Repeated Measures Anova.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Repeated Measures Anova."

Transkript

1 Repeated Measures Anova.

2 Vi bruker oppgave-5 som eksempel. I en evalueringsstudie av en terapeutisk intervensjon valgte man et pre-post med kontrollgruppe design. Alle personer ble undersøkt tre ganger - før terapi (pre), umiddelbart etter terapi (post), og tre måneder senere (oppfølging). Tolv pasienter ble tilfeldig tilordnet to grupper: en kontrollgruppe (her kodet "0"), og en intervensjonsgruppe (her kodet "1"). Resultatene for et av symptommålene som ble anvendt så slik ut: I første omgang er vi her bare interesserte i hovedeffekten av Tid.

3 Vi kan tenke på dette designet som et variansanalyse-design med to uavhengige variabler (Person og Tid) og med bare en observasjon i hver celle. Da vil det være tre forhold som kan skape variasjon i de observerte skårene: forskjeller mellom tidspunkter (hovedeffekt av Tid), forskjeller mellom personer (hovedeffekt av Person), og at forskjeller mellom tidspunkter varierer fra person til person (en Tid*Person interaksjon). Forklart varians for de to hovedeffektene beregnes som tidligere.

4 Vi kan nå estimere alle verdier ut fra de to hovedeffektene: yˆ ijk y ( y j y) ( y k y) og vi ser at vi får en tabell helt uten Person*Tid interaksjon!

5 Forskjellen mellom de observerte verdiene og verdiene estimert fra de to hovedeffektene skyldes at effekten av Tid ikke er den samme for alle personene. Vi har altså en Person*Tid interaksjon. Hvor mye denne bidrar til variasjonen kan vi finne ved å beregne forskjellen mellom observerte og estimerte verdier:

6 I denne tabellen med bare en observasjon i hver celle, er det tre mulig kilder til variasjon: forskjeller mellom personer (hovedeffekt av person), forskjeller mellom tidspunkter (hovedeffekt av tid), og en tidspunkt*person interaksjon (tid*person). Vi er her primært interesserte i hovedeffekten av Tid, og feil i forhold til denne er at den kan variere fra person til person (tid*person interaksjonen). Generelle gjennomsnittsforskjeller mellom personer er helt irrelevante for denne effekten, og vi lager en signifikanstest hvor vi tester hovedeffekten av Tid mot Person*Tid interaksjonen. og fra SPSS: Skal dere få denne analysen riktig med SPSS, må dere bruke: Analyse, General Linear Model, Repeated Measures

7 Sett fra et rent statistisk synspunkt er det stort sett alltid fordelaktig å benytte et repeated measures design. Dette gjør det mulig å se bort fra en kilde til variasjon som vi ikke er interesserte i her: effekten av person, og vi får dermed høyere statistisk styrke. I mange tilfeller er det imidlertid ikke mulig å benytte et slikt design og i andre tilfeller er det ikke særlig smart fordi det vil gi oss tolkningsproblemer dvs. problemer knyttet til indre validitet.

8 Nå var jo dette designet litt mer komplisert: vi har egentlig et to-veis design med en mellom-person variabel (Gruppe) og en innen-person variabel (Tid). Da blir beregningene mer kompliserte, og vi lar foreløpig SPSS ta seg av det

9 Multiple Comparisons.

10 Eksemplet fra tidligere med tilfeldige, ukorrelerte tall: A B B-A Mean: Sd: Varians: Trekker tilfeldige tall fra to fordelinger. Den ene (A) har gjennomsnitt 50 og varians=100. Den andre (B) har gjennomsnitt=60 og varians=100. Tallene A og B er trukket helt uavhengige av hverandre, og korrelasjonen (kovariansen) mellom dem er dermed 0. Beregner differansen mellom A og B. Vi så at: var(a-b) = var(a) + var(b) 2*Kov(A,B) Men siden tallene var ukorrelerte var kovariansen 0, og det hele forenklet seg til: var(a-b) = var(a) + var(b)

11 Samme eksempel, men med tilfeldige, korrelerte tall: A B B-A Mean: Sd: Varians: Kovarians: Korrelasjon: 0.50 Trekker tilfeldige tall fra to fordelinger. Den ene (A) har gjennomsnitt 50 og varians=100. Den andre (B) har gjennomsnitt=60 og varians=100. Tallene A og B er trukket slik at kovariansen mellom dem er 50. Beregner differansen mellom A og B. var(a-b) = var(a) + var(b) 2*Kov(A,B) Som skulle bli: var(a-b) = *50 = 100 At variasjonen til en differanse avhenger av kovariansen (korrelasjonen), kan vi dra nytte av i et design med repeterte målinger!

12 Eksempel på enveis repetert design. 8 personer er målt to ganger (under to ulike betingelser). Treatment Treatment Person A B B-A Kov(A,B) Person A B B-A Kov(A,B) Mean Mean Sd Sd Varians Varians Kovarians 1.71 Kovarians 0.43 Variansen til B-A: 0.00 Variansen til B-A: 2.57 Vi ser at variansen til differansen avhenger av kovariansen mellom A og B!

13 Her kunne vi testet differansen mellom de to gjennomsnittene ved en enkel t-test for differansen mellom korrelerte gjennomsnitt (paired samples t-test i Spss): Det vil imidlertid bare fungere dersom vi som her har bare to repeterte målinger og en uavhengig variabel. Vi kunne hatt flere målinger og/eller flere uavhengige variabler. Da må vi finne en mer generell fremgangsmåte!

14 Vi går tilbake til eksemplet vi startet med. Der fikk vi følgende resultat:

15

16 Effect-size.

17 For differanser mellom gjennomsnitt («kontraster») kan vi bruke: Cohen s d = X 1 X 2 σ X 1 X 2 Sd = X 1 X 2 Mean(Var) = X 1 X Cohen's Standard d r r LARGE MEDIUM SMALL

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens

Detaljer

Anvendt medisinsk statistikk, vår Repeterte målinger, del II

Anvendt medisinsk statistikk, vår Repeterte målinger, del II Anvendt medisinsk statistikk, vår 009 Repeterte målinger, del II Eirik Skogvoll Overlege, Klinikk for anestesi og akuttmedisin 1. amanuensis, Enhet for anvendt klinisk forskning (med bidrag fra Harald

Detaljer

Repeterte målinger. Repeterte målinger. Eirik Skogvoll. Gjentatte observasjoner på samme individ:

Repeterte målinger. Repeterte målinger. Eirik Skogvoll. Gjentatte observasjoner på samme individ: Repeterte målinger Eirik Skogvoll 1.amanuensis dr.med. Enhet for anvendt klinisk forskning (AKF) Det medisinske fakultet, februar 2008 1 Repeterte målinger Mer eller mindre synonymt med... Repeated measurements

Detaljer

Repeterte målinger. Repeterte målinger. Eirik Skogvoll

Repeterte målinger. Repeterte målinger. Eirik Skogvoll Repeterte målinger Eirik Skogvoll Førsteamanuensis dr.med. Enhet for anvendt klinisk forskning (AKF) Det medisinske fakultet, februar 2009 1 Repeterte målinger Mer eller mindre synonymt med... Repeated

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00 MASTER I IDRETTSVITENSKAP 2014/2016 Individuell skriftlig eksamen i STA 400- Statistikk Fredag 13. mars 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 10 sider inkludert forsiden

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12.

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12. MASTR I IDRTTSVITNSKAP 2014/2016 Utsatt individuell skriftlig eksamen i STA 400- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator ksamensoppgaven består av 10 sider inkludert

Detaljer

Eksamensoppgave i PSY3100 Forskningsmetode - kvantitativ

Eksamensoppgave i PSY3100 Forskningsmetode - kvantitativ Psykologisk institutt Eksamensoppgave i PSY3100 Forskningsmetode - kvantitativ Faglig kontakt under eksamen: Odin Hjemdal Tlf.: Psykologisk institutt 73 59 19 60 Eksamensdato: 23.5.2013 Eksamenstid (fra-til):

Detaljer

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger. H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.

Detaljer

Klassisk ANOVA/ lineær modell

Klassisk ANOVA/ lineær modell Anvendt medisinsk statistikk, vår 008: - Varianskomponenter - Sammensatt lineær modell med faste og tilfeldige effekter - Evt. faktoriell design Eirik Skogvoll Overlege, Klinikk for anestesi og akuttmedisin

Detaljer

Oppsummering & spørsmål 20. april Frode Svartdal

Oppsummering & spørsmål 20. april Frode Svartdal Oppsummering & spørsmål 20. april 2016 Frode Svartdal Nullhypotese og sånt 119 deltakere Folk som svarer på en test for prokrastinering 40 Histogram of IPS 35 30 25 No of obs 20 15 10 5 0 0.5 1.0 1.5 2.0

Detaljer

Eksamensoppgave i PSY3100 forskningsmetoder kvantitativ

Eksamensoppgave i PSY3100 forskningsmetoder kvantitativ Institutt for psykologi Eksamensoppgave i PSY3100 forskningsmetoder kvantitativ Faglig kontakt under eksamen: Odin Hjemdal Tlf.: 73 59 19 60 Eksamensdato: 15. mai 2017 Eksamenstid: 09:00-13:00 Hjelpemiddelkode/Tillatte

Detaljer

Generelle lineære modeller i praksis

Generelle lineære modeller i praksis Generelle lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y en eller flere uavhengige

Detaljer

Lineære modeller i praksis

Lineære modeller i praksis Lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y én eller flere uavhengige variabler:

Detaljer

MASTER I IDRETTSVITENSKAP 2013/2015 MASTER I IDRETTSFYSIOTERAPI 2013/2015. Individuell skriftlig eksamen. STA 400- Statistikk

MASTER I IDRETTSVITENSKAP 2013/2015 MASTER I IDRETTSFYSIOTERAPI 2013/2015. Individuell skriftlig eksamen. STA 400- Statistikk MASTER I IDRETTSVITENSKAP 013/015 MASTER I IDRETTSFYSIOTERAPI 013/015 Individuell skriftlig eksamen i STA 400- Statistikk Mandag 10. mars 014 kl. 10.00-1.00 Hjelpemidler: kalkulator Eksamensoppgaven består

Detaljer

Eksamensoppgave i PSY3100 Forskningsmetode kvantitativ

Eksamensoppgave i PSY3100 Forskningsmetode kvantitativ Psykologisk institutt Eksamensoppgave i PSY3100 Forskningsmetode kvantitativ Faglig kontakt under eksamen: Christian Klöckner Tlf.: 73 59 19 60 Eksamensdato: 8. desember 2016 Eksamenstid: 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

EKSAMEN I PSY3100 FORSKNINGSMETODE KVANTITATIV HØSTEN 2012

EKSAMEN I PSY3100 FORSKNINGSMETODE KVANTITATIV HØSTEN 2012 NTNU Fakultet for samfunnsvitenskap og teknologiledelse Psykologisk institutt EKSAMEN I PSY3100 FORSKNINGSMETODE KVANTITATIV HØSTEN 2012 DATO: 12.12.12 Studiepoeng: 7,5 Sidetall bokmål 4 Tillatte hjelpemidler:

Detaljer

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Skriftlig skoleeksamen fredag 2. mai, 09:00 (4 timer). Kalkulator uten grafisk display og tekstlagringsfunksjon

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

Verdens statistikk-dag.

Verdens statistikk-dag. Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

Løsningsforslag eksamen 25. november 2003

Løsningsforslag eksamen 25. november 2003 MOT310 Statistiske metoder 1 Løsningsforslag eksamen 25. november 2003 Oppgave 1 a) Vi har µ D = µ X µ Y. Sangere bruker generelt trapesius-muskelen mindre etter biofeedback dersom forventet bruk av trapesius

Detaljer

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ

Detaljer

Effektstørrelse. Tabell 1. Kritiske verdier for Pearson s produkt-moment-korrelasjon med 5% og 1% signifikansnivå. N 5% 1% N 5% 1%

Effektstørrelse. Tabell 1. Kritiske verdier for Pearson s produkt-moment-korrelasjon med 5% og 1% signifikansnivå. N 5% 1% N 5% 1% Thor Arnfinn Kleven Institutt for pedagogikk 19.09.2013 Effektstørrelse Tradisjonelt har signifikanstesting vært fremhevet som den viktigste statistiske analyseformen i pedagogisk og psykologisk forskning.

Detaljer

Eksamen PSY2011 Forskningsmetode II: Eksperimentell design og statistisk analyse Høsten 2013

Eksamen PSY2011 Forskningsmetode II: Eksperimentell design og statistisk analyse Høsten 2013 Eksamen PSY011 Forskninsmetode II: Eksperimentell desin o statistisk analyse Høsten 013 Skriftli skoleeksamen, manda 8. oktober kl. 09:00 (3 timer). Sensur etter tre uker. Kalkulator uten rafisk display

Detaljer

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives

Detaljer

Sammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt

Sammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt SOS1120 Kvantitativ metode Forelesningsnotater 10. forelesning høsten 2005 Per Arne Tufte Sammenlikninger av gjennomsnitt Sammenlikner gjennomsnittet på avhengig variabel for ulike grupper av enheter Kan

Detaljer

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/ Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

Kort overblikk over kurset sålangt

Kort overblikk over kurset sålangt Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente

Detaljer

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

PSY Forskningsmetode II: Eksperimentell design og statistisk analyse, høst 2015.

PSY Forskningsmetode II: Eksperimentell design og statistisk analyse, høst 2015. Psykoloisk institutt PSY011 - Forskninsmetode II: Eksperimentell desin o statistisk analyse, høst 015. Onsda 8. oktober, 09:00 (3 timer). Kalkulator er tillatt. En liste med relevante formler er itt på

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Eva Langvik Tlf.: Psykologisk institutt 73591960 Eksamensdato: 21.5.2013

Detaljer

Norges teknisk-naturvitenskapelige universitet Fakultet for samfunnsvitenskap og teknologiledelse Pedagogisk institutt

Norges teknisk-naturvitenskapelige universitet Fakultet for samfunnsvitenskap og teknologiledelse Pedagogisk institutt Norges teknisk-naturvitenskapelige universitet Fakultet for samfunnsvitenskap og teknologiledelse Pedagogisk institutt BOKMÅL/NYNORSK EKSAMEN I: PED3001 - STATISTIKK FAGLIG KONTAKT UNDER EKSAMEN: Per Frostad

Detaljer

Oppgaver Oppgavetype Vurdering Status 1 ME-417, forside Flervalg Automatisk poengsum Levert. 2 ME-417, oppgave 1 Skriveoppgave Manuell poengsum Levert

Oppgaver Oppgavetype Vurdering Status 1 ME-417, forside Flervalg Automatisk poengsum Levert. 2 ME-417, oppgave 1 Skriveoppgave Manuell poengsum Levert ME-417 1 Vitenskapsteori og kvantitativ metode Kandidat 3704 Oppgaver Oppgavetype Vurdering Status 1 ME-417, forside Flervalg Automatisk poengsum Levert 2 ME-417, oppgave 1 Skriveoppgave Manuell poengsum

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

Hypotesetesting: Prinsipper. Frode Svartdal UiTø Januar 2014 Frode Svartdal

Hypotesetesting: Prinsipper. Frode Svartdal UiTø Januar 2014 Frode Svartdal Hypotesetesting: Prinsipper Frode Svartdal UiTø Januar 2014 Frode Svartdal Alt dette er mat for hypotesetesting! Utgangspunkt En antakelse begrunnet i teori Dissonansteori: Hvis, så. En vanlig oppfatning

Detaljer

Innhold. Del 1 Grunnleggende begreper og prinsipper... 39

Innhold. Del 1 Grunnleggende begreper og prinsipper... 39 Innhold Kapittel 1 Vitenskap: grunnleggende antakelser... 13 Hva er vitenskap?... 14 Psykologi som vitenskap: tre tradisjoner... 17 Forutsetninger vitenskap bygger på... 21 Siktemål med forsk ning... 22

Detaljer

Kapittel 1 Vitenskap: grunnleggende antakelser

Kapittel 1 Vitenskap: grunnleggende antakelser Innholdsfortegnelse Kapittel 1 Vitenskap: grunnleggende antakelser... 13 Hva er vitenskap?... 14 Psykologi som vitenskap: tre tradisjoner... 17 Forutsetninger vitenskap bygger på... 21 Siktemål med forskning...

Detaljer

Eksperimentelle design

Eksperimentelle design Eksperimentelle design Frode Svartdal UiTø April 2015 Frode Svartdal Eksperimentelle design Design = plan for en undersøkelse, her eksperiment Eksperimenter har som hensikt å dokumentere at variabler har

Detaljer

PSY Forskningsmetode II: Eksperimentell design og statistisk analyse, høst 2014.

PSY Forskningsmetode II: Eksperimentell design og statistisk analyse, høst 2014. PSY011 - Forskninsmetode II: Eksperimentell desin o statistisk analyse, høst 014. Manda 7. oktober, 09:00 (3 timer). Helpemidler: Kalkulator o forhåndsodkent ordbok er tillatt. En liste med relevante formler

Detaljer

I enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x

I enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x Multiple regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable.det er fortsatt en responsvariabel. Måten dette gjøre på er nokså naturlig. Prediktoren

Detaljer

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013 1 Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 013. Skrevet av Stian Lydersen 16 januar 013 Vi antar at vårt utvalg er et tilfeldig og representativt utvalg for

Detaljer

Oppgave 14.1 (14.4:1)

Oppgave 14.1 (14.4:1) MOT30 Statistiske metoder, høste006 Løsninger til regneøving nr. 0 (s. ) Modell: Oppgave 4. (4.4:) Y ijk = µ + α i + β j + (αβ) ij + ε ijk, der ε ijk uavh. N(0, σ ) der µ er gjennomsnittseffekten, α i

Detaljer

Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4

Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4 3 Tyngdepunkt Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4240 H2006: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF

Detaljer

MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1. Oppgave 1

MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1. Oppgave 1 MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1 Oppgave 1 a) Normalantakelse: Målingene x 1,..., x 21 og y 1,..., y 8 betraktes som utfall av tilfeldige variable X 1,..., X 21

Detaljer

Løsningsforsalg til andre sett med obligatoriske oppgaver i STK1110 høsten 2015

Løsningsforsalg til andre sett med obligatoriske oppgaver i STK1110 høsten 2015 Løsningsforsalg til andre sett med obligatoriske oppgaver i STK1110 høsten 2015 R-kode for alle oppgaver er gitt bakerst. Oppgave 1 (a) Boksplottet antyder at verdiene er høyere for kvinner enn for menn.

Detaljer

Statistikk & dataanalyse: Et eksempel. Frode Svartdal UiT mars 2015

Statistikk & dataanalyse: Et eksempel. Frode Svartdal UiT mars 2015 Statistikk & dataanalyse: Et eksempel Frode Svartdal UiT mars 2015 Eksempel UTGANGSPUNKT Vi antar at den som prokrastinerer (utsetter ting) drøyer med alt mulig som skal gjøres, eksempelvis Venter med

Detaljer

Til bruk i metodeundervisningen ved Høyskolen i Oslo

Til bruk i metodeundervisningen ved Høyskolen i Oslo MINIMANUAL FOR SPSS Til bruk i metodeundervisningen ved Høyskolen i Oslo Denne minimanualen viser hvordan analyser i metodeundervisningen på masternivå (master i sosialt arbeid, master i familiebehandling

Detaljer

10.1 Enkel lineær regresjon Multippel regresjon

10.1 Enkel lineær regresjon Multippel regresjon Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Regional forskingskonferanse for Psykiatri og rusfeltet Vår 2013. Olav M. Linaker PH, St. Olavs Hospital/INM, NTNU

Regional forskingskonferanse for Psykiatri og rusfeltet Vår 2013. Olav M. Linaker PH, St. Olavs Hospital/INM, NTNU Regional forskingskonferanse for Psykiatri og rusfeltet Vår 2013 Olav M. Linaker PH, St. Olavs Hospital/INM, NTNU Effektiv forskning Dette møtet skal handle om å gjøre forskningsarbeidet vårt effektivt

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317. Statistikk og kvantitative forskningsmetoder. Målform/språk: Bokmål Antall sider: 10. Psykologisk institutt

Eksamensoppgave i PSY2017/PSYPRO4317. Statistikk og kvantitative forskningsmetoder. Målform/språk: Bokmål Antall sider: 10. Psykologisk institutt 1 Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Christian Klöckner Tlf.: 73 59 19 60 Eksamensdato:11.12.014 Eksamenstid

Detaljer

Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2.

Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2. Sensurveiledning Ped 3001 h12 Oppgave 1 Er det sammenheng mellom støtte fra venner og selvaktelse hos ungdom? Dette spørsmålet ønsket en forsker å undersøke. Han samlet data på 9. klassingers opplevde

Detaljer

Statistikk & dataanalyse: Et eksempel. Frode Svartdal UiT april 2016

Statistikk & dataanalyse: Et eksempel. Frode Svartdal UiT april 2016 Statistikk & dataanalyse: Et eksempel Frode Svartdal UiT april 2016 Eksempel UTGANGSPUNKT Vi antar at den som prokrastinerer (utsetter ting) drøyer med alt mulig som skal gjøres, eksempelvis Venter med

Detaljer

MASTER I IDRETTSVITENSKAP 2013/2015 MASTER I IDRETTSFYSIOTERAPI 2013/2015. Utsatt individuell skriftlig eksamen. STA 400- Statistikk

MASTER I IDRETTSVITENSKAP 2013/2015 MASTER I IDRETTSFYSIOTERAPI 2013/2015. Utsatt individuell skriftlig eksamen. STA 400- Statistikk MSTR I IRTTSVITNSKP 013/015 MSTR I IRTTSFYSIOTRPI 013/015 Utsatt individuell skriftlig eksamen i ST 400- Statistikk Mandag 5. august 014 kl. 10.00-1.00 Hjelpemidler: kalkulator ksamensoppgaven består av

Detaljer

AVLSDATA FRA FØLLFESTIVALEN DEL 1 av Unn Reierstad, cand.scient (NLH/UMB), veterinær (NVH) / RR Reierstad Ridehest

AVLSDATA FRA FØLLFESTIVALEN DEL 1 av Unn Reierstad, cand.scient (NLH/UMB), veterinær (NVH) / RR Reierstad Ridehest AVLSDATA FRA FØLLFESTIVALEN DEL 1 av Unn Reierstad, cand.scient (NLH/UMB), veterinær (NVH) / RR Reierstad Ridehest MATERIALE & METODER : AVLSLÆRE For ethvert dyr er P = GEN + ENV, der P, GEN og ENV er

Detaljer

Logistisk regresjon 2

Logistisk regresjon 2 Logistisk regresjon 2 SPSS Utskrift: Trivariat regresjon a KJONN UTDAAR Constant Variables in the Equation B S.E. Wald df Sig. Exp(B) -,536,3 84,56,000,25,84,08 09,956,000,202 -,469,083 35,7,000,230 a.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2120 Statistiske metoder og dataanalyse 2. Eksamensdag: Fredag 7. juni 2013. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

Inferens i regresjon

Inferens i regresjon Strategi som er fulgt hittil: Inferens i regresjon Deskriptiv analyse og dataanalyse først. Analyse av en variabel før studie av samvariasjon. Emne for dette kapittel er inferens når det er en respons

Detaljer

Kausalanalyse og seleksjonsproblem

Kausalanalyse og seleksjonsproblem ERLING BERGE SOS316 REGESJONSANALYSE Kausalanalyse og seleksjonsproblem Institutt for sosiologi og statsvitenskap, NTNU, Trondheim Erling Berge 2001 Litteratur Breen, Richard 1996 Regression Models. Censored,

Detaljer

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005 SOS1120 Kvantitativ metode Regresjonsanalyse Forelesningsnotater 11. forelesning høsten 2005 Per Arne Tufte Lineær sammenheng I Lineær sammenheng II Ukelønn i kroner 4000 3500 3000 2500 2000 1500 1000

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling

Detaljer

Pålitelighetskontroll av RTK. Geodesidagene 2016 Pål Herman Sund, Even Brøste, Narve Schipper Kjørsvik

Pålitelighetskontroll av RTK. Geodesidagene 2016 Pål Herman Sund, Even Brøste, Narve Schipper Kjørsvik Pålitelighetskontroll av RTK Geodesidagene 2016 Pål Herman Sund, Even Brøste, Narve Schipper Kjørsvik Hvorfor RTK og pålitelighet i 2016? Etter at vegen var bygd ble det avdekket at vegen lå for lavt.

Detaljer

Eksamensoppgave i TMA4255 Anvendt statistikk

Eksamensoppgave i TMA4255 Anvendt statistikk Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 3. juni 2016 Eksamenstid (fra til): 09:00-13:00

Detaljer

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005. SOS112 Kvantitativ metode Krysstabellanalyse (forts.) Forelesningsnotater 9. forelesning høsten 25 4. Statistisk generalisering Per Arne Tufte Eksempel: Hypoteser Eksempel: observerte frekvenser (O) Hvordan

Detaljer

Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert!

Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert! MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1 Flott! Samlet sett leverer dere gode resultater. Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert! Totalt

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper

Detaljer

i x i

i x i TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Torsdag 9. oktober 2008. Tid for eksamen: 15:00 17:00. Oppgavesettet er på

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 25. NOVEMBER 2003 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ

Detaljer

Helserelatert livskvalitet hos deltagere i et kommunalt livss3lsendrings3ltak; Stor og Sterk

Helserelatert livskvalitet hos deltagere i et kommunalt livss3lsendrings3ltak; Stor og Sterk Helserelatert livskvalitet hos deltagere i et kommunalt livss3lsendrings3ltak; Stor og Sterk Førsteforfa9er: Martha Loland, fysioterapeut M.Sc Frisklivssentralen i Stavanger Andreforfa9er og veileder:

Detaljer

Resultater, studentundersøkelsen 2012-2013. Frode Svartdal UiT / Diakonhjemmet Høgskole

Resultater, studentundersøkelsen 2012-2013. Frode Svartdal UiT / Diakonhjemmet Høgskole Resultater, studentundersøkelsen 2012-2013 Frode Svartdal UiT / Diakonhjemmet Høgskole Utgangspunkt Ca. 24 enkeltprosjekter Samlet 100-200 elever, deres foreldre og lærere Geografisk spredning (hele Norge)

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1000 Innføring i anvendt statistikk Eksamensdag: Onsdag 12. oktober 2016 Tid for eksamen: 10.00 12.00 Oppgavesettet er på

Detaljer

Eksamen PSYC3101 Kvantitativ metode II Vår 2015

Eksamen PSYC3101 Kvantitativ metode II Vår 2015 Eksamen PSYC3101 Kvantitativ metode II Vår 2015 Skriftlig skoleeksamen, fredag 27. mars kl. 09:00 (3 timer). Ingen hjelpemidler, utover forhåndsgodkjent ordbok, er tillatt under eksamen. Alle oppgavene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 10. oktober 2012. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

Inferens i fordelinger

Inferens i fordelinger Inferens i fordelinger Modifiserer antagelsen om at standardavviket i populasjonen σ er kjent Mer kompleks systematisk del ( her forventningen i populasjonen). Skal se på en situasjon der populasjonsfordelingen

Detaljer

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4245 V2007: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF 4.1: La X være

Detaljer

EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER

EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE

Detaljer

KLMED 8006 Anvendt medisinsk statistikk - Vår 2009 Repeterte målinger

KLMED 8006 Anvendt medisinsk statistikk - Vår 2009 Repeterte målinger KLMED 8006 Anvendt medisinsk statistikk - Vår 2009 Repeterte målinger Arnt Erik Tjønna og Eirik Skogvoll Institutt for sirkulasjon og bildediagnostikk, Det medisinske fakultet, NTNU Bakgrunn Inaktivitet

Detaljer

Eksamensoppgave i TMA4255 Anvendt statistikk

Eksamensoppgave i TMA4255 Anvendt statistikk Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: August 2016 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte

Detaljer

Prøveeksamen i STK3100/4100 høsten 2011.

Prøveeksamen i STK3100/4100 høsten 2011. Prøveeksamen i STK3100/4100 høsten 2011. Oppgave 1 (a) Angi tetthet/punktsannsynlighet for eksponensielle klasser med og uten sprednings(dispersjons)ledd. Nevn alle fordelingsklassene du kjenner som kan

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS3003 Eksamensoppgåver Gjennomgang våren 2004 Erling Berge Gjennomgang av Oppgåve 1 gitt hausten 2003 Haust 2003 Oppgåve 1 Den avhengige variabelen i regresjonsanalysen er en skala (indeks) for tillit

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Appendiks 5 Forutsetninger for lineær regresjonsanalyse

Appendiks 5 Forutsetninger for lineær regresjonsanalyse Appendiks 5 Forutsetninger for lineær regresjonsanalyse Det er flere krav til årsaksslutninger i regresjonsanalyse. En naturlig forutsetning er tidsrekkefølge og i andre rekke spiller variabeltype inn.

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 08. Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 08. Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 08 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Erling Berge 2004 1 Manglande data Forelesing VIII Allison, Paul

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER VARIGHET: 4 TIMER DATO: 27. FEBRUAR 2004 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 5

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Kapittel 4.4: Forventning og varians til stokastiske variable

Kapittel 4.4: Forventning og varians til stokastiske variable Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske

Detaljer

Forelesning 7 STK3100

Forelesning 7 STK3100 ( % - -! " stimering: MK = ML Forelesning 7 STK3100 1 oktober 2007 S O Samuelsen Plan for forelesning: 1 Generelt om lineære modeller 2 Variansanalyse - Kategoriske kovariater 3 Koding av kategoriske kovariater

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317. Statistikk og kvantitative forskningsmetoder. Psykologisk institutt

Eksamensoppgave i PSY2017/PSYPRO4317. Statistikk og kvantitative forskningsmetoder. Psykologisk institutt 1 Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Christian Klöckner Tlf.: 73 59 19 60 Eksamensdato: 29.05.2015 Eksamenstid

Detaljer

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ

Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ Psykologisk institutt Eksamensoppgave i PSY3100 Forskningsmetode - Kvantitativ Faglig kontakt under eksamen: Mehmet Mehmetoglu Tlf.: 73 59 19 60 Eksamensdato: 10.12.2014 Eksamenstid (fra-til): 09:00 13:00

Detaljer

Oppgave 13.1 (13.4:1)

Oppgave 13.1 (13.4:1) MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 11 (s. 1) Modell: Oppgave 13.1 (13.4:1) Y ij = µ i + ε ij, der ε ij uavh. N(0, σ 2 ) Boka opererer her med spesialtilfellet der man

Detaljer

Oppgave 1. a) Anlysetype: enveis variansanalyse (ANOVA). Modell for y ij = ekspedisjonstid nr. j for skrankeansatt nr. i:

Oppgave 1. a) Anlysetype: enveis variansanalyse (ANOVA). Modell for y ij = ekspedisjonstid nr. j for skrankeansatt nr. i: MOT310 tatistiske metoder 1 Løsningsforslag til eksamen høst 010, s 1 Oppgave 1 a) Anlysetype: enveis variansanalyse (ANOVA) Modell for y ij ekspedisjonstid nr j for skrankeansatt nr i: Y ij µ i + ε ij,

Detaljer

Forventning og varians.

Forventning og varians. Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.) Forventningsverdi gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: E(X) f(),x diskret

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Martin Rasmussen Tlf.: 73 59 19 60 Eksamensdato: 12.12.13 Eksamenstid

Detaljer

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2 ECON30: EKSAMEN 06v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Multippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p.

Multippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Multippel regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Det er fortsatt en responsvariabel y. Måten dette gjøre på er nokså

Detaljer

OPPGAVEHEFTE I STK1000 TIL KAPITTEL Regneoppgaver til kapittel 7. X 1,i, X 2 = 1 n 2. D = X 1 X 2. På onsdagsforelesningen påstod jeg at da må

OPPGAVEHEFTE I STK1000 TIL KAPITTEL Regneoppgaver til kapittel 7. X 1,i, X 2 = 1 n 2. D = X 1 X 2. På onsdagsforelesningen påstod jeg at da må OPPGAVEHEFTE I STK000 TIL KAPITTEL 7 Regneoppgaver til kapittel 7 Oppgave Anta at man har resultatet av et randomisert forsøk med to grupper, og observerer fra gruppe, mens man observerer X,, X,2,, X,n

Detaljer