT feb feb mars 2010 MAT Våren 2010

MAT feb feb mars 2010 MAT Våren 2010 MAT 1012 Våren 2010 Mandag 22. februar 2010 Forelesning Vi begynner med litt repetisjon fra forrige gang, med å sjekke om et vektorfelt er konservativt og dersom svaret er ja, regne ut potensialfunksjonen.

Detaljer

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder 4 Noen merknader 4. Lineære systemer Ax = b Gitt systemet Ax = b, A = [a i,j ] i=,,...,m, j=,,...,n x = b = Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder b i. Med det finnes

Detaljer

SEGMENTERING IN 106, V-2001 BILDE-SEGMENTERING DEL I 26/ Fritz Albregtsen SEGMENTERING SEGMENTERING

SEGMENTERING IN 106, V-2001 BILDE-SEGMENTERING DEL I 26/ Fritz Albregtsen SEGMENTERING SEGMENTERING SEGMENTERING IN 106, V-2001 Segmentering er en prosess som deler opp bildet i meningsfulle regioner. I det enkleste tilfelle har vi bare to typer regioner BILDE-SEGMENTERING DEL I Forgrunn Bakgrunn Problemet

Detaljer

Polare trekanter. Kristian Ranestad. 27. oktober Universitetet i Oslo

Polare trekanter. Kristian Ranestad. 27. oktober Universitetet i Oslo Universitetet i Oslo 27. oktober 2011 Pol og polare Enhetssirkelen har likningen q(x, y) = x 2 + y 2 1 = 0 For hvert punkt a = (a 1, a 2 ) på sirkelen er tangentlinja til sirkelen definert av likningen

Detaljer

MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1. Oppgave 1

MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1. Oppgave 1 MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1 Oppgave 1 a) Normalantakelse: Målingene x 1,..., x 21 og y 1,..., y 8 betraktes som utfall av tilfeldige variable X 1,..., X 21

Detaljer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer 5 Vektorrom Et vektorrom er en mengde V med tre algebraiske operasjoner (addisjon, negasjon og skalærmultiplikasjon) som tilfredsstiller de 10 betingelsene fra Def. 4.1.1. Jeg vil ikke gi en eksamensoppgave

Detaljer

MA2501 Numeriske metoder

MA2501 Numeriske metoder MA501 Numeriske metoder Vår 009 Øving 9 Oppgave 1 Bruk vedlagte matlab-program skyt.m til å løse randverdiproblemet x + e x = 0, x(0) = x(1) = 0 Oppgave Gitt startverdiproblemet x = t(x ), x(0) = 1, x

Detaljer

Innlevering i FORK Matematikk forkurs OsloMet Obligatorisk innlevering 3 Innleveringsfrist Onsdag 14.november 2018 kl. 10:30 Antall oppgaver: 13

Innlevering i FORK Matematikk forkurs OsloMet Obligatorisk innlevering 3 Innleveringsfrist Onsdag 14.november 2018 kl. 10:30 Antall oppgaver: 13 Innlevering i FORK00 - Matematikk forkurs OsloMet Obligatorisk innlevering Innleveringsfrist Onsdag 4.november 08 kl. 0:0 Antall oppgaver: Bestem vinkelen mellom vektorene u = [, 7] og v = [4, 5]. Hva

Detaljer

Computers in Technology Education

Computers in Technology Education Computers in Technology Education Beregningsorientert matematikk ved Høgskolen i Oslo Skisse til samlet innhold i MAT1 og MAT2 JOHN HAUGAN Både NTNU og UiO har en god del repetisjon av videregående skoles

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning. 1 En kort oppsummering Adaptiv filtrering 2. 3 Prediksjon 4

Generell informasjon om faget er tilgjengelig fra It s learning. 1 En kort oppsummering Adaptiv filtrering 2. 3 Prediksjon 4 Stavanger, 13. august 2013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 2013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 1 En kort oppsummering. 1 2 Adaptiv

Detaljer

Oppgavesett. Kapittel Oppgavesett 1

Oppgavesett. Kapittel Oppgavesett 1 Kapittel 9 Oppgavesett Dette kapitlet består av fire oppgavesett med oppgaver fra alle deler av kompendiet. 9. Oppgavesett Oppgave. Et dynamisk system er gitt ved x n+ = M x n der M er -matrisen.6.. M

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. 1 Adaptiv filtrering 2.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. 1 Adaptiv filtrering 2. Stavanger, 23. juni 2017 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2017. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Innhold

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Løsningsforslag øving 6

Løsningsforslag øving 6 Løsningsforslag øving 6 7 Husk Teorem 79 i notatet: En delmengde U av et vektorrom V er et underrom hvis ) nullvektoren er i U, ) summen av to vektorer i U er i U igjen, og 3) et skalarmultiplum av en

Detaljer

MAT1120 Repetisjon Kap. 1, 2 og 3

MAT1120 Repetisjon Kap. 1, 2 og 3 MAT1120 Repetisjon Kap. 1, 2 og 3 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Fra kap. 1 repeterer vi: Matriser Vektorer og lineære kombinasjoner Lineæravbildninger

Detaljer

STK Maskinlæring og statistiske metoder for prediksjon og klassifikasjon

STK Maskinlæring og statistiske metoder for prediksjon og klassifikasjon STK2100 - Maskinlæring og statistiske metoder for prediksjon og klassifikasjon Oppsummering av kurset 17. april 2018 Hovedproblem Input x R p. Output y Numerisk: regresjon Kategorisk: Klassifikasjon Gitt

Detaljer

Eksamen TMA desember 2009

Eksamen TMA desember 2009 Eksamen TMA41 14. desember 009 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag 1 a) Grafen. - 0 4 6 b) Dersom vi antar at f(x) = 1 (f(x + 0) + f(x 0)), har vi f(x) = Setter

Detaljer

Divergens- og virvelfrie felter. Potensialstrøm

Divergens- og virvelfrie felter. Potensialstrøm Kapittel 9 Divergens- og virvelfrie felter. Potensialstrøm Oppgave Det eksisterer et hastighetspotensiale φ hvis feltet er virvelfritt. For et to-dimensjonalt felt v v x i+v y j er virvlingen gitt ved

Detaljer

Prøveeksamen STK vår 2017

Prøveeksamen STK vår 2017 Prøveeksamen STK2100 - vår 2017 Geir Storvik Vår 2017 Oppgave 1 Anta en lineær regresjonsmodell p Y i = β 0 + β j x ij + ε i, j=1 ε i uif N(0, σ 2 ) Vi kan skrive denne modellen på vektor/matrise-form:

Detaljer

FASIT OG TIPS til Rinvold: Visuelle perspektiv. Lineær algebra. Caspar forlag, 1.utgave 2003 og 2.opplag 2004.

FASIT OG TIPS til Rinvold: Visuelle perspektiv. Lineær algebra. Caspar forlag, 1.utgave 2003 og 2.opplag 2004. FAIT OG TIP til Rinvold: Visuelle perspektiv. Lineær algebra. Caspar forlag,.utgave og.opplag. Versjon..9. Det er ikke tatt med svar på alle oppgaver. Denne fasiten vil bli oppdatert etter hvert. Oppdager

Detaljer

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type Emne 8 GENERELLE VEKTORROM Hittil har vi bare snakket om vektorrom av type og underrom av dette. Vi definerte en mengde V som et underrom av hvis det inneholdt og var lukket under addisjon og skalar multiplikasjon.

Detaljer

Temaer i dag. Repetisjon av histogrammer II. Repetisjon av histogrammer I. INF 2310 Digital bildebehandling FORELESNING 5.

Temaer i dag. Repetisjon av histogrammer II. Repetisjon av histogrammer I. INF 2310 Digital bildebehandling FORELESNING 5. Temaer i dag INF 231 Digital bildebehandling FORELESNING 5 HISTOGRAM-TRANSFORMASJONER Fritz Albregtsen Histogramtransformasjoner Histogramutjevning Histogramtilpasning Standardisering av histogram for

Detaljer

FFI-RAPPORT. Teknologiske muligheter for Tolletaten. mønstergjenkjenning og maskinlæring

FFI-RAPPORT. Teknologiske muligheter for Tolletaten. mønstergjenkjenning og maskinlæring FFI-RAPPORT 17/17026 Teknologiske muligheter for Tolletaten mønstergjenkjenning og maskinlæring - Idar Dyrdal Lars Aurdal Kristin Hammarstrøm Løkken Thor Engøy Teknologiske muligheter for Tolletaten mønstergjenkjenning

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA20/MA620 Høsten 206 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Med foreehold om feil Hvis du finner en ta kontakt med Karin Kapittel 2 a) ) A + B 2A B 2 + [ ] 3 3 7 7 c)

Detaljer

Fasit for eksamen i MEK1100 torsdag 13. desember 2007 Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for perfekt svar).

Fasit for eksamen i MEK1100 torsdag 13. desember 2007 Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for perfekt svar). Fasit for eksamen i MEK torsdag 3. desember 27 Hvert delspørsmål honoreres med poengsum fra til ( for perfekt svar). Oppgave Vi har gitt to vektorfelt i kartesiske koordinater (x,y,z) A = yi+coszj +xy

Detaljer

6.8 Anvendelser av indreprodukter

6.8 Anvendelser av indreprodukter 6.8 Anvendelser av indreprodukter Vektede minste kvadraters problemer Anta at vi approksimerer en vektor y = (y 1,..., y m ) R m med ŷ = (ŷ 1,..., ŷ m ) R m. Et mål for feilen vi da gjør er y ŷ, der betegner

Detaljer

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering 8. mars 2004 1 Kort om Newton s metode i flere dimensjoner Newton s metode kan generaliseres til å løse sett av n ligninger med n ukjente. Skal

Detaljer

Divergens- og virvelfrie felter. Potensialstrøm

Divergens- og virvelfrie felter. Potensialstrøm Kapittel 9 Divergens- og virvelfrie felter. Potensialstrøm Oppgave Det eksisterer et hastighetspotensiale φ hvis feltet er virvelfritt. For et to-dimensjonalt felt v = v x i+v y j er virvlingen gitt ved

Detaljer

Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert!

Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert! MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1 Flott! Samlet sett leverer dere gode resultater. Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert! Totalt

Detaljer

R2 - Vektorer i rommet

R2 - Vektorer i rommet R2 - Vektorer i rommet - 26.01.17 Del I - Uten hjelpemidler Løsningsskisser - versjon 31.01.17 Oppgave 1 Gitt vektorene u 1, 2, 3 og v 2, 1, 4. a) Regn ut u v b) Regn ut u v c) Regn ut w u t v d) Løs vektorligningen

Detaljer

Seksjonene : Vektorer

Seksjonene : Vektorer Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren

Detaljer

a. Hva er de inverse transformasjonene avfølgende tre transformasjoner T, R og S: θ θ sin( ) cos( ) Fasit: 1 s x cos( θ) sin( θ) 0 0 y y z

a. Hva er de inverse transformasjonene avfølgende tre transformasjoner T, R og S: θ θ sin( ) cos( ) Fasit: 1 s x cos( θ) sin( θ) 0 0 y y z Kommentar: Svar kort og konsist. Husk at eksamen har tre oppgaver. Poengene for hver (del-) oppgave bør gi en indikasjon på hvor me tid som bør benttes per oppgave. Oppgave 1: Forskjellige emner (40 poeng)

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13 Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 014 kl. 14 Antall oppgaver: 13 Løsningsforslag 1 Finn volumet til tetraederet med hjørner O(0,

Detaljer

LØSNINGSFORSLAG ) = Dvs

LØSNINGSFORSLAG ) = Dvs LØSNINGSFORSLAG 12 OPPGAVE 1 D j er differansen mellom måling j med metode A og metode B. D j N(µ D, 0.1 2 ). H 0 : µ D = 0 mot alternativet H 1 : µ D > 0. Vi forkaster om ˆµ D > k Under H 0 er ˆµ D =

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

LP. Kap. 17: indrepunktsmetoder

LP. Kap. 17: indrepunktsmetoder LP. Kap. 17: indrepunktsmetoder simpleksalgoritmen går langs randen av polyedret P av tillatte løsninger et alternativ er indrepunktsmetoder de finner en vei i det indre av P fram til en optimal løsning

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

Sammendrag kapittel 9 - Geometri

Sammendrag kapittel 9 - Geometri Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning

Detaljer

KORT INTRODUKSJON TIL TENSORER

KORT INTRODUKSJON TIL TENSORER KORT INTRODUKSJON TIL TENSORER Tensorer har vi allerede møtt i form av skalarer (tall) og vektorer. En skalar kan betraktes som en tensor av rang null (en komponent), mens en vektor er en tensor av rang

Detaljer

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Oppgave 1: Pengespill a) For hver deltaker har vi følgende situasjon: Deltakeren får en serie oppgaver. Hver runde har to mulige utfall: Deltakeren

Detaljer

Oppsummering av STK2120. Geir Storvik

Oppsummering av STK2120. Geir Storvik Oppsummering av STK2120 Geir Storvik Vår 2011 Hovedtemaer Generelle inferensmetoder Spesielle modeller/metoder Bruk av R Vil ikke bli testet på kommandoer, men må forstå generelle utskrifter Generelle

Detaljer

Litt GRUPPETEORI for Fys4170

Litt GRUPPETEORI for Fys4170 Litt GRUPPETEORI for Fys4170 GRUPPER: Ei gruppe G = {g i } er ei samling element med disse egenskapene: * multiplikasjon slik at g i g j G ; * et enhetselement g 0 = 1 slik at g i g 0 = g 0 g i = g i ;

Detaljer

Seksjonene : Vektorer

Seksjonene : Vektorer Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier

FY2045/TFY4250 Kvantemekanikk I, øving 6 1 ØVING 6. Fermi-impulser og -energier FY2045/TFY4250 Kvantemekanikk I, 2012 - øving 6 1 ØVING 6 Oppgave 6 1 Fermi-impulser og -energier a. Anta at en ideell gass av N (ikke-vekselvirkende) spinn- 1 -fermioner befinner seg i grunntilstanden

Detaljer

LO510D Lin.Alg. m/graf. anv. Våren 2005

LO510D Lin.Alg. m/graf. anv. Våren 2005 TF Høgskolen i Sør Trøndelag Avdeling for informatikk og e læring LO5D Lin.Alg. m/graf. anv. Våren 5 Løsningsforslag Eksamen a) Setter α = og β = i ligningssystemet og gausseliminerer totalmatrisen til

Detaljer

Eksamen i Geometrisk Modellering

Eksamen i Geometrisk Modellering Eksamen i Geometrisk Modellering STE6038 Sivilingeniørutdanningen ved Høgskolen i Narvik, Produktutformingsteknologi (1. PUT), 9. august 1995 Til denne eksamenen er alle skrevne hjelpemidler samt alle

Detaljer

Midtveiseksamen Løsningsforslag

Midtveiseksamen Løsningsforslag INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Midtveiseksamen Løsningsforslag INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Tirsdag 21. mars 2017 Tidspunkt

Detaljer

Fargebilder. Lars Vidar Magnusson. March 12, 2018

Fargebilder. Lars Vidar Magnusson. March 12, 2018 Fargebilder Lars Vidar Magnusson March 12, 2018 Delkapittel 6.1 Color Fundamentals Delkapittel 6.2 Color Models Delkapittel 6.3 Bildeprosessering med Pseudofarger Delkapittel 6.4 Prosessering av Fargebilder

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

TMA4105 Matematikk 2 vår 2013

TMA4105 Matematikk 2 vår 2013 TMA4105 Matematikk vår 013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavene er fra læreboka Merk: I løsningene til alle oppgavene fra seksjon

Detaljer

INF februar 2017 Ukens temaer (Kap og i DIP)

INF februar 2017 Ukens temaer (Kap og i DIP) 1. februar 2017 Ukens temaer (Kap 2.4.4 og 2.6.5 i DIP) Geometriske operasjoner Lineære / affine transformer Resampling og interpolasjon Samregistrering av bilder 1 / 30 Geometriske operasjoner Endrer

Detaljer

Suffisient observator

Suffisient observator Iledig Beslutigsteori Parametriske metoder Ikke-parametriske metoder Diskrimiatfuksjoer Evaluerig Ikke-ledet lærig Klygeaalyse Suffisiete observatorer Suffisiet observator Statistisk størrelse s som ieholder

Detaljer

EKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205)

EKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Kontakt under eksamen Navn: Bawfeh Kingsley Kometa kontor: 7359975, mobil: 936 24 483) Sensur: 06.0.20 EKSAMEN I NUMERISK

Detaljer

Basisoppgaver til Tall i arbeid Påbygging kap. 4 Modellering

Basisoppgaver til Tall i arbeid Påbygging kap. 4 Modellering Basisoppgaver til Tall i arbeid Påbygging kap. 4 Modellering 4.1 Mer om lineær vekst 4.2 En lineær modell på øyemål 4.3 Lineær regresjon 4.4 Modellering med polynomfunksjoner 4.5 Modellering med eksponentialfunksjoner

Detaljer

Vektorligninger. Kapittel 3. Vektorregning

Vektorligninger. Kapittel 3. Vektorregning Kapittel Vektorligninger I denne uken skal vi bruke enkel vektorregning til å analysere lineære ligningssystemer. Vi skal ha et spesielt fokus på R, for det går an å visualisere; klarer man det, går det

Detaljer

DIGITALISERING Et bilde er en reell funksjon av to (eller flere) reelle variable. IN 106, V-2001 BILDE-DANNING. SAMPLING og KVANTISERING

DIGITALISERING Et bilde er en reell funksjon av to (eller flere) reelle variable. IN 106, V-2001 BILDE-DANNING. SAMPLING og KVANTISERING IN 06, V-200 DIGITALISERING Et bilde er en reell funksjon av to (eller flere) reelle variable. BILDE-DANNING SAMPLING og KVANTISERING BILDE-FORBEDRING I BILDE-DOMENET 2/3 200 Fritz Albregtsen. Trinn: Legg

Detaljer

Sensitivitet og kondisjonering

Sensitivitet og kondisjonering Sensitivitet og kondisjonering Gitt en lineær likningssystem Ax = b vi skal studere effekten av perturbasjoner av input data: 1/19 på output data: Man kan A, b x perturbere bare b perturbere b og A samtidig.

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som

Detaljer