Heuristiske søkemetoder III

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Heuristiske søkemetoder III"

Transkript

1 Heuristiske søkemetoder III Lars Aurdal Intervensjonssenteret 14. september 2003

2 Plan Eksempel: Bildebehandling, segmentering: Hva er segmentering? Klassisk metode, terskling. Moderne metode basert på Markov-felter Matematisk fundament. Implementering. Eksempler. 1

3 Plan Øvingsoppgaver, matlab. Travelling salesman og maks-klikk problemet. 2

4 Hva er segmentering Segmentering: En prosess som tar utgangspunkt i et bilde (som kan være multispektralt) og som har som mål å generere et nytt bilde der hvert piksel i det opprinnelige bildet er tilordnet en etikett som indikerer dens tilhørighet til en gruppe piksler som deler en eller annen egenskap. Tilhørigheten kan avgjøres ut fra mange kriterier: Pikslene i en gruppe kan ha tilnærmet samme spektralegenskaper. Pikslene i en gruppe kan ha spektralegenskaper som tilfredsstiller et eller annet høyereordens statistisk kriterium (tekstur). 3

5 Hva er segmentering Segmentering er ikke ikke det samme som klassifisering. Segmentering har som mål å gi hver piksel en etikett som sier noe om denne pikslens tilhørighet til en eller annen gruppe av piksler (gruppe 1, gruppe 2, etc.). Klassifisering har som mål å gi hver slik gruppe en fornuftig fysisk tolkning. Klassifiseringsprosessen avhenger ofte av segmenteringsprosessen som et preprosesseringstrinn. 4

6 Hva er segmentering, eksempel Original Original med støy Segmentert resultat, to etiketter 5

7 Klassisk metode, terskling Original Original med støy 45 Histogram med terskel Segmentert resultat, to etiketter, feil: 1.59% 6

8 Klassisk metode, terskling Original Original med støy Histogram med terskel Segmentert resultat, to etiketter, feil: 15.09% 7

9 Klassisk metode, terskling Original Original med støy 160 Histogram med terskel Segmentert resultat, to etiketter, feil: 24.45% 8

10 Klassisk metode, terskling, fordeler og ulemper Fordeler: Enkel algoritme Hurtig (velegnet for sanntidsapplikasjoner) Vel utprøvd Ulemper: Følsom for støy Lokal Terskelen kan være vanskelig å fastsette 9

11 Klassisk metode, terskling Hovedproblem: Terskling er en rent lokal algoritme Etiketten for hver piksel bestemmes ut fra denne pikslens grånivå. Ønsker en algoritme som tar hensyn også til nabopiksler ved valg av etikett. Generelt: Vi vil ha segmenterte bilder der de fleste piksler er omgitt av piksler med samme etikett. 10

12 bakgrunn Segmenteringsproblemet: I L En mulig segmenteringsmetode: max L=l p(l = l I = i) Produserer et MAP (Maximum a Posteriori) estimat av det segmenterte bildet 11

13 bakgrunn I det etterfølgende skal vi betrakte pikslene i bildet som noder i en graf G (ν,ε). Med hver node assosierer vi en deskriptor som kan være denne nodens grånivå eller denne nodens etikett (i et segmentert bilde). Mellom nodene går det (som i enhver graf) kanter. Med en 4-nærmeste naboer type nabolagssystem går kantene som følger: 12

14 bakgrunn Med en 8-nærmeste naboer type nabolagssystem går kantene som følger: Vi skal betegne naboene til en node ν med N ν. Ser man vekk fra kantene i bildet er den tilsvarende grafen regulær med grad enten 4 eller 8 avhengig av nabolagssystemet. 13

15 bakgrunn Med et 4-nærmeste naboer nabolagssystem får vi følgende typer klikker (utover den tomme klikken og klikker bestående av en enkelt node): Med et 8-nærmeste naboer nabolagssystem får vi følgende typer klikker (utover den tomme klikken og klikker bestående av en enkelt node): Hvor mange klikker av hver type tilhører en enkelt node gitt nabolagssystemet? 14

16 bakgrunn Bayes formel, generelt: p(a B) = p(b A)p(A) p(b) I dette konkrete tilfellet: max L=l p(l = l I = i) = max L=l p(i = i L = l)p(l = l) p(i = i) Forenkling (nevneren avhenger ikke av l): max L=l p(l = l I = i) = max L=l p(i = i L = l)p(l = l) 15

17 bakgrunn Vi vil maksimere: max L=l p(l = l I = i) = max L=l p(i = i L = l)p(l = l) Sannsynligheten: p(i = i L = l) sier noe om sannsynligheten for et gitt bilde I = i gitt den segmenterte varianten L = l av dette bildet. 16

18 bakgrunn Vi vil maksimere: max L=l p(l = l I = i) = max L=l p(i = i L = l)p(l = l) Sannsynligheten: p(l = l) sier noe om sannsynligheten for et gitt segmentert bilde. Det er her vi baker inn vår a priori informasjon om hvordan et segmentert bilde skal se ut. 17

19 bakgrunn Tar for oss følgende sannsynlighet: p(i = i L = l) I en bestemt piksel antar vi hvit, gaussisk støy med null middelverdi og varians avhengig av hvilken etikett denne pikselen har. I så fall vil gråtoneverdiene til hver piksel gitt etikettene være statistisk uavhengige. Derfor kan vi skrive: p(i = i L = l) = ν p(i ν = i ν L ν = l ν ) 18

20 bakgrunn Vi vet at: p(i ν = i ν L ν = l ν ) = [ ] 1 exp (i ν µ lν ) 2 2πσlν 2σl 2 ν Derav følger: p(i = i L = l) = ν 1 2πσlν exp [ (i ν µ lν ) 2 2σ 2 l ν ] 19

21 bakgrunn Tar for oss følgende sannsynlighet: p(l = l) Det er vi som brukere som bestemmer hva som skal være et sannsynlig segmentert bilde. Vi vi la det segmenterte bildet være et Markovfelt. Dette vil gjøre det mulig for oss å oppnå høy sannsynlighet for segmenterte bilder der nabopiksler har samme etikett. 20

22 bakgrunn Interaksjonene mellom nodene i en klikk beskrives med klikk potensial funksjoner V c. En klikk potensial funksjon er en funksjon av deskriptorene til alle nodene som inngår i klikken. Energien i en bestemt node U ν er summen av klikk potensial-funksjonene for alle klikkene som denne noden inngår i. U ν = V c c ν c 21

23 bakgrunn Eksempel: Anta et 4 nærmeste naboer nabosystem. Hver node ν inngår da i følgende klikker (utover den tomme klikk og klikker som omfatter bare en node): La V c være gitt ved: V c = δ(d s,d r ) der s og r er de to nodene i klikken og der d s og d r er deskriptorene til disse to nodene. 22

24 bakgrunn Eksempel fortsatt: Anta følgende deskriptorer Da blir energien: U ν = V c = δ(d s,d r ) = 1. c ν c c ν c 23

25 bakgrunn Anta at l er en bestemt realisasjon av prosessen L. Anta videre at ν og ξ er to vilkårlige noder i l. Markovs hypotese holder for l dersom de betingede sannsynlighetene i en node i l bare avhenger av dette punktets naboer: p(l ν = l ν L ξ = l ξ,ν ξ) = p(l ν = l ν L ξ = l ξ,ξ N ν ) = p(l ν = l ν N ν ) 24

26 bakgrunn Hammersley-Cliffords teorem: Dersom antallet noder i G er endelig og tellbart og dersom det på G er definert et nabosystem N og dersom antall mulige deskriptorer er endelig så vil et Markov-felt (med strengt positive sannsynligheter over konfigurasjonsrommet Ω)være et Gibbs potensialfelt. Sagt på en annen måte: Under enkelte, rimelig betingelser er et Markov-felt et Gibbs potensialfelt. 25

27 bakgrunn Hvorfor er det interessant å vite dette: For et Gibbs potensialfelt kjenner vi den globale sannsynligheten for feltet: p(l = l) = 1/Z exp [ ] V c c C På grunn av Hammersley-Cliffords teorem som etablerer ekvivalensen mellom et Gibbs potensialfelt og et Markov-felt kjenner vi dermed den siste ukjente sannsynligheten. 26

28 bakgrunn Husk vi ville maksimere: max L=l p(l = l I = i) = max L=l p(i = i L = l)p(l = l) Dette kan vi nå skrive slik: max L=l ν 1 Z exp [ 1 exp 2πσlν [ ] V c c C (i ν µ lν ) 2 2σ 2 l ν ] 27

29 bakgrunn Vi beregner logaritmen, bytter fortegn osv. og finner til slutt følgende uttrykk som må minimeres med hensyn på l. min L=l [ ] (i ν µ lν ) 2 ν 2σl 2 + V c ν c C Vi må altså finne den grafen som representerer det segmenterte bildet som minimaliserer dette uttrykket. Det første leddet tar hensyn til informasjon fra grafen som representerer bildet som skal segmenteres. Det andre leddet implementerer de kravene vi stiller til nabopikslers verdier i det segmenterte bildet. 28

30 bakgrunn I praksis minimeres gjerne uttrykket: min L=l [ α ν (i ν µ lν ) 2 2σ 2 l ν ] + β V c c C Faktorene α og β regulerer vekten man leger på bidragene fra de to leddene. Dette uttrykket kan betraktes som en global energifunksjon definert på nodene til grafen som representerer det segmenterte bildet. Hvordan minimeres denne energifunksjonen? 29

31 implementering Anta at vi vil segmentere et bilde med piksler. Anta at vil bruker 4 ulike etiketter i det segmenterte bildet. Da finnes det = ulike mulige segmenterte bilder. Et uttømmende søk blant disse er utenkelig. Vi må derfor bruke heuristiske søkemetoder. Typisk brukes simulert størkning for denne typen problemer. 30

32 implementering Algoritmen som brukes er som følger: Algoritmen initialiseres ved å generere et vilkårlig segmentert bilde. Antallet ulike verdier i hvert piksler er lik antallet etiketter. I hver iterasjon trekkes et nytt vilkårlig segmentert bilde. Energifunksjonen beregnes for det gamle og nye segmenterte bildet. I de pikslene der det nye segmenterte bildet har en etikett som gir lavere energi enn den eksisterende oppdateres det segmenterte bildet. Er energien større aksepteres den nye verdien med en viss sannsynlighet P i tråd med simulert størkning strategien. 31

33 implementering Require: I,T 0,α,n max,n c { f loor( ),random( ),rows( ),cols( ) og energy( ) er eksterne} 1: n 0 2: T T 0 3: L random(n c,size(i)) 4: L best L 5: while n < n max do 6: L random(n c,size(i)) 7: for i 1 to rows(i) do 8: for j 1 to cols(i) do 9: OldE energy(i,l best,i, j) 10: NewE energy(i,l,i, j) 11: if NewE < OldE then 12: L best (i, j) L(i, j) 13: else 14: r random(1, 1, 1) 15: if r < e (OldE NewE)/T then 16: L best (i, j) L(i, j) 17: end if 32

34 18: end if 19: end for 20: end for 21: n n+1 22: T αt 23: end while 24: return(l best ) 33

35 eksempler Husk: vi vil minimere følgende uttrykk: min L=l [ α ν (i ν µ lν ) 2 2σ 2 l ν ] + β V c c C Anta α = 0, β = 1 og V c = 1 δ(d ν,d ξ ). Anta et fire nærmeste naboer system: Anta to klasser. 34

36 eksempler Initial konfigurasjon 10 iterasjoner 30 iterasjoner 70 iterasjoner 35

37 eksempler Husk: vi vil minimere følgende uttrykk: min L=l [ α ν (i ν µ lν ) 2 2σ 2 l ν ] + β V c c C Anta α = 0, β = 1 og V c = 1 δ(d ν,d ξ ). Anta et to nærmeste naboer system: Anta to klasser. 36

38 eksempler Initial konfigurasjon 30 iterasjoner 70 iterasjoner 110 iterasjoner 37

39 eksempler Husk: vi vil minimere følgende uttrykk: min L=l [ α ν (i ν µ lν ) 2 2σ 2 l ν ] + β V c c C Anta α = 0, β = 1 og V c = δ(d c,d e )+δ(d d,d e ) δ(d a,d e ) δ(d b,d e ). Anta et fire nærmeste naboer system: a a c e d e e c e e d b b Anta to klasser. 38

40 eksempler Initial konfigurasjon 30 iterasjoner 70 iterasjoner 110 iterasjoner 39

41 eksempler Husk: vi vil minimere følgende uttrykk: min L=l [ α ν (i ν µ lν ) 2 2σ 2 l ν ] + β V c c C Anta α > 0, β > 0 og V c = 1 δ(d ν,d ξ ). Anta et fire nærmeste naboer system: Anta to klasser. 40

42 eksempler Original Original med støy Terskling, feil 1.86% Markov-felt basert segmentering, feil 0.13% 41

43 eksempler Original Original med støy Terskling, feil 14.81% Markov-felt basert segmentering, feil 0.55% 42

44 eksempler Original Original med støy Terskling, feil 23.08% Markov-felt basert segmentering, feil 1.26% 43

45 Heuristiske søkemetoder III: Foreløpig pensum Pensum er innholdet i disse transparentene. Transparentene finnes (.ps og.pdf format) på adressen: lau/ 44

Statistiske metoder i bildebehandling, anvendelser innen segmentering. Lars Aurdal, lau@ffi.no

Statistiske metoder i bildebehandling, anvendelser innen segmentering. Lars Aurdal, lau@ffi.no Statistiske metoder i bildebehandling, anvendelser innen segmentering. Lars Aurdal, lau@ffi.no FORSVARETS FORSKNINGSINSTITUTT Ecole Nationale Supérieure des Télécommunications (ENST) Henri Maître, Isabelle

Detaljer

Heuristiske søkemetoder II: Simulert størkning og tabu-søk

Heuristiske søkemetoder II: Simulert størkning og tabu-søk Heuristiske søkemetoder II: Simulert størkning og tabu-søk Lars Aurdal Norsk regnesentral lars@aurdalweb.com Heuristiske søkemetoder II:Simulert størkning ogtabu-søk p.1/141 Hva er tema for disse forelesningene?

Detaljer

Matematisk morfologi V

Matematisk morfologi V Matematisk morfologi V Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag 5 Segmentering: Watershedtransformen. Copyright Lars Aurdal, NTNU/NR

Detaljer

Oversikt, kursdag 5. Matematisk morfologi V. Hva er segmentering. Hva er segmentering. Lars Aurdal Norsk regnesentral

Oversikt, kursdag 5. Matematisk morfologi V. Hva er segmentering. Hva er segmentering. Lars Aurdal Norsk regnesentral Matematisk morfologi V Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Segmentering: Watershedtransformen. Oversikt, kursdag 5 Copyright Lars Aurdal, NTNU/NR Copyright Lars Aurdal, NTNU/NR

Detaljer

Heuristiske søkemetoder II

Heuristiske søkemetoder II Heuristiske søkemetoder II Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 4. september 23 Plan Hva er en heuristisk søkealgoritme? Hvorfor heuristiske søkealgoritmer framfor tilbakenøsting?

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, ordinær eksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, ordinær eksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 00, ordinær eksamen 1. september 003 Innledning Vi skal betrakte det såkalte grafdelingsproblemet (graph partitioning problem). Problemet kan

Detaljer

Heuristiske søkemetoder I

Heuristiske søkemetoder I Heuristiske søkemetoder I Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Hva slags søkemetoder snakker vi om? Kombinatoriske strukturer. Sett. Lister. Grafer. Søkealgoritmer

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, kontinuasjonseksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, kontinuasjonseksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, kontinuasjonseksamen 1. september 2003 Deloppgave a I denne oppgaven skal vi ta for oss isomorfismer mellom grafer. To grafer G og H

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, kontinuasjonseksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, kontinuasjonseksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, kontinuasjonseksamen 14. september 2003 Innledning Vi skal betrakte det såkalte maksimum-kutt problemet (maximum cut problem). Problemet

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2001, ordinær eksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2001, ordinær eksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 21, ordinær eksamen 14. september 23 Innledning En klikk i en graf G er en komplett subgraf av G. Det såkalte maksimum-klikk problemet består

Detaljer

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på.

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Go with the Niende forelesning Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Fokuserer på de viktigste ideene i dagens forelesning, så det forhåpentligvis blir lettere å skjønne

Detaljer

Korteste vei problemet (seksjon 15.3)

Korteste vei problemet (seksjon 15.3) Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k

Detaljer

Matematisk morfologi III

Matematisk morfologi III Matematisk morfologi III Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag 3 Sammensatte operasjoner: Hit-or-miss-transformen. Skjeletter.

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Tirsdag 2. juni 2009. Tid for eksamen: 14.30 17.30. Oppgavesettet

Detaljer

Oppgave 1: Feil på mobiltelefoner

Oppgave 1: Feil på mobiltelefoner Oppgave 1: Feil på mobiltelefoner a) Sannsynlighetene i oppgaven blir P (F 1 F 2 ) P (F 1 ) + P (F 2 ) P (F 1 F 2 ) P (F 1 ) + 1 P (F2 C ) P (F 1 F 2 ) 0.080 + 0.075 0.006 0.149 P (F 1 F 2 ) P (F 1 F 2

Detaljer

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger Kontinuerlig uniform fordeling f() = B A, A B. En kontinuerlig størrelse (vekt, lengde, tid), som aldri kan bli mindre enn

Detaljer

Heuristiske søkemetoder I: Simulert størkning og tabu-søk

Heuristiske søkemetoder I: Simulert størkning og tabu-søk Heuristiske søkemetoder I: Simulert størkning og tabu-søk Lars Aurdal Norsk regnesentral lars@aurdalweb.com Heuristiske søkemetoder I:Simulert størkning ogtabu-søk p.1/141 Hva er tema for disse forelesningene?

Detaljer

> 6 7 ) = 1 Φ( 1) = 1 0.1587 = 0.8413 P (X < 7 X < 8) P (X < 8) < 7 6 1 ) < 8 6 1 ) = Φ(2) = 0.8413

> 6 7 ) = 1 Φ( 1) = 1 0.1587 = 0.8413 P (X < 7 X < 8) P (X < 8) < 7 6 1 ) < 8 6 1 ) = Φ(2) = 0.8413 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Oppgave Sykkelruter a) P (Y > 6) P (Y > 6) P ( Y 7 > 6 7 ) Φ( ) 0.587 0.843 b) Hypoteser: H 0 : µ µ 2 H : µ < µ 2

Detaljer

Kontinuerlige sannsynlighetsfordelinger.

Kontinuerlige sannsynlighetsfordelinger. Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x er sannsynlighetstettheten til en kontinuerlig X dersom:. f(x 0 for alle x R 2. f(xdx = 3. P (a

Detaljer

EKSAMEN I TMA4300 BEREGNINGSKREVENDE STATISTIKK Torsdag 16 Mai, 2013

EKSAMEN I TMA4300 BEREGNINGSKREVENDE STATISTIKK Torsdag 16 Mai, 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Kontakt: Jo Eidsvik 9747 EKSAMEN I TMA43 BEREGNINGSKREVENDE STATISTIKK Torsdag 6 Mai, 3 Tilatte hjelpemiddel: Gult

Detaljer

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei I Lars Vidar Magnusson 9.4.2014 Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei Problemet I denne forelesningen skal vi se på hvordan vi kan finne korteste

Detaljer

LO118D Forelesning 10 (DM)

LO118D Forelesning 10 (DM) LO118D Forelesning 10 (DM) Grafteori 03.10.2007 1 Korteste vei 2 Grafrepresentasjoner 3 Isomorfisme 4 Planare grafer Korteste vei I en vektet graf går det an å finne den veien med lavest total kostnad

Detaljer

EKSAMEN I TMA4245 Statistikk

EKSAMEN I TMA4245 Statistikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Turid Follestad (98 06 68 80/73 59 35 37) Hugo Hammer (45 21 01 84/73 59 77 74) Eirik

Detaljer

MAT1140: Kort sammendrag av grafteorien

MAT1140: Kort sammendrag av grafteorien MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oversikt over den delen av grafteorien som er gjennomgått i MAT1140 høsten 2013. Vekten er på den logiske oppbygningen, og jeg har utelatt

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, ordinær eksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, ordinær eksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder, ALGKON 2003, ordinær eksamen 14. september 2003 Deloppgave a 50-års jubileet for simulert størkning: I juni 1953 publiserte fire amerikanske fysikere,

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

Korteste vei i en vektet graf uten negative kanter

Korteste vei i en vektet graf uten negative kanter Dagens plan: IN - Algoritmer og datastrukturer HØSTEN 7 Institutt for informatikk, Universitetet i Oslo IN, forelesning 7: Grafer II Korteste vei, en-til-alle, for: Vektet rettet graf uten negative kanter

Detaljer

Obligatorisk oppgavesett 1 MAT1120 H16

Obligatorisk oppgavesett 1 MAT1120 H16 Obligatorisk oppgavesett MAT0 H6 Innleveringsfrist: torsdag /09 06, innen kl 4.30. Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner via hjemmesiden.

Detaljer

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013 NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 20 ette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. et er altså ikke et eksempel

Detaljer

INF oktober Stein Krogdahl. Kap 23.5: Trær og strategier for spill med to spillere

INF oktober Stein Krogdahl. Kap 23.5: Trær og strategier for spill med to spillere INF 4130 1. oktober 2009 Stein Krogdahl Dagens program: Første time: Kap 23.5: Trær og strategier for spill med to spillere Andre time, gjesteforelesning: Rune Djurhuus: Om sjakkspillende programmer (Ikke

Detaljer

Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2

Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2 Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2 11.2 Korteste vei i en graf 11.2.1 Dijkstras metode En graf er et system med noder og kanter mellom noder. Grafen kalles rettet Notasjon Verdien

Detaljer

Heuristisk søk 1. Prinsipper og metoder

Heuristisk søk 1. Prinsipper og metoder Heuristisk søk Prinsipper og metoder Oversikt Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk Traveling sales person (TSP) Tromsø Bergen Stavanger Trondheim Oppdal Oslo

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : XXX sider

Detaljer

6. oktober Dagens program: Første time: Andre time, gjesteforelesning: Uavgjørbarhet. Stein Krogdahl. (Ikke pensum, egne foiler legges ut)

6. oktober Dagens program: Første time: Andre time, gjesteforelesning: Uavgjørbarhet. Stein Krogdahl. (Ikke pensum, egne foiler legges ut) Dagens program: Første time: INF 4130 6. oktober 2011 Stein Krogdahl Kap 23.5: Spilltrær og strategier for spill med to spillere Andre time, gjesteforelesning: Rune Djurhuus: Om sjakkspillende programmer

Detaljer

MAT Oblig 1. Halvard Sutterud. 22. september 2016

MAT Oblig 1. Halvard Sutterud. 22. september 2016 MAT1110 - Oblig 1 Halvard Sutterud 22. september 2016 Sammendrag I dette prosjektet skal vi se på anvendelsen av lineær algebra til å generere rangeringer av nettsider i et web basert på antall hyperlinker

Detaljer

Kantsegmentering NTNU

Kantsegmentering NTNU Kantsegmentering Lars Aurdal Norsk regnesentral aurdal@nr.no 19. april 24 Oversikt, kantsegmentering Litt praktisk informasjon. Motivasjon. Hva er en kant i et bilde? Hva er segmentering? Hva er kantsegmentering?

Detaljer

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II 1. En fax-oppgave: a. Et ark med tekst og enkle strektegninger skal sendes pr digital fax over en modemlinje med kapasitet

Detaljer

Løsningsforslag - Korteste vei

Løsningsforslag - Korteste vei Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Løsningsforslag - Korteste vei [Oppgave] [Levering] [Løsningsforslag] Innleveringsfrist: 21.10.2011

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer

3.A IKKE-STASJONARITET

3.A IKKE-STASJONARITET Norwegian Business School 3.A IKKE-STASJONARITET BST 1612 ANVENDT MAKROØKONOMI MODUL 5 Foreleser: Drago Bergholt E-post: Drago.Bergholt@bi.no 11. november 2011 OVERSIKT - Ikke-stasjonære tidsserier - Trendstasjonaritet

Detaljer

Utkast med løsningshint inkludert UNIVERSITETET I OSLO

Utkast med løsningshint inkludert UNIVERSITETET I OSLO Utkast med løsningshint inkludert UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00

Detaljer

Høgskolen i Oslo og Akershus. sin 2 x cos 2 x = 0, x [0, 2π) 1 cos 2 x cos 2 x = 0 2 cos 2 x = 1 cos 2 x = 1 2 1 2

Høgskolen i Oslo og Akershus. sin 2 x cos 2 x = 0, x [0, 2π) 1 cos 2 x cos 2 x = 0 2 cos 2 x = 1 cos 2 x = 1 2 1 2 Innlevering i DAFE/ELFE 1000 Oppgavesett 1 Innleveringsfrist: 31. januar klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 Løs disse likningene ved regning, og oppgi svarene eksakt: a) Vi kan for

Detaljer

Hva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess

Hva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess IT1101 Informatikk basisfag, dobbeltime 2/10 Hva er en algoritme? Fremgangsmåte for noe Hittil: Datarepresentasjon Datamanipulasjon Datamaskinarkutektur hvordan maskinen jobber Operativsystem Program som

Detaljer

INF Kap og i DIP

INF Kap og i DIP INF 30 7.0.009 Kap..4.4 og.6.5 i DIP Anne Solberg Geometriske operasjoner Affine transformer Interpolasjon Samregistrering av bilder Geometriske operasjoner Endrer på pikslenes posisjoner o steg:. Finn

Detaljer

Ikke lineære likninger

Ikke lineære likninger Ikke lineære likninger Opp til nå har vi studert lineære likninger og lineære likningsystemer. 1/19 Ax = b Ax b = 0. I en dimensjon, lineære likninger kan alltid løses ved hjelp av formler: ax + b = 0

Detaljer

Rapport i faget SIF 8066 - Datasyn. Segmentering av fargebilder

Rapport i faget SIF 8066 - Datasyn. Segmentering av fargebilder Rapport i faget SIF 8066 - Datasyn Segmentering av fargebilder Trondheim, 06.05.2002 Oppgavebeskrivelse Oppgaven går ut på å skrive et program som kjenner igjen og trekker ut segmenter i et fargebilde.

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 1: Kapittel 1 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang

Detaljer

TFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng)

TFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng) TFE411 Vår 216 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon Løsningsforslag Øving 3 1 Teorispørsmål. (2 poeng) a) Beskriv følgende med egne ord: Nodespenningsmetoden.

Detaljer

0$7(5,$// 5( )DJNRGH,/,

0$7(5,$// 5( )DJNRGH,/, Side 1 av 7 HØGSKOLEN I NARVIK 7HNQRORJLVN$YGHOLQJ 6WXGLHUHWQLQJ$OOPHQQ0DVNLQ (.6$0(1, 0$7(5,$// 5( )DJNRGH,/, 7LG0DQGDJNO 7LOODWWHKMHOSHPLGOHU '%.DONXODWRUPHGWRPWPLQQH,QJHQWU\NWHHOOHU VNUHYQHKMHOSHPLGOHU

Detaljer

Populærvitenskapelig kilde: Robin Wilson, Four Colours Suffice/How the Map Problem was Solved, Penguin Books 2003, ISBN 0-141-00908-X.

Populærvitenskapelig kilde: Robin Wilson, Four Colours Suffice/How the Map Problem was Solved, Penguin Books 2003, ISBN 0-141-00908-X. Om Fargelegging av Kart og Grafer i Planet Populærvitenskapelig kilde: Robin Wilson, Four Colours Suffice/How the Map Problem was Solved, Penguin Books 2003, ISBN 0-141-00908-X. 1. Firefargeteoremet Et

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 25. NOVEMBER 2003 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ

Detaljer

Page 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde

Page 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde 1 E DAG PÅ HELSESTASJOE Lises klassevenninnner Lise er veldig liten Hva gjør at du sier at hun er liten? Du har en hypotese om vanlig høyde Du har en hypotese om vanlig høyde Du sammenligner Lises høyde

Detaljer

!"!#$ INF-MAT Geir Hasle - Leksjon 2 2

!!#$ INF-MAT Geir Hasle - Leksjon 2 2 Leksjon 2 !"!#$ Kursinformasjon Motivasjon Operasjonsanalyse Kunstig intelligens Optimeringsproblemer (diskrete) Matematisk program COP Definisjon DOP Anvendelser Kompleksitetsteori Eksakte metoder, approksimasjonsmetoder

Detaljer

6.2 Normalfordeling. Høyde kvinner og menn. 6.1 Kontinuerlig uniform fordeling. Kapittel 6

6.2 Normalfordeling. Høyde kvinner og menn. 6.1 Kontinuerlig uniform fordeling. Kapittel 6 3 6.2 Normalfordeling Kapittel 6 Noen kontinuerlige sannsynlighetsfordelinger TMA4245 V2007: Eirik Mo Normalfordeling: Sannsynlighetstettheten til en normalfordelt stokastisk variabel, X, med forventning

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 9: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 10. april 2008 Oppgaver fra forelesningene Oppgave (fra forelesningen 10/3) a)

Detaljer

Oppgaver fra forelesningene. MAT1030 Diskret matematikk. Oppgave (fra forelesningen 10/3) Definisjon. Plenumsregning 9: Diverse ukeoppgaver

Oppgaver fra forelesningene. MAT1030 Diskret matematikk. Oppgave (fra forelesningen 10/3) Definisjon. Plenumsregning 9: Diverse ukeoppgaver Oppgaver fra forelesningene MAT1030 Diskret matematikk Plenumsregning 9: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 10. april 2008 Oppgave (fra forelesningen 10/3) a)

Detaljer

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl. 09.00-15.00

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl. 09.00-15.00 Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 42 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK

Detaljer

MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) der

MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) der MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) Oppgave 13.1 Modell: Y ij = µ i + ε ij, der ε ij uavh. N(0, σ 2 ) Boka opererer her med spesialtilfellet der man har like

Detaljer

Histogrammetoder. Lars Aurdal Norsk regnesentral. Histogrammetoder p.1/91

Histogrammetoder. Lars Aurdal Norsk regnesentral. Histogrammetoder p.1/91 Histogrammetoder Lars Aurdal Norsk regnesentral aurdal@nr.no Histogrammetoder p.1/91 Oversikt 1 Litt praktisk informasjon. Grånivåtransformasjoner. Grunnleggende transformasjoner. Negativer. Log-transformasjoner.

Detaljer

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger Niels Henrik Abels matematikkonkurranse 0 04. Løsninger Første runde 7. november 0 Oppgave. Siden er et primtall, vil bare potenser av gå opp i 0. Altså,,,,..., 0 i alt tall........................................

Detaljer

Oversikt, kursdag 3. Matematisk morfologi III. Hit-or-miss transformen og skjeletter. Hit-or-miss transformen og skjeletter

Oversikt, kursdag 3. Matematisk morfologi III. Hit-or-miss transformen og skjeletter. Hit-or-miss transformen og skjeletter Matematisk morfologi III Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Sammensatte operasjoner: Hit-or-miss-transformen. Skjeletter. Oversikt, kursdag 3 Copyright Lars Aurdal, NTNU/NR

Detaljer

Løsningsforslag til underveisvurdering i MAT111 vår 2005

Løsningsforslag til underveisvurdering i MAT111 vår 2005 Løsningsforslag til underveisvurdering i MAT111 vår 5 Beregn grenseverdien Oppgave 1 (x 1) ln x x x + 1 Svar: Merk at nevneren er lik (x 1), så vi kan forkorte (x 1) oppe og nede og får (x 1) ln x ln x

Detaljer

Kontinuerlige stokastiske variable.

Kontinuerlige stokastiske variable. Kontinuerlige stokastiske variable. I forelesning har vi sett på en kontinuerlig stokastisk variabel med sannsynlighetstetthet f() =2 og sannsynlighetsfunksjon F () = 2 for. Der hadde jeg et reint regneteknisk

Detaljer

Matematisk morfologi IV

Matematisk morfologi IV Matematisk morfologi IV Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no. desember 3 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag Geodesi-transformasjoner: Geodesi-dilasjon. Geodesi-erosjon. Geodesi-rekonstruksjon.

Detaljer

Flater, kanter og linjer INF Fritz Albregtsen

Flater, kanter og linjer INF Fritz Albregtsen Flater, kanter og linjer INF 160-11.03.2003 Fritz Albregtsen Tema: Naboskaps-operasjoner Del 3: - Canny s kant-detektor - Rang-filtrering - Hybride filtre - Adaptive filtre Litteratur: Efford, DIP, kap.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF210 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 1:00 Løsningsforslaget

Detaljer

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014 PG4200 Algoritmer og datastrukturer forelesning 10 Lars Sydnes 21. november 2014 I Grafer Grafisk fremstilling av en graf D A B C Ikke-rettet graf Grafisk fremstilling av en graf D A B C Rettet graf Grafisk

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32).

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32). Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 16. november 2009 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF 160 Digital bildebehandling Eksamensdag: Mandag 12. mai - mandag 26. mai 2003 Tid for eksamen: 12. mai 2003 kl 09:00 26. mai

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 160 Digital bildebehandling Eksamensdag: Mandag 13. mai - mandag 27. mai 2002 Tid for eksamen: 13. mai 2002 kl 09:00 27. mai

Detaljer

Laboratorieøvelse 2 N 63 58 51 46 42 37 35 30 27 25

Laboratorieøvelse 2 N 63 58 51 46 42 37 35 30 27 25 Laboratorieøvelse Fys Ioniserende stråling Innledning I denne oppgaven skal du måle noen egenskaper ved ioniserende stråling ved hjelp av en Geiger Müller(GM) detektor. Du skal studere strålingens statistiske

Detaljer

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 LØSNINGSFORSLAG SIF55 DISKRET MATEMATIKK Onsdag 8. desember 22 Oppgave a) Vi vil ha 77x (mod 3), så vi trenger en

Detaljer

Oversikt. Heuristisk søk 1. Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk. Prinsipper og metoder

Oversikt. Heuristisk søk 1. Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk. Prinsipper og metoder Oversikt Heuristisk søk Kombinatorisk optimering Lokalt søk og simulert størkning Populasjonsbasert søk Prinsipper og metoder Pål Sætrom Traveling sales person (TSP) Kombinatorisk optimering Trondheim

Detaljer

Matematikk 1000. Eksamensaktuelle numerikk-oppgåver

Matematikk 1000. Eksamensaktuelle numerikk-oppgåver Matematikk 1000 Eksamensaktuelle numerikk-oppgåver Som kj er numeriske metodar ein sentral del av dette kurset. Dette vil også sette preg på eksamen. Men vi kjem ikkje til å bruke datamaskin på sjølve

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 4: Logikk Dag Normann Matematisk Institutt, Universitetet i Oslo 27. januar 2010 (Sist oppdatert: 2010-01-27 12:47) Kapittel 4: Logikk (fortsettelse) MAT1030 Diskret

Detaljer

Gråtonehistogrammer. Histogrammer. Hvordan endre kontrasten i et bilde? INF Hovedsakelig fra kap. 6.3 til 6.6

Gråtonehistogrammer. Histogrammer. Hvordan endre kontrasten i et bilde? INF Hovedsakelig fra kap. 6.3 til 6.6 Hvordan endre kontrasten i et bilde? INF 230 Hovedsakelig fra kap. 6.3 til 6.6 Histogrammer Histogramtransformasjoner Histogramutjevning Histogramtilpasning Histogrammer i flere dimensjoner Matematisk

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

Tre måter å lese fra terminal. Java 4. Eksempel. Formatert utskrift til skjerm

Tre måter å lese fra terminal. Java 4. Eksempel. Formatert utskrift til skjerm Mer om easyio Mer om forgreninger Løkker 7. september 2004 Ole Christian Lingjærde Gruppen for bioinformatikk Institutt for informatikk Universitetet i Oslo Java 4 1 Tre måter å lese fra terminal Først:

Detaljer

INF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet

INF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet INF 4130 8. oktober 2009 Stein Krogdahl Dagens tema: Uavgjørbarhet Dette har blitt framstilt litt annerledes tidligere år Se Dinos forelesninger fra i fjor. I år: Vi tenker mer i programmer enn i Turing-maskiner

Detaljer

INF februar 2017 Ukens temaer (Kap 3.3 i DIP)

INF februar 2017 Ukens temaer (Kap 3.3 i DIP) 15. februar 2017 Ukens temaer (Kap 3.3 i DIP) Kjapp repetisjon av gråtonetransformasjon Histogramtransformasjoner Histogramutjevning Histogramtilpasning/histogramspesifikasjon Standardisering av histogram

Detaljer

Oppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b

Oppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b Oppgave 1 1 a INF1020 Algoritmer og datastrukturer Forelesning 14: Gjennomgang av eksamen vår 2001 oppgave 1,2,4 Arild Waaler Institutt for informatikk, Universitetet i Oslo Oppgave 1 a Programmer en ikke-rekursiv

Detaljer

Mer om Markov modeller

Mer om Markov modeller Høyere ordens Markov modeller Mer om Markov modeller p h mnr = Pr( Y j+ 3 = ah Y j+ 2 = am, Y j+ 1 = an, Y j = a : r For en k-te ordens Markov modell som modellerer en DNA prosess vil det være 3*4 k mulige

Detaljer

Eksamen - INF 283 Maskinlæring

Eksamen - INF 283 Maskinlæring Eksamen - INF 283 Maskinlæring 23 feb. 2016 Tid: 3 timer Eksamen inneholder 15 oppgaver, som vil bli vektet likt ved evaluering. 1 Table 1 attributt antall personer forsørget av låntaker månedlig inntekt

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet

Detaljer

I denne øvingen vil vi sammenlikne det teoretiske resultat med et grafisk bilde av konturlinjene til flaten. Vi tegner konturene der

I denne øvingen vil vi sammenlikne det teoretiske resultat med et grafisk bilde av konturlinjene til flaten. Vi tegner konturene der Øving uke 44 Kritiske punkter Se også Mathematicakompendiet, kap 3.8 En funksjon av to variable kan ha lokale maksimal- og minimalpunkter innenfor definisjonsmengden, akkurat som funksjoner av en variabel.

Detaljer

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag MAT 1001, Høsten 009 Oblig, sforslag a) En harmonisk svingning er gitt som en sum av tre delsvingninger H(x) = cos ( π x) + cos (π (x 1)) + cos (π (x )) Skriv H(x) på formen A cos (ω(x x 0 )). siden H(x)

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 3. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 3 Løsningsforslag Oppgave 1 Flo og fjære a) >> x=0:.1:24; >> y=3.2*sin(pi/6*(x-3)); Disse linjene burde vel være forståelige nå. >> plot(x,y,'linewidth',3)

Detaljer

MAT-INF 2360: Obligatorisk oppgave 3. Løsningsforslag

MAT-INF 2360: Obligatorisk oppgave 3. Løsningsforslag MAT-INF 2360: Obligatorisk oppgave 3. Løsningsforslag I kapittel 9 i kompendiet forklarte vi at maximum-likelihood er en av de viktige anvendelsene av ikke-lineær optimering. Vi skal se litt mer på hva

Detaljer

Frankering og computer-nettverk

Frankering og computer-nettverk 318 Frankering og computer-nettverk Øystein J. Rødseth Universitetet i Bergen Beskrivelse av oppgaven. I denne oppgaven vil du bruke kombinatorikk, tallteori og muligens også litt analyse. Oppgaven er

Detaljer

Midtveiseksamen Løsningsforslag

Midtveiseksamen Løsningsforslag INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Midtveiseksamen Løsningsforslag INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Tirsdag 21. mars 2017 Tidspunkt

Detaljer

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat Av Sigbjørn Hals 1 Innhold Hva er matematikktillegget for Word?... 2 Nedlasting og installasjon av matematikktillegget for Word...

Detaljer

Plenumsregning 9. Diverse ukeoppgaver. Roger Antonsen april Oppgaver fra forelesningene. Oppgave (fra forelesningen 10/3).

Plenumsregning 9. Diverse ukeoppgaver. Roger Antonsen april Oppgaver fra forelesningene. Oppgave (fra forelesningen 10/3). Plenumsregning 9 Diverse ukeoppgaver Roger Antonsen - 10. april 2008 Oppgaver fra forelesningene Oppgave (fra forelesningen 10/3). a) Ved å bruke den rekursive definisjonen av PL, vis hvordan vi skritt

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer

Logistisk regresjon 2

Logistisk regresjon 2 Logistisk regresjon 2 SPSS Utskrift: Trivariat regresjon a KJONN UTDAAR Constant Variables in the Equation B S.E. Wald df Sig. Exp(B) -,536,3 84,56,000,25,84,08 09,956,000,202 -,469,083 35,7,000,230 a.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 13. desember 2011 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 7 sider. Vedlegg: INF2220 lgoritmer og datastrukturer

Detaljer

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering 8. mars 2004 1 Kort om Newton s metode i flere dimensjoner Newton s metode kan generaliseres til å løse sett av n ligninger med n ukjente. Skal

Detaljer