2P kapittel 3 Statistikk Løsninger til innlæringsoppgavene
|
|
|
- Even Guttormsen
- 9 år siden
- Visninger:
Transkript
1 P kapittel 3 Statistikk Løsninger til innlæringsoppgavene 3. Frekvensen av hybelboere er 15 % av 10 elever, altså 10 0,15 = 18 elever. 3.3 Sier vi at det er N elever i Arams klasse, har vi fra opplysningene at N 0,167 = 5. 5 Løser vi dette for N, får vi N = = 30 elever. 0, a Leksetid i minutter Frekvens Relativ frekvens (%) b Histogram over fordelingen av leksetider: Antall Tid (min) 3.5 a Alder i år Antall Relativ frekvens (%) Relativ frekvens (%) grunnskole (grunnskole) (videregående) ,8 3, ,4 17, ,6 6, ,3 40, ,9 1,3 Aschehoug Undervisning Side 1 av 9
2 b Histogram over aldersfordelingen for lærere i grunnskolen: Løsninger til innlæringsoppgavene Antall Alder 3.6 a Leksetid i minutter Frekvens Kumulativ frekvens Kumulativ relativ frekvens (%) b Av tabellen i oppgave a ser vi at det var 6 elever som brukte høyst 30 minutter, og 14 som brukte høyst 60 minutter. c På samme måte ser vi at de 6 elevene som brukte høyst 30 minutter, utgjør 4 %, og de 14 som brukte høyst 60 minutter, utgjør 56 %. 3.7 Går vi ut fra verdiene på x-aksen, kan vi lese av at: a 7 land slipper ut 5,0 tonn eller mindre CO per innbygger. b 0 land slipper ut høyst 7,5 tonn CO per innbygger. c 31 land har CO -utslipp på ikke mer enn 10 tonn per innbygger. Aschehoug Undervisning Side av 9
3 3.8 a Alder i år Lærere Kumulativ frekvens b Graf av de kumulative frekvensene: Kumulativ frekvens Alder Vi leser av de kumulative frekvensene for alder 45 år og alder 55 år slik det er vist med røde linjer på grafen. Da finner vi at: 1 Omtrent lærere var høyst 45 år gamle. Omtrent lærere var høyst 45 år gamle. 3.9 Vi skriver tidene i stigende rekkefølge: Det er til sammen 5 tider. Den midterste av dem er nummer 13 som svarer til 54 minutter (markert med rødt over). Vi har altså at medianen for tid brukt til lekser er 54 minutter a De kumulative frekvensene og de kumulative relative frekvensene er regnet ut i tabellen: Nettoinntekt Kumulativ relativ Antall Kumulativ frekvens i kroner frekvens (%) , , , , og over ,0 På grunnlag av tabellen kan vi tegne et diagram av de kumulative relative frekvensene: Aschehoug Undervisning Side 3 av 9
4 Kumulativ relativ frekvens (%) Nettoinntekt i 1000 kroner b Vi leser av medianen slik det er vist med røde linjer på grafen. Vi ser at medianen blir omtrent kr Vi legger først sammen alle tidene. Summen av dem er 158 minutter. Gjennomsnittet blir da 158 = 61,1 minutter, eller litt over én time Vi setter opp følgende tabell med midtpunkt for hver av inntekstgruppene og de relative frekvensene for hver av dem. For dem som har en nettoinntekt på minst én million kroner, har vi på skjønn satt "midtpunktet til 1,5 millioner kr. Nettolønn (kr) Midtpunkt Antall Relativ (frekvens) frekvens , , , , og over ,004 Gjennomsnittlig nettoinntekt er tilnærmet lik , , , , ,004 = kr 3.13 a Det skyldes at fordelingen er skjev, med flest lave verdier. Det er flere som drikker (relativt sett) lite alkohol enn som drikker mye. b Halvparten av mennene i aldersgruppen 5 9 år drikker mindre enn 3,9 liter ren alkohol per år, og halvparten drikker mer enn det. Medianen gir derfor best uttrykk for alkoholforbruket til "en typisk" 5 9 år gammel mann. Aschehoug Undervisning Side 4 av 9
5 3.14 Vi ordner reisetidene i stigende rekkefølge slik det er vist på side 16 i læreboka. Første halvdel av reisetidene er de som kommer før medianen, dvs Første kvartil er medianen av disse 11 reisetidene. Det er verdi nummer 6, så første kvartil er 4 minutter. Andre halvdel av reisetidene er de som kommer etter medianen, dvs Tredje kvartil er medianen av disse 11 reisetidene. Det er verdi nummer 6, så tredje kvartil er 4 minutter Vi skriver først tidene i stigende rekkefølge, se løsningen av oppgave 3.9. Første halvdel av tidene er de som kommer før medianen, dvs. tidene Første kvartil er medianen av disse 1 tidene. Det er gjennomsnittet av 6. og 7. verdi, så første kvartil er = 3 minutter. Andre halvdel av tidene er de som kommer etter medianen, dvs. tidene Tredje kvartil er medianen av disse 1 tidene. Det er gjennomsnittet av 6. og 7. verdi, så tredje kvartil er = 86 minutter Boksplott: Variasjonsbredden er = 133 minutter I oppgave 3.15 fant vi at første kvartil er 3 minutter og at tredje kvartil er 86 minutter. Kvartildifferansen er 86 3 = 54 minutter. Aschehoug Undervisning Side 5 av 9
6 3.18 a Trekker vi første kvartil fra tredje kvartil for hver av yrkesgruppene, får vi følgende kvartildifferanser (i kroner): Yrke Kvartildifferanse Personaldirektører Ingeniører Reisekonsulenter 3 89 Informasjonsmedarbeidere og journalister Butikkmedarbeidere Kvartildifferansene er et mål på hvor stor variasjon det er i lønnsnivået til hver yrkesgruppe. b Det betyr at høyst en firedel av informasjonsmedarbeiderne og journalistene har like godt betalt som de 5 % lavest lønnede personaldirektørene a Gjennomsnitthøyden til brødrene er = 180 cm. 3 b Per avviker med 1 cm. Kvadratavviket hans er 1cm. Pål avviker med 4cm. Kvadratavviket hans er 16 cm. Espen avviker med 3 cm. Hans kvadratavvik er 9cm. c Variansen blir = d Standardavviket blir 13 = 3,61. Variansen har benevning kvadratcentimeter (cm ), mens standardavviket har benevning centimeter (cm). 3.1 Vi bruker et digitalt verktøy og finner at standardavvik er 3,7 tonn per innbygger. 3. Sektordiagram over røykedataene: Aschehoug Undervisning Side 6 av 9
7 Stolpediagram over de samme dataene: 3.3 Stolpediagram for sammenlikning av røykevanene til to aldersgrupper: 3.4 Det er flere mulige diagrammer vi kan bruke for å vise endringene i røykevanene. (i) Stablet stolpediagram: 100 % 80 % 60 % 40 % 0 % 0 % Daglige røykere Av-og-til røykere Ikke røykere (ii) Stolpediagram over andelene dagligrøykere og av-og-til-røykere: Andel (%) Daglige røykere Av-og-til røykere Aschehoug Undervisning Side 7 av 9
8 (iii) Kurvediagram over andelene dagligrøykere og av-og-til-røykere: Løsninger til innlæringsoppgavene Daglige røykere Av-og-til røykere Av de tre diagrammene er diagram (ii) og diagram (iii) å foretrekke. De viser begge tydelig at andelen dagligrøykere har gått ned, mens andelen av-og-til-røykere har økt noe. Diagram (i) er ikke like godt. For dette diagrammet er det vanskeligere å se endringen i andelen av-og-til-røykere. 3.5 De relative frekvensene blir: Alder i år Relativ frekvens Relativ frekvens i i 1993 (%) 003 (%) 0 9 7,3 3, ,6 17, ,0 6, ,8 40, , 1,3 Stolpediagram av de relative frekvensene: Av diagrammet ser vi at andelen lærere i aldersgruppene år og år har økt fra 1993 til 003, mens andelen lærere under 50 år har blitt mindre. Aschehoug Undervisning Side 8 av 9
9 3.6 a Et kurvediagram viser på en god måte prisutviklingen for de to boligtypene: b Av diagrammet ser vi at det er leiligheter som har hatt størst prisstigning fra 1985 til 005. En viktig grunn til det er at andelen leiligheter er større i byene enn utenfor byene og at prisstigningen har vært størst i byene. Aschehoug Undervisning Side 9 av 9
2P kapittel 3 Statistikk Løsninger til innlæringsoppgavene
2P kapittel 3 Statistikk Løsninger til innlæringsoppgavene 3.1 a 25 5 8 12 Det var 12 elever som rukte 40 59 minutter til skolen. For eksempel finner vi at den relative frekvensen for elever med reisetid
2P kapittel 3 Statistikk Utvalgte løsninger oppgavesamlingen
P kapittel 3 Statistikk Utvalgte løsninger oppgavesamlingen 303 a For eksempel finner vi at den relative frekvensen for jenter med høyde 155 159 cm er 0,067 6,7 % 30 = =. Høyde i cm Antall Relativ (frekvens)
Basisoppgaver til 2P kap. 3 Statistikk
Basisoppgaver til 2P kap. 3 Statistikk 3.1 Frekvenstabell og histogram 3.2 Kumulativ frekvens 3.3 Median 3.4 Gjennomsnitt 3.5 Spredningsmål 3.6 Diagrammer (Det er ikke basisoppgaver til 3.7 Statistiske
2P kapittel 4 Statistikk Løsninger til oppgavene i læreboka
P kapittel 4 Statistikk Løsninger til oppgavene i læreoka 4.1 a Det er 5 + 8 = 13 elever som ruker inntil 119 minutter på sosiale medier. Da er det 5 13 = 1 elever som ruker 10 179 minutter på sosiale
Påbygging kapittel 3 Statistikk Løsninger til oppgavene i boka
Påygging kapittel 3 Statistikk Løsninger til oppgavene i oka 3.1 a Det er 5 + 8 = 13 elever som ruker inntil 119 minutter på sosiale medier. Da er det 5 13 = 1 elever som ruker 10 179 minutter på sosiale
Statistikk. Forkurs 2017
Statistikk Forkurs 2017 Hva er statistikk? Undersøke Registrere Lage oversikt Presentasjon av informasjon Formidle Arbeidet med statistikk kan vi dele inn i to hovedområder: Samle inn og ordne opplysninger
Statistikk. Forkurs 2018
Statistikk Forkurs 2018 Hva er statistikk? Undersøke Registrere Lage oversikt Presentasjon av informasjon Formidle Arbeidet med statistikk kan vi dele inn i to hovedområder: Samle inn og ordne opplysninger
Statistikk Løsninger. Innhold. Statistikk Vg2P
Statistikk Løsninger Innhold Modul 2: Presentasjon av tallmateriale... 2 Tabeller - Frekvens - Relativ frekvens - Kumulativ frekvens... 2 Søylediagram/stolpediagram... 4 Sektordiagram... 5 Linjediagram/kurvediagram...
GeoGebra-opplæring i Matematikk 2P
GeoGebra-opplæring i Matematikk 2P Emne Underkapittel Graftegning 2.1 Linje gjennom to punkter 2.1 Å finne y- og x-verdier 2.1 Lineær regresjon 2.3 Andregradsfunksjoner 2.4 Polynomregresjon 2.4 Eksponential-
MATEMATIKK (MAT1005) Sentralmål / Spredningsmål
??.??.???? MATEMATIKK (MAT1005) Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 30 minutter DEL 2 (MED HJELPEMIDLER) 60 minutter (Del 1 må leveres inn før hjelpemidlene kan benyttes) Total poengsum:
Statistikk Oppgaver. Innhold. Statistikk Vg2P
Statistikk Oppgaver Innhold Modul 2: Presentasjon av tallmateriale... 2 Tabeller- Frekvens - Relativ frekvens - Kumulativ frekvens... 2 Søylediagram/stolpediagram... 3 Sektordiagram... 3 Linjediagram/kurvediagram...
Løsning eksamen 2P våren 2010
Løsning eksamen 2P våren 2010 Oppgave 1 a) Prisen for diesel er 10,91 kr. Hvis Liv hadde fylte diesel, hadde prisen for 41,5 l vært mindre enn 11 kr 42 = 462 kr Det stemmer ikke i det hun betalte 509,
2P, Statistikk Quiz. Test, 2 Statistikk
Test, 2 Statistikk Innhold 1.1 Statistisk undersøkelse... 2 2.2 Presentasjon av tallmateriale... 2 2.3 Sentralmål... 8 2.4 Spredningsmål... 11 2.5 Gruppert datamateriale... 14 Grete Larsen 1 1.1 Statistisk
Eksamen våren 2016 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Variasjonsbredde = 6 C ( 6 C) = 1 C Gjennomsnitt: + 0 + ( 4) + ( 6) + + 6 0 x = = =
Statistikk 2P, Prøve 2 løsning
Statistikk 2P, Prøve 2 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Tallmaterialet under viser alderen i år på skolebarna som kjører med en bestemt skolebuss. Mandag var alle elevene med
Sentralmål og spredningsmål
Sentralmål og spredningsmål av Peer Andersen Peer Andersen 2014 Sentralmål og spredningsmål i statistikk I dette notatet skal vi se på de viktigste momentene om sentralmål og spredningsmål slik de blir
Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005
SOS110 Kvantitativ metode Forelesningsnotater 6 forelesning høsten 005 Statistisk beskrivelse av enkeltvariabler (Univariat analyse) Per Arne Tufte Disposisjon Datamatrisen Variabler Datamatrisen Frekvensfordelinger
MATEMATIKK (MAT1005) Sentralmål / Spredningsmål
??.??.???? MATEMATIKK (MAT1005) Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 30 minutter DEL 2 (MED HJELPEMIDLER) 60 minutter (Del 1 leveres inn etter nøyaktig 30 minutter og før hjelpemidlene
Når du har arbeidet deg gjennom dette kapittelet, er målet at du skal kunne
2 Statistikk Innhold Kompetansemål Statistikk, Vg2P... 1 Modul 1: Statistisk undersøkelse... 2 Modul 2: Presentasjon av tallmateriale... 4 Modul 3: Sentralmål... 12 Modul 4: Spredningsmål... 15 Modul 5:
INNHOLD. Matematikk for ungdomstrinnet
INNHOLD STATISTIKK... 2 FREKVENS... 2 RELATIV FREKVENS... 2 FREKVENSTABELL... 2 KLASSEDELING... 3 SØYLEDIAGRAM (STOLPEDIAGRAM)... 3 LINJEDIAGRAM... 4 SEKTORDIAGRAM... 4 HISTOGRAM... 4 FRAMSTILLING AV DATA...
Eksamen MAT1015 Matematikk 2P Va ren 2014
Eksamen MAT1015 Matematikk 2P Va ren 2014 Oppgave 1 (3 poeng) Nedenfor ser du hvor mange snegler Astrid har plukket i hagen hver kveld de ti siste kveldene. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet,
Løsning eksamen 2P våren 2013
Løsning eksamen 2P våren 2013 Del 1 Oppgave 1 a) Vi ordner tallene etter størrelse. 1, 1, 1, 2, 2, 3, 3, 4, 5, 5 Da det er 10 tall her, er median gjennomsnittet av tall nr. 5 og tall nr. 6. Medianen er
Sannsynlighetsregning og Statistikk.
Sannsynlighetsregning og Statistikk. Leksjon Velkommen til dette kurset i sannsynlighetsregning og statistikk! Vi vil som lærebok benytte Gunnar G. Løvås:Statistikk for universiteter og høyskoler. I den
2P-Y eksamen våren 2016
2P-Y eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4 C 04.03 --6
Statistikk. Mål. for opplæringen er at eleven skal kunne. planlegge, gjennomføre og vurdere statistiske undersøkelser
48 3 Statistikk Mål for opplæringen er at eleven skal kunne planlegge, gjennomføre og vurdere statistiske undersøkelser beregne kumulativ hyppighet, finne og drøfte sentralmål og spredningsmål representere
Statistikk 2P, Prøve 1 løsning
Statistikk 2P, Prøve 1 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 I denne oppgaven finner du tre tabeller. Dine oppgaver er å presentere resultatene fra de tre tabellene i tre ulike
Eksempelsett 2P, Høsten 2010
Eksempelsett 2P, Høsten 2010 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Grete og Per fyller etanol i et beger.
Tall i arbeid Påbygging terminprøve våren 2012
Tall i areid Påygging terminprøve våren 2012 DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a Skriv tallene på standardform. 1 0,000
Eksamen MAT1015 Matematikk 2P Va ren 2014
Eksamen MAT1015 Matematikk 2P Va ren 2014 Oppgave 1 (3 poeng) Nedenfor ser du hvor mange snegler Astrid har plukket i hagen hver kveld de ti siste kveldene. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet,
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Lotte har spurt ti medelever om hvor mange ganger de handler i kantina i løpet av en uke. Resultatene ser du nedenfor. 1 5 1 3 3 1 4 2 4 0 Bestem medianen, gjennomsnittet,
Eksamen 2P, Høsten 2011
Eksamen P, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) Skriv på standardform 1) 533 milliarder 9 11
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 02.03 0 03.03 4 04.03 6 05.03 2 06.03 6 Guro målte temperaturen utenfor hytta de seks første dagene i mars. Se tabellen ovenfor. Bestem
2P-Y eksamen våren 2016 løsningsforslag
2P-Y eksamen våren 2016 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03
Kapittel 4. Statistikk
Kapittel 4. Statistikk Dette kapitlet handler blant annet om: Beregne gjennomsnitt og andre sentralmål. Framstille data i frekvenstabeller. Beregne standardavvik og andre spredningsmål. Framstille data
Sentralmål og spredningsmål
Sentralmål og spredningsmål 3.1 Læreplanmål 1 3.1 Gjennomsnitt og typetall 2 3.2 Median 6 3.3 Variasjonsbredde og kvartilbredde 10 3.4 Varians og standardavvik 15 3.5 Digitale sentralmål og spredningsmål
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Nedenfor ser du hvor mange snegler Astrid har plukket i hagen hver kveld de ti siste kveldene. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet, medianen og
2P eksamen våren 2016 løsningsforslag
2P eksamen våren 2016 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4
2P eksamen våren 2018 løsningsforslag
2P eksamen våren 2018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 2 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave
2P eksamen våren 2016
2P eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4 C 04.03 --6 C
3 Statistikk KATEGORI 1. 3.1 Søylediagrammer. Oppgave 3.111 Tabellen viser karakterstatistikken for en prøve i en matematikkgruppe 2P.
3 Statistikk KATEGORI 1 3.1 Søylediagrammer Oppgave 3.110 I en klasse ble elevene spurt om hvor mange søsken de hadde. Tabellen viser resultatet. søsken elever 0 6 1 12 2 6 3 2 4 1 Oppgave 3.111 Tabellen
Eksamen MAT1005 Matematikk 2P-Y Va ren 2014
Eksamen MAT1005 Matematikk 2P-Y Va ren 2014 Oppgave 1 (2 poeng) Nedenfor ser du hvor mange snegler Astrid har plukket i hagen hver kveld de ti siste kveldene. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet
Eksamen våren 2015 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 For et utvalg der antall observasjoner er et partall, slik som her, er medianen gjennomsnittet
2P-Y eksamen våren 2018 løsningsforslag
2P-Y eksamen våren 2018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 2 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave
Eksamen MAT1003 Matematikk 2P. Nynorsk/Bokmål
Eksamen 19.05.2010 MAT1003 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del 1 skal
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 02.03 0 03.03 4 04.03 6 05.03 2 06.03 6 Guro målte temperaturen utenfor hytta de seks første dagene i mars. Se tabellen ovenfor. Bestem
Løsningsforslag til Eksamen 2P vår 2010 14 1 0,86 100
Delprøve 1 OPPGAVE 1 a) 41,5 liter avrundet til 40 liter. 509,6 kroner avrundet til 500 kroner. 500 50 5 1,5 40 4 Ved å gjøre overslag ser vi at Liv må ha bensinbil. b) 4 3 3 3 1 16 5 4 3 5 16 1 5 5 3
Eksamen 2P MAT1015 Vår 2012 Løsning
Eksamen 2P MAT1015 Vår 2012 Oppgave 1 (14 poeng) a) 20 elever blir spurt om hvor mange datamaskiner de har hjemme. Se tabellen ovenfor. Finn variasjonsbredden, typetallet, medianen og gjennomsnittet. Variasjonsbredden
Eksamen MAT1015 Matematikk 2P Va ren 2015
Eksamen MAT1015 Matematikk 2P Va ren 2015 Oppgave 1 (2 poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 12 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i
Eksamen MAT1015 Matematikk 2P Va ren 2015
Eksamen MAT1015 Matematikk P Va ren 015 Oppgave 1 ( poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 1 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet
Eksamen 23.11.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål
Eksamen 3.11.011 MAT1015 Matematikk P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: 5 timer: Del 1 skal leveres inn etter timer. Del
Matematikk 2P. det digitale verktøyet. Kristen Nastad
Matematikk 2P og det digitale verktøyet Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.4.11643 2008 07 09 av operativsystemet til programmet TI-nspire TM CAS Operating System Software
Stolpediagragram og histogram med regneark
Stolpediagragram og histogram med regneark I underkapittel 4C i læreboka for Matematikk 2P forklarer vi hvordan du går fram når du skal tegne stolpediagram og histogram. Her viser vi hvordan du kan bruke
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Markus og vennene hans spiller kort. Nedenfor ser du hvor mange poeng Markus fikk i hver av de siste åtte rundene. Runde Poengsum Markus 1 20 2 15 3 5 4 15 5
GeoGebra-opplæring i 2P-Y
GeoGebra-opplæring i 2P-Y Emne Underkapittel Terningkast 2.1 Valgtre I 2.3 Valgtre II 2.7 Graftegning 3.2 Nullpunkter 3.3 Å finne y- og x-verdier 3.4 Andregradsfunksjoner 3.5 Grafisk løsning 3.5 Tredjegradsfunksjoner
( ) 3. DEL 1 Uten hjelpemidler. Oppgave 1. Oppgave 2. Oppgave I gjennomsnitt har hver elev 1,25 søsken.
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Antall søsken i klassen er: 0 5+ 1 6+ 2 2+ 3 2+ 4 1= 0+ 6+ 4+ 6+ 4= 20 20 5 = = 1, 25
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Dag Temperatur Mandag 4 ºC Tirsdag 10 ºC Onsdag 1 ºC Torsdag 5 ºC Fredag 6 ºC Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet av noen dager.
Sentralmål og spredningsmål
Sentralmål og spredningsmål av Peer Andersen Peer Andersen 2014 Sentralmål og spredningsmål i statistikk I dette notatet skal vi se på de viktigste momentene om sentralmål og spredningsmål slik de blir
Statistikk Dette er Norge
Statistikk Dette er Norge Å kunne tolke statistiske data er en viktig den av den digitale kompetansen. Man skal både klare å tolke det man ser av tabeller, grafer og diagrammer - og man skal være kildekritisk
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Variasjonsredden: 6 C ( 6 C) = 6 C+ 6 C= 12 C Gjennomsnittet: 2 C+ 0 C + ( 4 C) + (
Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
ØVINGER 2017 Løsninger til oppgaver. Øving 1
ØVINGER 017 Løsninger til oppgaver Øving 1.1. Frekvenstabell For å lage en frekvenstabell må vi telle antall observasjoner av hvert antall henvendelser. Siden antall henvendelser på en gitt dag alltid
Eksamen høsten 2016 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 6,3 millioner 6,3 1 000 000 6,3 10,63 10 10 6,63 10 7 6 16,5 10 1,65 10 10 8 8 1,65
Løsningsforslag for 2P våren 2015
Del 1 Oppgave 1 Sortert i stigende rekkefølge blir det: 4 5 6? 10 12 Medianen, som er 7, skal ligge midt mellom de to midterste tallene 6 og det ukjente tallet, som derfor må være 8. Oppgave 2 Opprinnelig
2P eksamen våren 2018
2P eksamen våren 2018 DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 2 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Markus
Hjemmearbeid matematikk eksamensklassen Ark 31 Leveres mandag 7. april 2014
Hjemmearbeid matematikk eksamensklassen Ark 31 Leveres mandag 7. april 2014 Oppgave 1. Vanlig pris for en reise med buss mellom to byer er 80 kr. På bussen er det 14 voksne, 6 barn og 9 studenter. Hvor
Terminprøve i matematikk for 9. trinn
Terminprøve i matematikk for 9. trinn Våren 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:
Tema: Deskriptiv statistikk for kontinuerlige data. Av Kathrine Frey Frøslie,
Tema: Deskriptiv statistikk for kontinuerlige data. Av Kathrine Frey Frøslie, www.statistrikk.no Kontinuerlige data er målinger som gjøres langs en skala, for eksempel tid, lengde og vekt. Noen ganger
2P eksamen høsten 2017 Løsningsforslag
2P eksamen høsten 2017 Løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Tabellen nedenfor viser karakterfordelingen
Fagstoff til eksamen. Matematikk Vg2P
Matematikk Vg2P Fagstoff til eksamen Innhold på ndla.no er nå tilgjengelig i PDF- eller epub-format som hjelpemidler til eksamen. Disse filene kan lagres på egen datamaskin og leses i digitalt format,
Eksamen høsten 2016 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 6,3 millioner 6,3 1 000 000 6,3 10,63 10 10 6,63 10 7 6 16,5 10 1,65 10 10 8 8 1,65
Eksamen våren 2015 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 For et utvalg der antall oservasjoner er et partall, slik som her, er medianen gjennomsnittet
Deskriptiv statistikk., Introduksjon til dataanalyse
Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.
2P eksamen høsten 2017
2P eksamen høsten 2017 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Tabellen nedenfor viser karakterfordelingen ved en skole ved
Grunnleggende kurs i Excel. Langnes skole
Grunnleggende kurs i Excel Langnes skole Noen viktige begreper Kolonne Celler - Alle cellene har egne navn, f.eks A1 Kolonner Rader Arkfaner rad - start hver oppgave i en ny fane - kan velge så ark du
Statistikk 1. Nico Keilman. ECON 2130 Vår 2014
Statistikk 1 Nico Keilman ECON 2130 Vår 2014 Pensum Kap 1-7.3.6 fra Løvås «Statistikk for universiteter og høgskoler» 3. utgave 2013 (eventuelt 2. utgave) Se overspringelsesliste på emnesiden Supplerende
Deskriptiv statistikk., Introduksjon til dataanalyse
Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.
Eksamen MAT1005 Matematikk 2P-Y Va ren 2014
Eksamen MAT1005 Matematikk 2P-Y Va ren 2014 Oppgave 1 (2 poeng) Nedenfor ser du hvor mange snegler Astrid har plukket i hagen hver kveld de ti siste kveldene. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet
Tema. Beskrivelse. Husk!
Dette er ment som en hjelpeoversikt når du bruker boka til å repetisjon. Bruk Sammendrag etter hvert kapittel som hjelp. Verktøykassen fra side 272 i boka er og til stor hjelp for repetisjon til terminprøve.
Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel
Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2
1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene
1 Sec 3-2: Hvordan beskrive senteret i dataene 2 Sec 3-3: Hvordan beskrive spredningen i dataene Todeling av statistikk Deskriptiv statistikk Oppsummering og beskrivelse av den stikkprøven du har. Statistisk
Eksamen MAT1005 Matematikk 2P-Y Va ren 2015
Eksamen MAT1005 Matematikk 2P-Y Va ren 2015 Oppgave 1 (2 poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 12 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Nedenfor ser du hvor mange snegler Astrid har plukket i hagen hver kveld de ti siste kveldene. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet og medianen for
2P eksamen våren 2017
2P eksamen våren 2017 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) I en klasse er det 16 elever. Tabellen nedenfor viser hvor
2P-Y eksamen høsten 2017 Løsning
2P-Y eksamen høsten 2017 Løsning Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Tabellen nedenfor viser karakterfordelingen ved
Bruk SUMMER-funksjonen i formelen i G9. Oppgave 14. H. Aschehoug & Co Side 1
Repetisjon fra kapittel 2: Summere mange tall, funksjonen SUMMER() Regnearket inneholder en mengde innebygde funksjoner. Vi skal her se på en av de funksjonene vi oftest bruker. Funksjonen SUMMER() legger
Eksamen Matematikk 2P-Y Høsten 2015
Eksamen Matematikk 2P-Y Høsten 2015 Tid: 2 timer Hjelpemiddel: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (1 poeng) Prisen på en vare er satt ned med 30 %. I dag koster
Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Løsning eksamen 1P våren 2010
Løsning eksamen 1P våren 2010 Oppgave 1 a) Prisen for diesel er 10,91 kr. Hvis Liv hadde fylt diesel, hadde prisen for 41,5 l vært mindre enn 11 kr 42 = 462 kr Det stemmer ikke i det hun betalte 509, 62
Statistikk 2. Tabellen nedenfor viser oljeproduksjonen i et OPEC-land i perioden 1990 til 2005. Produksjonen er i 1000 tonn.
Statistikk Innledning Begrepet statistikk skriver seg fra tiden da en stat samlet inn opplysninger som myndighetene hadde bruk for. Opplysningene eller dataene som ble samlet inn, dreide seg for det meste
Eksamen MAT1015 Matematikk 2P Va ren 2014
Eksamen MAT1015 Matematikk 2P Va ren 2014 Oppgåve 1 (3 poeng) Nedanfor ser du kor mange sniglar Astrid har plukka i hagen kvar kveld dei ti siste kveldane. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet,
2P-Y eksamen våren 2016
2P-Y eksamen våren 2016 Tid: 2 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillate. Oppgåve 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4 C 04.03 --6
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et skoleår. 0 3 2 7 2 0 0 11 4 3 28 1 0 3 2 1
ECON Statistikk 1 Forelesning 2: Innledning
ECON2130 - Statistikk 1 Forelesning 2: Innledning Data, beskrivende statistikk, visualisering Jo Thori Lind [email protected] 1. Beskrivende statistikk Typer variable Nominelle: Gjensidig utelukkende
2P-Y eksamen våren 2018
2P-Y eksamen våren 2018 DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 2 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng)
Eksamen MAT1005 Matematikk 2P-Y Va ren 2014
Eksamen MAT1005 Matematikk 2P-Y Va ren 2014 Oppgåve 1 (2 poeng) Nedanfor ser du kor mange sniglar Astrid har plukka i hagen kvar kveld dei ti siste kveldane. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010
ÅMA0 Sannsynlighetsregning med statistikk, våren 00 ÅMA0 Sannsynlighetsregning med statistikk våren 00 Praktisk om kurset Foreleser og faglig ansvarlig: Bjørn H. Auestad (kontor: E-536). Undervisningstider:
