Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)

Størrelse: px
Begynne med side:

Download "Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)"

Transkript

1 Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)

2 Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens (gjennomsnitt) m y = y i / n Variasjon (spredning) SS (kvadratsummen) (y i m y ) 2 Variansen (var) (y i m y ) 2 / (n-1) = SS / (n-1) Standardavviket [ (y i m y ) 2 / (n-1)] = (SS / (n-1)) = (var) Fordeling

3 Generelt: Ved multivariate analyser (flere uavhengige variabler) i SPSS, vil de mest aktuelle prosedyrene være: Logistic regression, Regression Linear og GLM Univariate.

4 Regresjonslinja: y = a + b*x Husk tolkning av a og b fra psy1010/psyc1100! b (regresjonskoeffisienten) vil være å tolke som endring i y når x øker med en. Og forklart varians (R 2 ) vil her være.44 Her: Predikert Salnow = *Edlevel dvs. vi forventer her en økning i Salnow på 1564 dollar når Edlevel øker med ett år. Men hva betyr øker med en når x-variabelen er en kvalitativ variabel? Da er det nyttig å formulere problemet på en annen måte!

5 Enveis variansanalyse

6 Dersom den uavhengige variabelen er kvalitativ (nominalnivå) og har flere enn to nivåer, må vi beregne varianskomponentene ( forklart og uforklart ) på en annen måte enn vi gjorde ved den lineære regresjonsanalysen. Da benytter vi de metodene som historisk har fått betegnelsen variansanalyse.

7 Vi bruker oppgave-2.pdf som eksempel:

8 Vi er (som vanlig) interesserte i om variasjon i den uavhengige variabelen (x) kan antas å skape variasjon i den avhengige variabelen (y). Eller i dette konkrete tilfellet om variasjon i gruppe skaper variasjon i symptomnivå. Dette kunne vi også kunne formulere som et spørsmål om gjennomsnittsforskjeller mellom grupper i noen bøker foretrekkes det... Vi beregner totalvariasjonen i symptomnivå ved kvadratsummen (SS): SS total ( y i y)

9 Denne totalvariasjonen kan vi nå spalte opp i to komponenter. Vi beregner først variasjonen under forutsetning av at alle personene i hver gruppe har samme symptomnivå: SS b g j1 n j i1 ( y j y) 2 g j1 n j ( y j y) Dette ser jo komplisert ut men vi gir ganske enkelt hver person et symptomnivå tilsvarende gjennomsnittsnivået i den gruppa personen tilhører og beregner deretter SS på vanlig måte. Dette kaller vi mellomgruppe (between groups) variasjonen og denne er da helt uavhengig av den variasjonen som måtte være mellom personer innen samme gruppe.

10 Vi beregner nå variasjonen ved hver persons avvik fra gjennomsnittet i den gruppa personen tilhører: SS w g 1 ng j 1 ( y ij y j ) 2 24 Vi beregner ganske enkelt hver persons avvik fra gjennomsnittet i sin egen gruppe og beregner deretter SS på vanlig måte. Dette kaller vi innen gruppe (within groups) variasjonen og denne er da helt uavhengig av eventuelle gjennomsnittsforskjeller mellom gruppene. Vi har nå tre variasjonsmål og det er lett å se at dersom det ikke hadde vært noen forskjeller mellom gruppene så ville SS w blitt den samme som SS total. Tilsvarende ville SS b blitt den samme som SS total dersom det ikke hadde vært noen forskjeller innen gruppene.

11 SStotal = SSb + SSw = Forklart + Uforklart Her: = Dersom vi ønsker det kan vi nå enkelt definere en indeks som sier oss hvor mye den forklarte variasjonen utgjør av totalvariasjonen. eta 2 " Forklart" Total SSb SStotal R 2 I variansanalyse sammenheng kalles denne gjerne eta 2. Dere kjenner den fra regresjonsanalysen som R 2. Dette er bare ulike navnekonvensjoner. Her får vi: eta

12 Vanligvis vil dere selvsagt bruke et av de mange programmene for variansanalyse i Spss. Da ville en utskrift kunne se slik ut: De andre tallene i tabellen benytter vi for å konstruere en signifikanstest for den forklarte variansen. Se også Fronter: oppgave-2-beregninger.xlsx for mer detaljerte beregninger.

13 F-testen : Problemet er at resultatene vi har fått kunne oppstått som resultat av en helt tilfeldig prosess! Dersom vi her hadde trukket tre tilfeldige utvalg av størrelse 5 fra en og samme populasjon (med et gitt totalgjennomsnitt og en gitt varians), kalt disse gruppe K, P og T, og gjennomført en variansanalyse, ville vi som en funksjon av tilfeldig samplingvariasjon ha fått en viss variasjon i gruppegjennomsnittene og dermed en R 2 > 0. Denne situasjonen betrakter vi som vår null-hypotese (H 0 ). Alternativt kunne det være systematikk her ved at en eller flere av gruppene faktisk stammer fra populasjoner med et annet gjennomsnitt. Vi ønsker her å ta et rasjonelt valg mellom disse to scenariene og signifikanstesten hjelper oss her. For å illustrere hva som vil skje når data genereres ved en slik tilfeldig prosess (H 0 er sann) simulerte jeg dette. Jeg konstruerte en populasjon med gjennomsnitt = 4.33 og varians = 2. Fra denne trakk jeg tre tilfeldige utvalg av størrelse n=5 og gjennomførte en enveis Anova med tre grupper. Dette gjentok jeg 3000 ganger, og hver gang beregnet jeg og tok vare på: F MSS MSS b w Dette skulle jeg egentlig ha fortsatt med i det uendelige, men det er jo veldig lenge da

14

15 En slik simulering trenger vi ikke å gjøre i praksis fordi: Dersom null-hypotesen stemmer vil vi kunne estimere variansen i populasjonen som observasjonene stammer fra ved enten MSSb eller MSSw! Men dersom null-hypotesen ikke stemmer vil det ikke lenger være likegyldig hvilket av disse vi velger. Da vil bare MSSw være et estimat av variansen i populasjonen. Dersom vi beregner en ratio mellom et variansestimat basert på SSb (MSSb) og et basert på SSw (MSSw), vil vi derfor forvente at denne ratioen skal bli 1 dersom null-hypotesen stemmer. En slik ratio vil være F-fordelt gitt null-hypotesen derfor kalles denne en F. I vårt tilfelle ville F-verdiene fordele seg slik dersom H 0 stemmer:

16 Vi kan dermed beregne sannsynligheten for å observere en så avvikende (eller mer avvikende), F-verdi enn den vi har observert dersom null-hypotesen stemmer den såkalte p-verdien (eller signifikansnivået ): obs H sann PF H sann P 0 0 Dersom denne er mindre enn en gitt verdi forkaster vi H 0. Som dere ser av figuren på forrige side er denne i dette tilfellet svært liten. Spss har også beregnet denne i Anova-tabellen. Vi forkaster dermed H 0 og antar at våre observasjoner er resultat av en systematisk prosess og ikke generert av en tilfeldighetsmekanisme. Denne testen er nærmere beskrevet i læreboka!

17 Generelt for alle signifikanstester : 1. Formuler en null-hypotese (H 0 ). Svært ofte velger vi null-hypoteser som tilsier at observerte data er generert av en tilfeldighetsmekanisme. 2. Beregn en testobservator (F, t, χ 2, osv.). 3. Finn samplingfordelinga til denne (hvordan denne vil fordele seg ved repetert sampling fra populasjonen) dersom H 0 er sann. Dette har heldigvis statistikerne løst for oss.. Vi bruker oftest testobservatorer som er F, t eller χ 2 fordelte, men det finnes mange andre teoretiske fordelinger som benyttes. 4. Finn fra samplingfordelinga sannsynligheten for den testobservatoren vi har observert. Her: P{F H 0 sann). 5. Dersom denne er liten forkast H 0. Og liten er det vanlig å operasjonalisere som P <.05 eller P <.01. Dersom vi ikke har et dataprogram (Excel, Spss, etc.) tilgjengelig, og må bruke kalkulatoren, vil det være vanskelig å beregne denne P-verdien. Da må vi nøye oss med kritiske verdier hentet fra en tabell. I slike tabeller finner vi hvor stor (eller liten) vår testobservator må være før vi kan forkaste H 0 på.05 eller.01 nivå. Se neste side.

18

19 Multiple Comparisons.

20 A B B-A Mean: Sd: Varians: Trekker tilfeldige tall fra to fordelinger. Den ene (A) har gjennomsnitt 50 og varians=100. Den andre har gjennomsnitt=60 og varians=100. Tallene A og B er trukket helt uavhengige av hverandre, og korrelasjonen (kovariansen) mellom dem er dermed 0. Beregner differansen mellom A og B. Legg merke til hva som skjer med variansen til denne differansen (B-A).

21 Vi ønsker å sammenligne to av flere mulige gjennomsnitt med hverandre, og kan bruke en «t-test»: Vi trenger da variansen til en differanse mellom gjennomsnitt eller variansen i samplingfordelinga til differanser mellom gjennomsnitt. Generelt (se simulerte tall på forrige side): var(a-b) = var(a) + var(b) 2*Kov(A,B) Her er det ingen kovarians mellom tallene vi er interesserte i siden gjennomsnittene er fra to grupper samplet uavhengig av hverandre (mer om dette når vi kommer til repeated measures Anova). Så her: var(a-b) = var(a) + var(b)

22 Vi er interesserte i variansen til differansen mellom to gjennomsnitt: Vi husker (fra psy1100/psyc1010) at variansen til et gjennomsnitt er: Dersom vi kan anta at observerte data for de to gruppene er samplet fra populasjoner med samme varians og har samme n, får vi: hvor n er antall i hvilken som helst av gruppene. Men som vanlig må vi estimere σ 2!

23 Vi vet fra det vi har snakket om tidligere at dersom H 0 er sann, vil både MSS between og MSS within være estimater av σ 2. Dersom H 0 ikke er sann vil fortsatt MSS within estimere σ 2 - selv om MSS between ikke vil det. Da kan vi bruke følgende som estimat: En stor fordel er at vi her kan bruke samme estimat av σ 2 uansett hvilke grupper vi sammenligner. Det gir mening dersom vi kan anta at gruppene er samplet fra populasjoner med samme varians. Og vi kan bruke en t-test: H 0 : µ 1 -µ 2 = 0 Og finne P{t H 0 =sann} fra en t-fordeling med df within (df error ) frihetsgrader.

24 Men hva gjør vi dersom n er forskjellig i de to gruppene? Her finnes det flere forslag. Vi går ikke gjennom dem i dette kurset. Her bruker vi tilnærmingen som brukes blant annet i SPSS. Vi kunne skrevet om formelen som vi brukte over: Denne brukes i SPSS også der hvor n 1 og n 2 er ulike:

25

26 Regne-eksempel fra data i oppgave-2.pdf :

27 Og utskrift fra Spss:

28 Effect-size.

29 For «forklart varians» (overall-effekten): For differanser mellom gjennomsnitt («kontraster»): Cohen's Standard d r r LARGE MEDIUM SMALL

30 Et nytt regne-eksempel med data fra filen (se Fronter): cortisol.sav.

31 cortisol N Mean Std SE 95% CI Min Max Lower Upper 1 Normals Major Depression Bipolar Depression Atypical Total ANOVA SS df MSS F Sig. Between Groups Within Groups Total Multiple Comparisons LSD (I) diag (J) diag Mean Diff SE Sig. 95% CI Lower Upper SE t p 1 Normals 2 Major Depression sqrt(17.939*(1/31+1/14))= Bipolar Depression sqrt(17.939*(1/31+1/14))= Atypical sqrt(17.939*(1/31+1/4))= Major Depression 1 Normals Bipolar Depression Atypical Bipolar Depression 1 Normals Major Depression Atypical Atypical 1 Normals Major Depression Bipolar Depression

Repeated Measures Anova.

Repeated Measures Anova. Repeated Measures Anova. Vi bruker oppgave-5 som eksempel. I en evalueringsstudie av en terapeutisk intervensjon valgte man et pre-post med kontrollgruppe design. Alle personer ble undersøkt tre ganger

Detaljer

Sammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt

Sammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt SOS1120 Kvantitativ metode Forelesningsnotater 10. forelesning høsten 2005 Per Arne Tufte Sammenlikninger av gjennomsnitt Sammenlikner gjennomsnittet på avhengig variabel for ulike grupper av enheter Kan

Detaljer

Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2.

Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2. Sensurveiledning Ped 3001 h12 Oppgave 1 Er det sammenheng mellom støtte fra venner og selvaktelse hos ungdom? Dette spørsmålet ønsket en forsker å undersøke. Han samlet data på 9. klassingers opplevde

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Eva Langvik Tlf.: Psykologisk institutt 73591960 Eksamensdato: 21.5.2013

Detaljer

Til bruk i metodeundervisningen ved Høyskolen i Oslo

Til bruk i metodeundervisningen ved Høyskolen i Oslo MINIMANUAL FOR SPSS Til bruk i metodeundervisningen ved Høyskolen i Oslo Denne minimanualen viser hvordan analyser i metodeundervisningen på masternivå (master i sosialt arbeid, master i familiebehandling

Detaljer

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger. H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET

Detaljer

Anvendt medisinsk statistikk, vår Repeterte målinger, del II

Anvendt medisinsk statistikk, vår Repeterte målinger, del II Anvendt medisinsk statistikk, vår 009 Repeterte målinger, del II Eirik Skogvoll Overlege, Klinikk for anestesi og akuttmedisin 1. amanuensis, Enhet for anvendt klinisk forskning (med bidrag fra Harald

Detaljer

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005 SOS1120 Kvantitativ metode Regresjonsanalyse Forelesningsnotater 11. forelesning høsten 2005 Per Arne Tufte Lineær sammenheng I Lineær sammenheng II Ukelønn i kroner 4000 3500 3000 2500 2000 1500 1000

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis

Detaljer

MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ

MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.25 (11.27, 11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal nne

Detaljer

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den

Detaljer

Forelesning 13 Analyser av gjennomsnittsverdier. Er inntektsfordelingen for kvinner og menn i EU-undersøkelsen lik?

Forelesning 13 Analyser av gjennomsnittsverdier. Er inntektsfordelingen for kvinner og menn i EU-undersøkelsen lik? 2 verdier Forelesning 13 Analyser av gjennomsnittsverdier Valg av type statistisk generalisering i bivariat analyse er avhengig av hvilke variabler vi har Avhengig variabel kategorivariabel kontinuerlig

Detaljer

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005. SOS112 Kvantitativ metode Krysstabellanalyse (forts.) Forelesningsnotater 9. forelesning høsten 25 4. Statistisk generalisering Per Arne Tufte Eksempel: Hypoteser Eksempel: observerte frekvenser (O) Hvordan

Detaljer

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2 MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.27 (11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal finne konfidensintervall

Detaljer

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for

Detaljer

10.1 Enkel lineær regresjon Multippel regresjon

10.1 Enkel lineær regresjon Multippel regresjon Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel

Detaljer

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Oppgave 1 a Forventet antall dødsulykker i år i er E(X i λ i. Dermed er θ i λ i E(X i forventet antall dødsulykker per 100

Detaljer

Er det enklere å anslå timelønna hvis vi vet utdanningslengden? Forelesning 14 Regresjonsanalyse

Er det enklere å anslå timelønna hvis vi vet utdanningslengden? Forelesning 14 Regresjonsanalyse Forelesning 4 Regresjonsanalyse To typer bivariat analyse: Bivariat tabellanalyse: Har enhetenes verdi på den uavhengige variabelen en tendens til å gå sammen med bestemte verdier på den avhengige variabelen?

Detaljer

Testobservator for kjikvadrattester

Testobservator for kjikvadrattester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket

Detaljer

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka:

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka: MOT30 Statistiske metoder, høsten 2006 Løsninger til regneøving nr. 8 (s. ) Oppgaver fra boka: Oppgave.5 (.3:5) ) Først om tolking av datautskriften. Sammendrag gir følgende informasjon: Multippel R =R,

Detaljer

Bruk data fra tabellen over (utvalget) og opplysninger som blir gitt i oppgavene og svar på følgende spørsmål:

Bruk data fra tabellen over (utvalget) og opplysninger som blir gitt i oppgavene og svar på følgende spørsmål: Frafall fra videregende skole (VGS) er et stort problem. Bare ca 70% av elevene som begynner p VGS fullfører og bestr i løpet av 5 r. For noen elever er skolen s lite attraktiv at de velger slutte før

Detaljer

Løsningsforsalg til andre sett med obligatoriske oppgaver i STK1110 høsten 2015

Løsningsforsalg til andre sett med obligatoriske oppgaver i STK1110 høsten 2015 Løsningsforsalg til andre sett med obligatoriske oppgaver i STK1110 høsten 2015 R-kode for alle oppgaver er gitt bakerst. Oppgave 1 (a) Boksplottet antyder at verdiene er høyere for kvinner enn for menn.

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Martin Rasmussen Tlf.: 73 59 19 60 Eksamensdato: 12.12.13 Eksamenstid

Detaljer

Sensorveiledning: skoleeksamen i SOS Kvantitativ metode

Sensorveiledning: skoleeksamen i SOS Kvantitativ metode Sensorveiledning: skoleeksamen i SOS1120 - Kvantitativ metode Tirsdag 30. mai 2016 (4 timer) Poenggivning og karakter I del 1 gis det ett poeng for hvert riktige svar. Ubesvart eller feil svar gis 0 poeng.

Detaljer

Effektstørrelse. Tabell 1. Kritiske verdier for Pearson s produkt-moment-korrelasjon med 5% og 1% signifikansnivå. N 5% 1% N 5% 1%

Effektstørrelse. Tabell 1. Kritiske verdier for Pearson s produkt-moment-korrelasjon med 5% og 1% signifikansnivå. N 5% 1% N 5% 1% Thor Arnfinn Kleven Institutt for pedagogikk 19.09.2013 Effektstørrelse Tradisjonelt har signifikanstesting vært fremhevet som den viktigste statistiske analyseformen i pedagogisk og psykologisk forskning.

Detaljer

Skoleeksamen i SOS Kvantitativ metode

Skoleeksamen i SOS Kvantitativ metode Skoleeksamen i SOS1120 - Kvantitativ metode Hjelpemidler Ordbok Alle typer kalkulatorer Tirsdag 30. mai 2017 (4 timer) Lærerbok (det er mulig mulig å ha med en annen, tilsvarende pensumbok, som erstatning

Detaljer

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives

Detaljer

Inferens i regresjon

Inferens i regresjon Strategi som er fulgt hittil: Inferens i regresjon Deskriptiv analyse og dataanalyse først. Analyse av en variabel før studie av samvariasjon. Emne for dette kapittel er inferens når det er en respons

Detaljer

Verdens statistikk-dag.

Verdens statistikk-dag. Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

Kap. 12: Variansanalyse

Kap. 12: Variansanalyse 2 Kap. 12: Variansanalyse Situasjon: c populasjoner, hver med sitt populasjonsgjennomsnitt μ i. Vi tester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag H 0 : Alle populasjonene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1110 FASIT. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider. Vedlegg: Tillatte

Detaljer

Klassisk ANOVA/ lineær modell

Klassisk ANOVA/ lineær modell Anvendt medisinsk statistikk, vår 008: - Varianskomponenter - Sammensatt lineær modell med faste og tilfeldige effekter - Evt. faktoriell design Eirik Skogvoll Overlege, Klinikk for anestesi og akuttmedisin

Detaljer

Kapittel 3: Studieopplegg

Kapittel 3: Studieopplegg Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon

ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start 2 Kap. 13: Lineær korrelasjons-

Detaljer

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 12 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Onsdag

Detaljer

Forelesning 13 Regresjonsanalyse

Forelesning 13 Regresjonsanalyse Forelesning 3 Regresjonsanalyse To typer bivariat analyse: Bivariat tabellanalyse: Har enhetenes verdi på den uavhengige variabelen en tendens til å gå sammen med bestemte verdier på den avhengige variabelen?

Detaljer

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ

Detaljer

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47) MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.

Detaljer

Fra krysstabell til regresjon

Fra krysstabell til regresjon Fra krysstabell til regresjon La oss si at vi er interessert i å undersøke i hvilken grad arbeidstid er avhengig av utdanning. Vi har ca. 3200 observasjoner (dvs. arbeidstakere som er spurt). For hver

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 13: Lineær korrelasjons- og regresjonsanalyse Kap. 13.1-13.3: Lineær korrelasjonsanalyse. Disse avsnitt er ikke pensum,

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00 MASTER I IDRETTSVITENSKAP 2014/2016 Individuell skriftlig eksamen i STA 400- Statistikk Fredag 13. mars 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 10 sider inkludert forsiden

Detaljer

Eksamensoppgave i TMA4255 Anvendt statistikk

Eksamensoppgave i TMA4255 Anvendt statistikk Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: August 2016 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte

Detaljer

Universitetet i Agder Fakultet for økonomi og samfunnsfag E K S A M E N

Universitetet i Agder Fakultet for økonomi og samfunnsfag E K S A M E N 1 Universitetet i Agder Fakultet for økonomi og samfunnsfag E K S A M E N Emnekode: Emnenavn: BE-34 Statistikk og finans Dato: 6. desember 21 Varighet: 9-13 Antall sider inkl. forside 6 Tillatte hjelpemidler:

Detaljer

I enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x

I enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x Multiple regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable.det er fortsatt en responsvariabel. Måten dette gjøre på er nokså naturlig. Prediktoren

Detaljer

Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005

Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005 SOS110 Kvantitativ metode Forelesningsnotater 6 forelesning høsten 005 Statistisk beskrivelse av enkeltvariabler (Univariat analyse) Per Arne Tufte Disposisjon Datamatrisen Variabler Datamatrisen Frekvensfordelinger

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA)

ST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA) ST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA) Bo Lindqvist Institutt for matematiske fag Bo Lindqvist, ST0202 2 Skittles (oppgave

Detaljer

Definisjoner av begreper Eks.: interesse for politikk

Definisjoner av begreper Eks.: interesse for politikk Måling SOS1120 Kvantitativ metode Forelesningsnotater 5. forelesning høsten 2005 Per Arne Tufte Måling er å knytte teoretiske begreper til empiriske indikatorer Operasjonell definisjon Angir hvordan et

Detaljer

Kort overblikk over kurset sålangt

Kort overblikk over kurset sålangt Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente

Detaljer

MOT310 Statistiske metoder 1, høsten 2011

MOT310 Statistiske metoder 1, høsten 2011 MOT310 Statistiske metoder 1, høsten 2011 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 30. oktober, 2011 Bjørn H. Auestad Kp. 13: Én-faktor eksperiment 1 / 15 -tabell

Detaljer

1 10-2: Korrelasjon. 2 10-3: Regresjon

1 10-2: Korrelasjon. 2 10-3: Regresjon 1 10-2: Korrelasjon 2 10-3: Regresjon Example Krysser y-aksen i 1: b 0 = 1 Stiger med 2 hver gang x øker med 1: b 1 = 2 Formelen til linja er derfor y = 1 + 2x Eksempel Example Vi lar fem personer se en

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg

Detaljer

Tilleggsoppgaver for STK1110 Høst 2015

Tilleggsoppgaver for STK1110 Høst 2015 Tilleggsoppgaver for STK0 Høst 205 Geir Storvik 22. november 205 Tilleggsoppgave Anta X,..., X n N(µ, σ) der σ er kjent. Vi ønsker å teste H 0 : µ = µ 0 mot H a : µ µ 0 (a) Formuler hypotesene som H 0

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Mandag 1. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet

Detaljer

Eksamensoppgave i samfunnsfaglig forskningsmetode 16. mai 2003

Eksamensoppgave i samfunnsfaglig forskningsmetode 16. mai 2003 Eksamensoppgave i samfunnsfaglig forskningsmetode 16. mai 03 Oppgave 1 1 Tabell 1 gjengir data fra en spørreundersøkelse blant personer mellom 17 og 66 år i et sannsynlighetsutvalg fra SSB sitt sentrale

Detaljer

Eksamensoppgave i PSY3100 forskningsmetoder kvantitativ

Eksamensoppgave i PSY3100 forskningsmetoder kvantitativ Institutt for psykologi Eksamensoppgave i PSY3100 forskningsmetoder kvantitativ Faglig kontakt under eksamen: Odin Hjemdal Tlf.: 73 59 19 60 Eksamensdato: 15. mai 2017 Eksamenstid: 09:00-13:00 Hjelpemiddelkode/Tillatte

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/ Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

Norges teknisk-naturvitenskapelige universitet Fakultet for samfunnsvitenskap og teknologiledelse Pedagogisk institutt

Norges teknisk-naturvitenskapelige universitet Fakultet for samfunnsvitenskap og teknologiledelse Pedagogisk institutt Norges teknisk-naturvitenskapelige universitet Fakultet for samfunnsvitenskap og teknologiledelse Pedagogisk institutt BOKMÅL/NYNORSK EKSAMEN I: PED3001 - STATISTIKK FAGLIG KONTAKT UNDER EKSAMEN: Per Frostad

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 10. oktober 2012. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

Løsningsforslag eksamen 25. november 2003

Løsningsforslag eksamen 25. november 2003 MOT310 Statistiske metoder 1 Løsningsforslag eksamen 25. november 2003 Oppgave 1 a) Vi har µ D = µ X µ Y. Sangere bruker generelt trapesius-muskelen mindre etter biofeedback dersom forventet bruk av trapesius

Detaljer

PSY Forskningsmetode II: Eksperimentell design og statistisk analyse, høst 2015.

PSY Forskningsmetode II: Eksperimentell design og statistisk analyse, høst 2015. Psykoloisk institutt PSY011 - Forskninsmetode II: Eksperimentell desin o statistisk analyse, høst 015. Onsda 8. oktober, 09:00 (3 timer). Kalkulator er tillatt. En liste med relevante formler er itt på

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Martin Rasmussen Tlf.: 73 59 19 60 Eksamensdato: 04.06.2014 Eksamenstid

Detaljer

Fra første forelesning:

Fra første forelesning: 2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen

Detaljer

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2003

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2003 SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 003 Oppgave 1 Tabell 1 gjengir data fra en spørreundersøkelse blant personer mellom 17 og 66 år i et sannsynlighetsutvalg fra SSB sitt sentrale personregister.

Detaljer

Prøveeksamen i STK3100/4100 høsten 2011.

Prøveeksamen i STK3100/4100 høsten 2011. Prøveeksamen i STK3100/4100 høsten 2011. Oppgave 1 (a) Angi tetthet/punktsannsynlighet for eksponensielle klasser med og uten sprednings(dispersjons)ledd. Nevn alle fordelingsklassene du kjenner som kan

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN

Detaljer

Bivariate analyser. Analyse av sammenhengen mellom to variabler. H 0 : Ingen sammenheng H 1 : Sammenheng

Bivariate analyser. Analyse av sammenhengen mellom to variabler. H 0 : Ingen sammenheng H 1 : Sammenheng Bivariate analyser Analyse av sammenhengen mellom to variabler H : Ingen sammenheng H 1 : Sammenheng Hvis den ene variabelen er kategorisk er en slik analyse det samme som å sammenligne grupper. Ulike

Detaljer

EKSAMENSOPPGAVE. B154 «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator.

EKSAMENSOPPGAVE. B154 «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004 Dato: 29.september 2016 Klokkeslett: 09 13 Sted: Tillatte hjelpemidler: B154 «Tabeller og formler i statistikk» av Kvaløy og

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

OPPGAVEHEFTE I STK1000 TIL KAPITTEL Regneoppgaver til kapittel 7. X 1,i, X 2 = 1 n 2. D = X 1 X 2. På onsdagsforelesningen påstod jeg at da må

OPPGAVEHEFTE I STK1000 TIL KAPITTEL Regneoppgaver til kapittel 7. X 1,i, X 2 = 1 n 2. D = X 1 X 2. På onsdagsforelesningen påstod jeg at da må OPPGAVEHEFTE I STK000 TIL KAPITTEL 7 Regneoppgaver til kapittel 7 Oppgave Anta at man har resultatet av et randomisert forsøk med to grupper, og observerer fra gruppe, mens man observerer X,, X,2,, X,n

Detaljer

Generelle lineære modeller i praksis

Generelle lineære modeller i praksis Generelle lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y en eller flere uavhengige

Detaljer

Oppgave 1. a) Anlysetype: enveis variansanalyse (ANOVA). Modell for y ij = ekspedisjonstid nr. j for skrankeansatt nr. i:

Oppgave 1. a) Anlysetype: enveis variansanalyse (ANOVA). Modell for y ij = ekspedisjonstid nr. j for skrankeansatt nr. i: MOT310 tatistiske metoder 1 Løsningsforslag til eksamen høst 010, s 1 Oppgave 1 a) Anlysetype: enveis variansanalyse (ANOVA) Modell for y ij ekspedisjonstid nr j for skrankeansatt nr i: Y ij µ i + ε ij,

Detaljer

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Onsdag

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper

Detaljer

Statistikk er begripelig

Statistikk er begripelig Statistikk er begripelig men man må begynne med ABC ANOVA ANOVA er brukt til å sammenligne gjennomsnittsverdier Slik er det, selv om det er Analysis of Variance man sier BIVARIAT Bivariat analyse er godt

Detaljer

i x i

i x i TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Mandag 30. mai 2005. Tid for eksamen: 14.30 17.30. Oppgavesettet er

Detaljer

UTDRAG FRA SENSORVEILEDNINGEN FOR EKSAMENSOPPGAVEN I SVSOS107 HØSTEN 2001

UTDRAG FRA SENSORVEILEDNINGEN FOR EKSAMENSOPPGAVEN I SVSOS107 HØSTEN 2001 UTDRAG FRA SENSORVEILEDNINGEN FOR EKSAMENSOPPGAVEN I SVSOS107 HØSTEN 001 Generell informasjon Da denne eksamensoppgaven ble gitt var SVSOS107 inne i en overgangsordning mellom gammelt og nytt pensum. Denne

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet

Detaljer

α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6)

α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6) TMA4245 Statistikk Vår 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 4 blokk II Løsningsskisse Oppgave 1 4 personer spurt. Hvis mellom 22 og 26 personer svarer

Detaljer

EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER

EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE

Detaljer

EKSAMEN I SOS1120 KVANTITATIV METODE 6. DESEMBER 2007 (4 timer)

EKSAMEN I SOS1120 KVANTITATIV METODE 6. DESEMBER 2007 (4 timer) EKSAMEN I SOS1120 KVANTITATIV METODE 6. DESEMBER 2007 (4 timer) Bruk av ikke-programmerbar kalkulator er tillatt under eksamen. Utover det er ingen hjelpemidler tillatt. Sensur faller torsdag 3. Januar

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Oppgave 1 Oppgave 11.5 fra læreboka. Oppgave 2 Oppgave 11.21 fra læreboka. Oppgave

Detaljer

Forelesning 10 Kjikvadrattesten

Forelesning 10 Kjikvadrattesten verdier Forelesning 10 Kjikvadrattesten To typer av statistisk generalisering: Statistisk hypotesetesting Statistiske hypoteser (H 0 og H 1 ) om populasjonen Finner forkastningsområdet for H 0 ut fra en

Detaljer

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor

Detaljer

STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler

STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler STK1000 Uke 36, 2016. Studentene forventes å lese Ch 1.4 (+ 3.1-3.3 + 3.5) i læreboka (MMC). Tetthetskurver Eksempel: Drivstofforbruk hos 32 biler Fra histogram til tetthetskurver Anta at vi har kontinuerlige

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12.

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12. MASTR I IDRTTSVITNSKAP 2014/2016 Utsatt individuell skriftlig eksamen i STA 400- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator ksamensoppgaven består av 10 sider inkludert

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar

Detaljer

Medisinsk statistikk Del I høsten 2009:

Medisinsk statistikk Del I høsten 2009: Medisinsk statistikk Del I høsten 2009: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Beregning av sannsynlighet i en binomisk forsøksrekke generelt Sannsynligheten for at suksess intreffer X

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK 1000 Innføring i anvendt statistikk. Eksamensdag: Torsdag 1. juni 2006. Tid for eksamen: 09.00 12.00. Oppgavesettet er på

Detaljer

Løsningsforslag til obligatorisk oppgave i ECON 2130

Løsningsforslag til obligatorisk oppgave i ECON 2130 Andreas Mhre April 15 Løsningsforslag til obligatorisk oppgave i ECON 13 Oppgave 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) E(XY) = - E(X ) X og Z er uavhengige, så

Detaljer

Statistisk generalisering

Statistisk generalisering Statistisk generalisering Forelesningsnotat høsten 2005 (SOS1120 Kvantitativ metode) av Per Arne Tufte (1) Innledning Så langt har vi undersøkt om det er sammenheng og eventuelt hvor sterk sammenhengen

Detaljer

Lineære modeller i praksis

Lineære modeller i praksis Lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y én eller flere uavhengige variabler:

Detaljer

Eksamensoppgave i ST3001

Eksamensoppgave i ST3001 Det medisinske fakultet Institutt for kreftforskning og molekylær medisin Eksamensoppgave i ST3001 fredag 25. mai 2012, kl. 9.00 13:00 Antall studiepoeng: 7.5 Tillatte hjelpemidler: Kalkulator og alle

Detaljer

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013 Tid: 09:00 13:00

EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Bo Lindqvist 975 89 418 EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Mandag 27. mai 2013

Detaljer