ST0202 Statistikk for samfunnsvitere

Størrelse: px
Begynne med side:

Download "ST0202 Statistikk for samfunnsvitere"

Transkript

1 ST0202 Statistikk for samfunnsvitere Kapittel 2: Beskrivende analyse og presentasjon av data for én variabel Bo Lindqvist Institutt for matematiske fag

2 2 Grafisk presentasjon av data (2.1) Example 2.1 i boka: Operasjoner utført ved General Hospital siste år. Type of operation Number of cases Thoracic 20 Bones and joints 45 Eye, ear, nose, and throat 58 General 98 Abdominal 115 Urologic 74 Proctolyctic 65 Neurosurgery 23

3 3 Sirkelgraf General Eye, ear, nose, and throat Bones and joints Thoracic Neurosurgery Abdominal Proctologic Urologic

4 4 Søylegraf Thoracic Bones and joints Eye, ear, nose, and throat General Abdominal Urologic Proctologic Neurosurgery

5 5 Paretodiagram Abdominal General Urologic Proctologic Eye, ear, nose, and throat Bones and joints Neurosurgery Thoracic

6 6 Punktplott ( dotplot ) 19 eksamensresultater:

7 7 Stem-and-leaf plot Data: Plot:

8 8 Frekvensfordeling og histogram (2.2) Frekvensfordeling: En tabell som viser hvor mange ganger hver dataverdi opptrer. x f

9 Hvis x kan anta mange ulike verdier kan en sette opp gruppert frekvensfordeling. x f 35 x < x < x < x < x < x < x < 105 4

10 10 Histogram (frekvens) Data: Histogram, n=10 klasser:

11 11 Histogram (relativ frekvens) Data: Histogram, n=10 klasser:

12 12 Mål for lokalisering av data (2.3) Gjennomsnitt summen av data x = antall data Eksempel: Data 1, 2, 6, 1, 10 = x n x = = 20 5 = 4 Median x er den midterste verdien når data er rangert etter størrelse. Eksempel: Data 1, 1, 2, 6, 10 x = 2

13 Median hvis antall verdier er et partall: Eksempel: Data 1, 1, 2, 5, 6, 10 x = 2+5 = Mode: Den verdien som opptrer oftest. Eksempel: Data 1, 1, 2, 6, 10, mode=1 Eksempel: Data 1, 2, 6, 10, ingen mode Midtrang ( midrange ): Gjennomsnitt av høyeste og laveste. Eksempel: Data 1, 1, 2, 6, 10, Midtrang = = 5.5

14 14 Mål på spredning (2.4) Rekkevidde (range): Differansen mellom største (H) og minste (L) verdi R = H L Gjennomsnittlig absolutt avvik: x x MAD = n Gjennomsnittlig kvadratisk avvik (utvalgsvarians): (x x) s 2 2 = n 1 og (utvalgs)standardavvik (x x) s = s 2 2 = n 1

15 15 Eksempel Data 1, 1, 2, 6, 10 x x = 20 5 = x = 20

16 16 Beregning av MAD (gjennomsnittlig absolutt avvik) Obs Avvik Absolutt avvik x x x x x = = = = = 6 6 x = 20 MAD = 16 5 = 3.2 x = 4

17 17 Beregning av utvalgsvarians (gjennomsnittlig kvadratisk avvik) x x x (x x) = = = = = 6 36 x = 20 (x x) 2 = 62 x = 4 s 2 = = 15.5

18 Varians: Standardavvik: s 2 = (x x) 2 n 1 = = 15.5 s = (x x) s 2 2 = n 1 = 3.94 Enklere formel: s 2 = x 2 ( x) 2 /n n 1 x 2 = = 142 x = 20 s 2 = /5 5 1 = 15.5

19 Oppgave La dataene være: 1,3,3,2,0,2,2,4,4,4,2,3,1,2,2,3,3,2,2 På frekvensform: Finn gjennomsnittet x til dataene x f

20 Løsning: Gjennomsnitt summen av data x x = = antall data n x = = = 2.3 x er tyngdepunktet i datamengden:

21 21 Mål på beliggenhet (2.5) Kvartiler: Deler de ordnede dataene inn i fire like store deler: 1. kvartil Q 1 : Verdien som er slik at 25% av dataene er mindre og 75% er større. 2. kvartil Q 2 : 50% av dataene er mindre og 50% er større. Det samme som medianen x 3. kvartil Q 3 : 75% av dataene er mindre og 25% er større. 5-tallssammendrag: L, Q 1, x, Q 3, H

22 22 5-tallssammendrag

23 23 Beregning av kvartilene Q 1, Q 2, Q 3 Data (n = 20): Step 1: Ranger fra minste til største: Step 2: 25% av utvalgsstørrelsen 20 blir (20)(25) 100 = 5 Sett strek i dataene etter nr 5, 2 5 = 10 og 3 5 = 15: Step 3: Sett Q 1 = = 73, Q 2 = tallssammendrag: L = 52, Q 1 = 73, Q 2 = 77, Q 3 = 84, H = 96 = 77, Q 3 = = 84

24 24 Box and whiskers display Data: tallssammendrag: L = 52, Q 1 = 73, Q 2 = 77, Q 3 = 84, H = 96

25 25 Hva om 25% av n ikke er et heltall? La f.eks. n = 19. Nå er 25% av 19 lik (19)(25) 100 = Videre er = 9.5, = Boka har da som konvensjon at Q 1 = det 5. største tall, Q 2 = det 10. største, Q 3 = det 15. største (dvs. gå opp til nærmeste heltall). Hvis alle tallene er forskjellige, er da 4 tall ekte mindre enn Q 1, 4 tall er ekte mellom Q 1 og Q 2 og 4 tall er ekte større enn Q 3. (Altså: Maksimum 25% av dataene ligger i hvert intervall, se tidligere figur).

26 26 Tolkning av standardavvik (2.6 ) Empirisk regel: innenfor ett standardavvik fra gjennomsnittet vil ca 68% av dataene være. innenfor to standardavvik fra gjennomsnittet vil ca 95% av dataene være. innenfor tre standardavvik fra gjennomsnittet vil ca 99.7% av dataene være. (Gjelder eksakt for en normalfordelt populasjon, men gir generelt en god intuisjon av variasjon i data.)

27 27 Eksempel på bruk av standardavvik Data: På kalkulator kan vi beregne gjennomsnitt x = 77.3, standardavvik s = Fra den empiriske regelen har vi da: ca. 68% av obs ligger innenfor ett standardavvik, dvs. innenfor 77.3±10.3, dvs. mellom 67.0 og 87.6 (I virkeligheten er 14 av 20 obs, dvs. 70% her). ca. 95% av obs ligger innenfor to standardavvik, dvs. innenfor 77.3±20.6, dvs. mellom 56.7 og 97.9 (I virkeligheten er 19 av 20 obs, dvs. 95% (!) her). ca. 99.7% av obs ligger innenfor tre standardavvik, dvs. innenfor 77.3 ± 30.9, dvs. mellom 46.4 og (I virkeligheten er alle, dvs. 100% her).

ST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag

ST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave 3 Pensumoversikt Kap. 2 Beskrivende statistikk,

Detaljer

Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave. Pensumoversikt. Forelesninger og øvinger

Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave. Pensumoversikt. Forelesninger og øvinger 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 3 4 Pensumoversikt Forelesninger og øvinger

Detaljer

ST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag

ST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave 3 Pensumoversikt Kap. 2 Beskrivende statistikk,

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Introduksjon til ST0202 Kapittel 1: Statistikk Kapittel 2: Beskrivende analyse og presentasjon av data for én variabel Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start

Detaljer

Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave. Pensumoversikt. Oversikt. ST0202 Statistikk for samfunnsvitere

Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave. Pensumoversikt. Oversikt. ST0202 Statistikk for samfunnsvitere 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 3 4 Pensumoversikt Oversikt Kap. 2 Beskrivende

Detaljer

ST0202 Statistikk for samfunnsvitere [1]

ST0202 Statistikk for samfunnsvitere [1] ST0202 Statistikk for samfunnsvitere [1] Introduksjon til ST0202 Kapittel 1: Statistikk Kapittel 2: Deskriptiv analyse og presentasjon av en variabel Mette Langaas Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2011h/start

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Mål på beliggenhet (2.6) Kvartiler: Deler de ordnede dataene inn i fire like store deler: 1. kvartil Q 1 : 25% av dataene

Detaljer

Mål på beliggenhet (2.6) Beregning av kvartilene Q 1, Q 2, Q 3. 5-tallssammendrag. ST0202 Statistikk for samfunnsvitere

Mål på beliggenhet (2.6) Beregning av kvartilene Q 1, Q 2, Q 3. 5-tallssammendrag. ST0202 Statistikk for samfunnsvitere 2 Mål på beliggenhet (2.6) Kvartiler: Deler de ordnede dataene inn i fire like store deler: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 1. kvartil Q 1 : 25% av dataene

Detaljer

Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005

Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005 SOS110 Kvantitativ metode Forelesningsnotater 6 forelesning høsten 005 Statistisk beskrivelse av enkeltvariabler (Univariat analyse) Per Arne Tufte Disposisjon Datamatrisen Variabler Datamatrisen Frekvensfordelinger

Detaljer

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) P(B oga)+p(b ogā) P(B A)P(A)+P(B Ā)P(Ā) ST0202 Statistikk for samfunnsvitere Bo Lindqvist

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) =P(B oga)+p(b

Detaljer

Beregning av kvartilen Q 1 (example 2.12) Mer repetisjon. ST0202 Statistikk for samfunnsvitere

Beregning av kvartilen Q 1 (example 2.12) Mer repetisjon. ST0202 Statistikk for samfunnsvitere 2 Beregning av kvartilen Q 1 (eample 2.12) Data: 76 74 82 96 66 76 78 72 52 68 86 84 62 76 78 92 82 74 88 84 Utvalgsstørrelse n = 20 Step 1: Ranger fra minste til største: 52 62 66 68 72 74 74 76 76 76

Detaljer

Et lite notat om og rundt normalfordelingen.

Et lite notat om og rundt normalfordelingen. Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte

Detaljer

Et lite notat om og rundt normalfordelingen.

Et lite notat om og rundt normalfordelingen. Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte

Detaljer

1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene

1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene 1 Sec 3-2: Hvordan beskrive senteret i dataene 2 Sec 3-3: Hvordan beskrive spredningen i dataene Todeling av statistikk Deskriptiv statistikk Oppsummering og beskrivelse av den stikkprøven du har. Statistisk

Detaljer

Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver?

Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Boka (Ch 1.4) motiverer dette ved å gå fra histogrammer til tetthetskurver.

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn

Detaljer

Statistikk. Forkurs 2017

Statistikk. Forkurs 2017 Statistikk Forkurs 2017 Hva er statistikk? Undersøke Registrere Lage oversikt Presentasjon av informasjon Formidle Arbeidet med statistikk kan vi dele inn i to hovedområder: Samle inn og ordne opplysninger

Detaljer

Statistikk. Forkurs 2018

Statistikk. Forkurs 2018 Statistikk Forkurs 2018 Hva er statistikk? Undersøke Registrere Lage oversikt Presentasjon av informasjon Formidle Arbeidet med statistikk kan vi dele inn i to hovedområder: Samle inn og ordne opplysninger

Detaljer

STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler

STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler STK1000 Uke 36, 2016. Studentene forventes å lese Ch 1.4 (+ 3.1-3.3 + 3.5) i læreboka (MMC). Tetthetskurver Eksempel: Drivstofforbruk hos 32 biler Fra histogram til tetthetskurver Anta at vi har kontinuerlige

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

Fra første forelesning:

Fra første forelesning: 2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen

Detaljer

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn P(x), x=0,1,2,3,4 fra den generelle formelen for binomisk sannsynlighetsfordeling

Detaljer

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper Bo Lindqvist Institutt for matematiske fag 2 Kapittel 8: Sammenligning av grupper Situasjon: Vi ønsker

Detaljer

Binomisk sannsynlighetsfunksjon

Binomisk sannsynlighetsfunksjon ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Binomisk sannsynlighetsfunksjon La det være n forsøk, sannsynlighet p for suksess og sannsynlighet q for fiasko. Den tilfeldige

Detaljer

ST0103 Brukerkurs i statistikk Høst 2014

ST0103 Brukerkurs i statistikk Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST0103 Brukerkurs i statistikk Høst 2014 Løsningsforslag Øving 1 2.1 Frekvenstabell For å lage en frekvenstabell må vi telle

Detaljer

Sannsynlighetsregning og Statistikk.

Sannsynlighetsregning og Statistikk. Sannsynlighetsregning og Statistikk. Leksjon Velkommen til dette kurset i sannsynlighetsregning og statistikk! Vi vil som lærebok benytte Gunnar G. Løvås:Statistikk for universiteter og høyskoler. I den

Detaljer

ØVINGER 2017 Løsninger til oppgaver. Øving 1

ØVINGER 2017 Løsninger til oppgaver. Øving 1 ØVINGER 017 Løsninger til oppgaver Øving 1.1. Frekvenstabell For å lage en frekvenstabell må vi telle antall observasjoner av hvert antall henvendelser. Siden antall henvendelser på en gitt dag alltid

Detaljer

ting å gjøre å prøve å oppsummere informasjonen i Hva som er hensiktsmessig måter å beskrive dataene på en hensiktsmessig måte.

ting å gjøre å prøve å oppsummere informasjonen i Hva som er hensiktsmessig måter å beskrive dataene på en hensiktsmessig måte. Kapittel : Beskrivende statistikk Etter at vi har samlet inn data er en naturlig første ting å gjøre å prøve å oppsummere informasjonen i dataene på en hensiktsmessig måte. Hva som er hensiktsmessig måter

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 3: Beskrivende analyse og presentasjon av data for to variabler (bivariate data) Bo Lindqvist Institutt for matematiske fag 2 Presentasjon av bivariate data

Detaljer

Statistikk 1. Nico Keilman. ECON 2130 Vår 2014

Statistikk 1. Nico Keilman. ECON 2130 Vår 2014 Statistikk 1 Nico Keilman ECON 2130 Vår 2014 Pensum Kap 1-7.3.6 fra Løvås «Statistikk for universiteter og høgskoler» 3. utgave 2013 (eventuelt 2. utgave) Se overspringelsesliste på emnesiden Supplerende

Detaljer

MATEMATIKK (MAT1005) Sentralmål / Spredningsmål

MATEMATIKK (MAT1005) Sentralmål / Spredningsmål ??.??.???? MATEMATIKK (MAT1005) Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 30 minutter DEL 2 (MED HJELPEMIDLER) 60 minutter (Del 1 må leveres inn før hjelpemidlene kan benyttes) Total poengsum:

Detaljer

Forkurs i kvantitative metoder ILP 2019

Forkurs i kvantitative metoder ILP 2019 Forkurs i kvantitative metoder ILP 2019 Dag 2. Forkurs som arbeidskrav for kvantitativ deler av PED-3055 Gregor Maxwell og Bent-Cato Hustad Førsteamanuensis i spesialpedagogikk Hva lærte vi i går? Hva

Detaljer

Deskriptiv statistikk., Introduksjon til dataanalyse

Deskriptiv statistikk., Introduksjon til dataanalyse Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.

Detaljer

Deskriptiv statistikk., Introduksjon til dataanalyse

Deskriptiv statistikk., Introduksjon til dataanalyse Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.

Detaljer

Seksjon 1.3 Tetthetskurver og normalfordelingen

Seksjon 1.3 Tetthetskurver og normalfordelingen Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver

Detaljer

ECON Statistikk 1 Forelesning 2: Innledning

ECON Statistikk 1 Forelesning 2: Innledning ECON2130 - Statistikk 1 Forelesning 2: Innledning Data, beskrivende statistikk, visualisering Jo Thori Lind j.t.lind@econ.uio.no 1. Beskrivende statistikk Typer variable Nominelle: Gjensidig utelukkende

Detaljer

Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger

Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger Fordelinger, mer om sentralmål og variasjonsmål Tron Anders Moger 20. april 2005 1 Forrige gang: Så på et eksempel med data over medisinerstudenter Lærte hvordan man skulle få oversikt over dataene ved

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Det er to populasjoner som vi ønsker å sammenligne. Vi trekker da et utvalg

Detaljer

Anslag for usikkerhet av et sammensatt resultat basert på anslått usikkerhet ( feilmarginer ) for måleverdiene.

Anslag for usikkerhet av et sammensatt resultat basert på anslått usikkerhet ( feilmarginer ) for måleverdiene. KJ053/gen. / 004/013 / S. 1 av 8 Anslag for usikkerhet av et sammensatt resultat basert på anslått usikkerhet ( feilmarginer ) for måleverdiene. (Pluss, kort, litt om statistisk usikkerhet - normalfordelt

Detaljer

Beskrivende statistikk.

Beskrivende statistikk. Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke I løpet av uken blir løsningsforslag lagt ut

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Tirsdag

Detaljer

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to

Detaljer

Statistikk for språk- og musikkvitere 1

Statistikk for språk- og musikkvitere 1 Statistikk for språk- og musikkvitere 1 Mitt navn: Åsne Haaland, Vitenskapelig databehandling USIT Ikke nøl, avbryt med spørsmål! Hva oppnår en med statistikk? Få oversikt over data: typisk verdi, spredning,

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!

Detaljer

Forelesning 7 Statistiske beskrivelser av enkeltvariabler. Mål for sentraltendens

Forelesning 7 Statistiske beskrivelser av enkeltvariabler. Mål for sentraltendens Forelesning 7 Statistiske beskrivelser av enkeltvariabler Statistiske mål for univariate fordelinger: Sentraltendens Verdien for fordelingens tyngdepunkt Spredning Hvor nært opp til tyngdepunktet ligger

Detaljer

Page 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde

Page 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde 1 E DAG PÅ HELSESTASJOE Lises klassevenninnner Lise er veldig liten Hva gjør at du sier at hun er liten? Du har en hypotese om vanlig høyde Du har en hypotese om vanlig høyde Du sammenligner Lises høyde

Detaljer

Sentralmål og spredningsmål

Sentralmål og spredningsmål Sentralmål og spredningsmål 3.1 Læreplanmål 1 3.1 Gjennomsnitt og typetall 2 3.2 Median 6 3.3 Variasjonsbredde og kvartilbredde 10 3.4 Varians og standardavvik 15 3.5 Digitale sentralmål og spredningsmål

Detaljer

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab For grunnleggende bruk av Matlab vises til slides fra basisintroduksjon til Matlab som finnes på kursets hjemmeside. I denne øvingen skal vi analysere

Detaljer

Sentralmål og spredningsmål

Sentralmål og spredningsmål Sentralmål og spredningsmål av Peer Andersen Peer Andersen 2014 Sentralmål og spredningsmål i statistikk I dette notatet skal vi se på de viktigste momentene om sentralmål og spredningsmål slik de blir

Detaljer

Kapittel 3: Studieopplegg

Kapittel 3: Studieopplegg Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon

Detaljer

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling

Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling Kapittel 8 Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling TMA4240 H2006: Eirik Mo 2 Til nå... Definert sannsynlighet og stokastiske variabler (kap. 2 & 3).

Detaljer

ECON2130 Kommentarer til oblig

ECON2130 Kommentarer til oblig ECON2130 Kommentarer til oblig Her har jeg skrevet ganske utfyllende kommentarer til en del oppgaver som mange slet med. Har noen steder gått en del utover det som det strengt tatt ble spurt om i oppgaven,

Detaljer

Dataanalyse. Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse?

Dataanalyse. Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse? Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse? Skrevet av: Kjetil Sander Utgitt av: estudie.no Revisjon: 1.0 (Sept.

Detaljer

Tabell 1: Beskrivende statistikker for dataene

Tabell 1: Beskrivende statistikker for dataene Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7, blokk II Løsningsskisse Oppgave 1 a) Utfør en beskrivende analyse av datasettet % Data for Trondheim: TRD_mean=mean(TRD);

Detaljer

2P kapittel 3 Statistikk Utvalgte løsninger oppgavesamlingen

2P kapittel 3 Statistikk Utvalgte løsninger oppgavesamlingen P kapittel 3 Statistikk Utvalgte løsninger oppgavesamlingen 303 a For eksempel finner vi at den relative frekvensen for jenter med høyde 155 159 cm er 0,067 6,7 % 30 = =. Høyde i cm Antall Relativ (frekvens)

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den

Detaljer

Kapittel 1: Data og fordelinger

Kapittel 1: Data og fordelinger STK Innføring i anvendt statistikk Mandag 8. august 8 Ingrid K. lad I løpet av dette kurset skal dere bli fortrolig med statistisk tenkemåte forstå teori og metoder som ligger bak knappene/menyene i vanlige

Detaljer

Dataens tidsalder. Hvorfor data? Data, data, data. STK1000 Innføring i anvendt statistikk. Tirsdag 24. august 2010

Dataens tidsalder. Hvorfor data? Data, data, data. STK1000 Innføring i anvendt statistikk. Tirsdag 24. august 2010 STK1000 Innføring i anvendt statistikk Tirsdag 24. august 2010 Geir Storvik (modifisert etter I. Glad s tidligere presentasjon) 1 Data, data, data Genetiske data World Wide Web Overvåkning Medisinske bilder

Detaljer

MATEMATIKK (MAT1005) Sentralmål / Spredningsmål

MATEMATIKK (MAT1005) Sentralmål / Spredningsmål ??.??.???? MATEMATIKK (MAT1005) Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 30 minutter DEL 2 (MED HJELPEMIDLER) 60 minutter (Del 1 leveres inn etter nøyaktig 30 minutter og før hjelpemidlene

Detaljer

Introduksjon til statistikk og dataanalyse. Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013

Introduksjon til statistikk og dataanalyse. Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013 Introduksjon til statistikk og dataanalyse Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013 Introduksjon til statistikk og dataanalyse Hollywood-filmer fra 2011 135 filmer Samla budsjett: $ 7 166

Detaljer

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012)

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012) 1 ECON 130 HG - februar 01 Løsningskisse for oppgaver til undervisningsfri uke 8 (0.-. februar 01) Oppg..1. Variabel: x = antall kundehenvendelser pr. dag 1. Antall observasjoner: n = 100 dager. I Excel

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 10. oktober 2012. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Inferens med EN populasjon 3 Oppgave: H2002 # 3 I følge Nielsen

Detaljer

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor

Detaljer

Seksjon 1.3 Tetthetskurver og normalfordelingen

Seksjon 1.3 Tetthetskurver og normalfordelingen Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data ved tall Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Fredag 13.10.2006. Tid for eksamen: Kl. 09.00 11.00. Tillatte hjelpemidler:

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon I Kapittel 8 brukte vi observatoren z = x µ σ/ n for å trekke konklusjoner om µ. Dette

Detaljer

Formelsamling i medisinsk statistikk

Formelsamling i medisinsk statistikk Formelsamling i medisinsk statistikk Versjon av 6. mai 208 Dette er en formelsamling til O. O. Aalen (red.): Statistiske metoder i medisin og helsefag, Gyldendal, 208. Gjennomsnitt x = n (x + x 2 + x 3

Detaljer

Tema: Deskriptiv statistikk for kontinuerlige data. Av Kathrine Frey Frøslie,

Tema: Deskriptiv statistikk for kontinuerlige data. Av Kathrine Frey Frøslie, Tema: Deskriptiv statistikk for kontinuerlige data. Av Kathrine Frey Frøslie, www.statistrikk.no Kontinuerlige data er målinger som gjøres langs en skala, for eksempel tid, lengde og vekt. Noen ganger

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA0 Sannsynlighetsregning med statistikk, våren 00 ÅMA0 Sannsynlighetsregning med statistikk våren 00 Praktisk om kurset Foreleser og faglig ansvarlig: Bjørn H. Auestad (kontor: E-536). Undervisningstider:

Detaljer

Forelesning 7 Statistiske beskrivelser av enkeltvariabler. Mål for sentraltendens

Forelesning 7 Statistiske beskrivelser av enkeltvariabler. Mål for sentraltendens Forelesning 7 Statistiske beskrivelser av enkeltvariabler Statistiske mål for univariate fordelinger: Sentraltendens Verdien for fordelingens tyngdepunkt Spredning Hvor nært opp til tyngdepunktet ligger

Detaljer

Øving 7: Statistikk for trafikkingeniører

Øving 7: Statistikk for trafikkingeniører NTNU Veg og samferdsel EVU kurs Trafikkteknikk Oslo / høsten 2007 Øving 7: Statistikk for trafikkingeniører Det anbefales generelt å arbeide i grupper med 2-3 studenter i hver gruppe. Bruk gjerne Excel

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variable (5.2) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel.

Detaljer

Tilfeldige variable (5.2)

Tilfeldige variable (5.2) Tilfeldige variable (5.) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel. Tilfeldig variabel: En variabel som har en numerisk verdi for hvert utfall i

Detaljer

2P kapittel 3 Statistikk Løsninger til innlæringsoppgavene

2P kapittel 3 Statistikk Løsninger til innlæringsoppgavene P kapittel 3 Statistikk Løsninger til innlæringsoppgavene 3. Frekvensen av hybelboere er 15 % av 10 elever, altså 10 0,15 = 18 elever. 3.3 Sier vi at det er N elever i Arams klasse, har vi fra opplysningene

Detaljer

Når du har arbeidet deg gjennom dette kapittelet, er målet at du skal kunne

Når du har arbeidet deg gjennom dette kapittelet, er målet at du skal kunne 2 Statistikk Innhold Kompetansemål Statistikk, Vg2P... 1 Modul 1: Statistisk undersøkelse... 2 Modul 2: Presentasjon av tallmateriale... 4 Modul 3: Sentralmål... 12 Modul 4: Spredningsmål... 15 Modul 5:

Detaljer

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for

Detaljer

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives

Detaljer

Kapittel 1: Introduksjon til statistikk og dataanalyse Foreleses tirsdag 9. januar 2007.

Kapittel 1: Introduksjon til statistikk og dataanalyse Foreleses tirsdag 9. januar 2007. Kapittel 1: Introduksjon til statistikk og dataanalyse Foreleses tirsdag 9. januar 2007. Eirik Mo Institutt for matematiske fag, NTNU 3 Kapittel 1 ser på Datainnsamling. Datatyper: diskrete og kontinuerlige.

Detaljer

LØSNING: Oppgavesett nr. 1

LØSNING: Oppgavesett nr. 1 LØSNING: Oppgavesett nr. MAT0 Statistikk, 208 (Versjon 0) Oppgave : ( fordeling, gjennomsnitt, varians og standardavvik ) a) Plotter fordelingen til x i : antall personer 5 4 5 3 2 2 2 2 40 50 60 70 80

Detaljer

Basisoppgaver til 2P kap. 3 Statistikk

Basisoppgaver til 2P kap. 3 Statistikk Basisoppgaver til 2P kap. 3 Statistikk 3.1 Frekvenstabell og histogram 3.2 Kumulativ frekvens 3.3 Median 3.4 Gjennomsnitt 3.5 Spredningsmål 3.6 Diagrammer (Det er ikke basisoppgaver til 3.7 Statistiske

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

Analyseoversikt, Uke 35

Analyseoversikt, Uke 35 Analyseoversikt, Uke 35 STK1000 Uke 35, 2016. Studentene forventes å lese Ch 1.1-1.3 i læreboka (MMC). Avsnittet om Stem-and-leaf-plot er ikke pensum. Ulike typer data Kategoriske data MMC: «Kvalitative

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Bokmål Faglig kontakt under eksamen: Øyvind Bakke, tlf. 99041673 EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Tirsdag

Detaljer

Repeterbarhetskrav vs antall Trails

Repeterbarhetskrav vs antall Trails Repeterbarhetskrav vs antall Trails v/ Rune Øverland, Trainor Automation AS Artikkelserie Dette er første artikkel i en serie av fire som tar for seg repeterbarhetskrav og antall trials. Formålet med artikkelserien

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 13: Lineær korrelasjons- og regresjonsanalyse Kap. 13.1-13.3: Lineær korrelasjonsanalyse. Disse avsnitt er ikke pensum,

Detaljer

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser. ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35

Detaljer

Kap. 8: Utvalsfordelingar og databeskrivelse

Kap. 8: Utvalsfordelingar og databeskrivelse Kap. 8: Utvalsfordelingar og databeskrivelse Utvalsfordelingar Utvalsfordeling for gjennomsnitt (med kjent varians) ( X ) Sentralgrenseteoremet (SGT) Utvalsfordeling for varians (normalfordeling) Utvalfordeling

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 22/3, 2006. Tid for eksamen: Kl. 09.00 11.00. Tillatte hjelpemidler:

Detaljer

Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen

Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen gir testobservatoren t mer spredning enn testobservatoren

Detaljer

Sted Gj.snitt Median St.avvik Varians Trondheim 6.86 7.50 6.52 42.49 Værnes 7.07 7.20 6.79 46.05 Oppdal 4.98 5.80 7.00 48.96

Sted Gj.snitt Median St.avvik Varians Trondheim 6.86 7.50 6.52 42.49 Værnes 7.07 7.20 6.79 46.05 Oppdal 4.98 5.80 7.00 48.96 Vår 213 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 8, blokk II Matlabøving Løsningsskisse Oppgave 1 a) Ingen løsningsskisse. b) Finn, for hvert datasett,

Detaljer

Eksempel på data: Karakterer i «Stat class» Introduksjon

Eksempel på data: Karakterer i «Stat class» Introduksjon Eksempel på data: Karakterer i «Stat class» Introduksjon Viktige begreper for å beskrive data: Enheter som er objektene i datasettet «label» som av og til brukes for å skille enhetene En variabel er en

Detaljer

Introduksjon til statistikk og dataanalyse

Introduksjon til statistikk og dataanalyse Introduksjon til statistikk og dataanalyse Hollywood-filmer fra 2011 135 filmer Samla budsjett: $ 7 166 500 000 Samla billettsalg: $ 20 199 000 000 2 Datasettet vårt Filmene er delt i 8 sjangere: Action

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer