MATEMATIKK (MAT1005) Sentralmål / Spredningsmål
|
|
- Merethe Simonsen
- 7 år siden
- Visninger:
Transkript
1 ??.??.???? MATEMATIKK (MAT1005) Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 30 minutter DEL 2 (MED HJELPEMIDLER) 60 minutter (Del 1 leveres inn etter nøyaktig 30 minutter og før hjelpemidlene kan benyttes) Alt arbeid i regneark (Excel) og i graftegner (GeoGebra) skal limes inn i et tekstdokument (Word). Tekstdokumentet skal ha filnavn lik elevens navn. I tekstdokumentets topptekst skal elevens navn, klasse og dato skrives inn. Tekstdokumentet skal leveres på ITSLEARNING. Total poengsum: 32 poeng Karakter 2: -p Karakter 3: -p Karakter 4: -p Karakter 5: -p Karakter 6: -p Poeng i oppgaven er bare veiledende i vurderingen. Karakteren blir fastsatt etter en samlet vurdering. Det betyr at lærer vurderer i hvilken grad du viser regneferdigheter og matematisk forståelse gjennomfører logiske resonnementer ser sammenhenger i faget, er oppfinnsom og kan ta i bruk fagkunnskap i nye situasjoner kan bruke hensiktsmessige hjelpemidler forklarer fremgangsmåter og begrunner svar skriver oversiktlig og er nøyaktig med utregninger, benevninger, tabeller og grafiske fremstillinger vurderer om svar er rimelige Læreplanmål Planlegge, gjennomføre og vurdere statistiske undersøkelser Beregne og drøfte sentralmål og spredningsmål Gruppere data og beregne sentralmål for et gruppert datamateriale Bruke regneark i statistiske beregninger og presentasjoner
2 KJENNETEGN PÅ GRAD AV MÅLOPPNÅELSE Lav grad Karakter 2 Middels grad Karakter 3/4 Høy grad Karakter 5/6 Begreper, forståelse og ferdigheter: Eleven forstår en del grunnleggende begreper. Eleven behersker en del enkle, standardiserte framgangsmåter. Eleven forstår de fleste grunnleggende begreper og viser eksempler på forståelse av sammenhenger i faget. Eleven behersker de fleste enkle, standardiserte framgangsmåter, har middels god regneteknikk og bruk av matematisk formspråk, viser eksempler på logiske resonnementer og bruk av ulike matematiske representasjoner. Eleven forstår alle grunnleggende begreper, kombinerer begreper fra ulike områder med sikkerhet og har god forståelse av dypere sammenhenger i faget. Eleven viser sikkerhet i regneteknikk, logiske resonnementer, bruk av matematisk formspråk og bruk av ulike matematiske representasjoner. Problemløsning: Eleven viser eksempler på å kunne løse enkle problemstillinger med utgangspunkt i tekster, figurer og praktiske og enkle situasjoner. Eleven klarer iblant å planlegge enkle løsningsmetoder eller utsnitt av mer kompliserte metoder. Eleven løser de fleste enkle og en del middels kompliserte problemstillinger med utgangspunkt i tekster, figurer og praktiske situasjoner, og viser eksempler på bruk av fagkunnskap i nye situasjoner. Eleven klarer delvis å planlegge løsningsmetoder i flere steg og å gjøre fornuftige antakelser. Eleven utforsker problemstillinger, stiller opp matematiske modeller og løser oppgaver med utgangspunkt i tekster, figurer og nye og komplekse situasjoner. Eleven viser sikkerhet i planlegging av løsningsmetoder i flere steg og formulering av antakelser knyttet til løsningen, viser kreativitet og originalitet. Eleven kan avgjøre om svar er rimelige i en del enkle situasjoner. Eleven viser eksempler på bruk av hjelpemidler knyttet til enkle problemstillinger. Eleven kan ofte vurdere om svar er rimelige. Eleven bruker hjelpemidler på en hensiktsmessig måte i en del ulike sammenhenger. Eleven viser sikkerhet i vurdering av svar, kan reflektere over om metoder er hensiktsmessige. Eleven viser sikkerhet i vurdering av hjelpemidlenes muligheter og begrensninger, og i valg mellom hjelpemidler. Eleven kan bruke hjelpemidler til å se en del enkle mønstre. Eleven klarer delvis å bruke digitale verktøy til å finne matematiske sammenhenger. Eleven kan bruke digitale verktøy til å finne matematiske sammenhenger, og kan sette opp hypoteser ut fra dette. Kommunikasjon: Eleven presenterer løsninger på en enkel måte, for det meste med uformelle uttrykksformer. Eleven presenterer løsninger på en forholdsvis sammenhengende måte med forklarende tekst i et delvis matematisk formspråk. Eleven presenterer løsninger på en oversiktlig, systematisk og overbevisende måte med forklarende tekst i matematisk formspråk. Karakteren 1 uttrykker svært lav kompetanse i faget
3 DEL 1 (UTEN HJELPEMIDLER) 30 minutter Oppgave 1 (6 poeng) I kiosken på senteret ble det notert hvor mye hver av de syv første kundene betalte for varene de kjøpte. Dette var resultatet: 20, 60, 50, 45, 55, 20, 30 a) Finn variasjonsbredden. Variasjonsbredden er forskjellen mellom høyeste og laveste verdi. Varasjonsbredden = Høyeste verdi Laveste verdi = = 40 Variasjonsbredden er 40. b) Finn medianen. Median som også kalles Q 2 ligger midt i tallmaterialet. Vi ordner tallene: 20, 20, 30, 45, 50, 55, 60 og ser at 45 er det midtre tallet. Medianen er 45. c) Hvor mye brukte kundene i gjennomsnitt. Vi finner gjennomsnittet ved å legge sammen alle verdiene og deler på antallet observasjoner d) Finn nedre kvartil. = Lager en tabell over resultatene. NEDRE HALVDEL = 40 Gjennomsnittet er 40. ØVRE HALVDEL nedre kvartil median øvre kvartil Q 1 Q 2 Q 3 Nedre kvartil som også kalles Q 1 ligger midt i den nedre halvdel av observasjonene. Nedre kvartil er 20. e) Finn øvre kvartil. Se tabellen i oppgave d). Øvre kvartil som også kalles Q 3 ligger midt i den øvre halvdel av observasjonene. Øvre kvartil er 55. f) Finn kvartilbredden. Kvartilbredden = Øvre kvartil Nedre kvartil = = 35 Kvartilbredden er 35.
4 Oppgave 2 (6 poeng) Histogrammet viser aldersfordelingen i en sjakklubb. y Alder x Intervall (Alder) Frekvens Intervallbredde Søylehøyde [ a, b f b a f b a [00, [20, [30, [40, [50, N = 020 S = 280 a) Se på histogrammet, tegn av tabellen og fyll inn verdiene. Intervall (Alder) Frekvens Intervallbredde Søylehøyde [ a, b f b a f b a [00, [20, [30, [40, [50, N = 20 S = 280 b) Hvor mange medlemmer har sjakklubben? Frekvensen (f) viser hvor mange medlemmer sjakklubben har i de ulike aldersintervallene. Vi legger sammen frekvensene og får n = 20. Sjakklubben har 20 medlemmer. c) Finn gjennomsnittsalderen til medlemmene i sjakklubben. Intervall (Alder) Frekvens Midtpunkt Sum (S) [ a, b f x m f x m [00, [20, [30, [40, [50, N = 20 S = 690 Gjennomsnittsalderen i sjakklubben = S N = = 34, 5 år
5 DEL 2 (MED HJELPEMIDLER) 60 minutter Oppgave 4 (10 poeng) Her er karakterfordelingen i matematikkfaget for alle elever som har matematikk 2P-Y i Norge, skoleåret 2015/2016. Karakter Frekvens Kilde: statistikkportalen.udir.no a) Hva er typetallet? Typetallet er det tallet som forekommer flest ganger. Vi ser at frekvensen for karakter 2 er Typetallet er 2. b) Finn gjennomsnittet. Karakter x Frekvens f f x N = S = Gjennomsnittskarakter = Summen av karakterer Antall studenter = S N = = 3,194 3,
6 c) Finn variansen. Karakter x Frekvens f f Kvadratisk avvik f (x g) (6 3,194) 2 = 400 ( 2,806) , (5 3,194) 2 = 1557 ( 1,806) , (4 3,194) 2 = 2168 ( 0,806) , (3 3,194) 2 = 2704 ( 0,194) , (2 3,194) 2 = 2946 ( 1,194) , (1 3,194) 2 = 0747 ( 2,194) ,79 N = A 17533,71 Vi finner da at summen av de kvadratiske avvikene (A) er = 17533, Variansen = A = , 67 A er summen av de kvadratiske avvikene N N er antall observasjoner d) Finn standardavviket. standardavviket = variansen = A N = , 29 e) Framstill datamaterialet i tre ulike diagrammer: Sirkel, Stolpe og Linjediagram.
7 Oppgave 5 (10 poeng) Tabellen viser omtrent hvor mange personer i Norge som betalte formueskatt i Alder Frekvens [17, [28, [41, [51, [61, [71, Kilde: ssb.no a) Hvor mange personer betalte formueskatt? Alder Frekvens [17, [28, [41, [51, [61, [71, N = Vi legger sammen frekvensen og får N = Det betyr at personer betalte formueskatt i b) Hva er gjennomsnittsalderen til en person som betaler formueskatt? Utvider tabellen med Midtpunkt og Sum i tabellen. Intervall (Alder) Frekvens (f) Midtpunkt Sum (S) x m f x m [17, , [28, , [41, , [51, , [61, , [71, , N = S = Gjennomsnittsalder = , 61 år
8 c) Finn medianen i det gruppedelte materialet ved regning. Legger til Kumulativ frekvens i tabellen. Intervall (Alder) Frekvens (f) Kumulativ frekvens [17, [28, [41, [51, [61, [71, Vi har observasjoner, medianen i datamaterialet er da observasjon nummer: = Observasjon nummer ligger i intervallet [61, 70 som har kumulativ frekvens = I dette intervallet har vi da observasjoner (fra og med og til og med ). Observasjon nummer = i intervallet [61, 70 blir da «medianalder». "Medianalder" = 61 år , 7964 år 9 fordi intervallet har bredde = 9 d) Finn medianen i det gruppedelte materialet grafisk ved hjelp av GeoGebra. Utvider tabellen med Relativ kumulativ frekvens. Intervall (Alder) Frekvens (f) Kumulativ frekvens Relativ kumulativ frekvens [17, ,0103 [28, ,0631 [41, ,1923 [51, ,4094 [61, ,7011 [71, ,0000 1: Kopierer den kumulative frekvensen og limer denne inn vertikalt i Regneark. 1: Fører også inn 17 og 0 i linje 1 i regneark. 2: Høyreklikk i det merkede området i Regneark og velg: Lag Polylinje 3: 4: Lag ved å velge og så og klikk i skjæringen.
9 sier oss at når vi er midt i tallmaterialet (0.5) så er den grafiske medianen 64,1059 år.
10 e) Lag et histogram i GeoGebra som viser fordelingen. Intervall (Alder) Frekvens Intervallbredde Søylehøyde [a, b f b a f b a [17, ,40 [28, ,75 [41, ,33 [51, ,89 [61, ,67 [71, ,55 NB! Husk at GeoGebra ikke vil ha komma (, ) i Regneark, men punkt (. ) Merk intervallene (A1 til A7) i GeoGebra, høyreklikk og velg Lag Liste Merk intervallene (B1 til B6) i GeoGebra, høyreklikk og velg Lag Liste Vi har nå laget to lister, Liste1 og Liste2. Nederst, i kommandofeltet : Vi får da dette resultatet:
MATEMATIKK (MAT1005) Sentralmål / Spredningsmål
??.??.???? MATEMATIKK (MAT1005) Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 30 minutter DEL 2 (MED HJELPEMIDLER) 60 minutter (Del 1 må leveres inn før hjelpemidlene kan benyttes) Total poengsum:
DetaljerKarakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p
04.11.2016 MATEMATIKK (MAT1005) Tabeller / Diagrammer DEL 1 (UTEN HJELPEMIDLER) 45 minutter DEL 2 (MED HJELPEMIDLER) 45 minutter (Del 1 leveres inn etter nøyaktig 45 minutter og før hjelpemidlene kan benyttes)
DetaljerKarakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p
30.09.016 MATEMATIKK (MAT1005) Potenser / Prosent / Mønster / Tid DEL 1 (UTEN HJELPEMIDLER) 45 minutter DEL (MED HJELPEMIDLER) 45 minutter (Del 1 leveres inn etter nøyaktig 45 minutter og før hjelpemidlene
DetaljerKarakter 2: 10p Karakter 3: 16p Karakter 4: 22p Karakter 5: 28p Karakter 6: 34p
13.03.2017 MATEMATIKK (MAT1005) Funksjoner og vekst DEL 1 (UTEN HJELPEMIDLER) 40 minutter DEL 2 (MED HJELPEMIDLER) 50 minutter (Del 1 leveres inn etter nøyaktig 40 minutter og før hjelpemidlene kan benyttes)
DetaljerKarakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p
06.02.2017 MATEMATIKK (MAT1005) Rette linjer / Lineære funksjoner DEL 1 (UTEN HJELPEMIDLER) 50 minutter DEL 2 (MED HJELPEMIDLER) 40 minutter (Del 1 leveres inn etter nøyaktig 50 minutter og før hjelpemidlene
DetaljerPotenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål
04.01.2017 MATEMATIKK (MAT1005) Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 2 timer DEL 2 (MED HJELPEMIDLER) 3 timer (Del 1 leveres inn etter nøyaktig
DetaljerKarakter 2: 12p Karakter 3: 19p Karakter 4: 27p Karakter 5: 35p Karakter 6: 42p
03.05.2017 MATEMATIKK (MAT1005) Potenser, Prosent, Mønster, Tid, Tabeller, Diagrammer, Sentralmål, Spredningsmål, Rette linjer, Lineære funksjoner, Funksjoner og vekst, Sannsynlighetsregning DEL 1 (UTEN
DetaljerPotenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål
04.01.2017 MATEMATIKK (MAT1005) Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 2 timer DEL 2 (MED HJELPEMIDLER) 3 timer (Del 1 må leveres inn før hjelpemidlene
DetaljerKarakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p
07.0.017 MATEMATIKK (MAT100) Sannsynlighetsregning DEL 1 (UTEN HJELPEMIDLER) 0 minutter DEL (MED HJELPEMIDLER) 0 minutter (Del 1 leveres inn etter nøyaktig 0 minutter og før hjelpemidlene kan benyttes)
DetaljerSensorveiledning Sentralt gitt skriftlig prøve i matematikk 1P og 2P etter forkurs i lærerutdanningene
Sensorveiledning 01.08.2016 Sentralt gitt skriftlig prøve i matematikk 1P og 2P etter forkurs i lærerutdanningene 1 Om sensorveiledningen Sensorveiledningen inneholder kommentarer til enkeltoppgaver og
DetaljerKarakter 2: 12p Karakter 3: 19p Karakter 4: 27p Karakter 5: 35p Karakter 6: 42p
03.05.2017 MATEMATIKK (MAT1005) Potenser, Prosent, Mønster, Tid, Tabeller, Diagrammer, Sentralmål, Spredningsmål, Rette linjer, Lineære funksjoner, Funksjoner og vekst, Sannsynlighetsregning DEL 1 (UTEN
DetaljerSentralmål og spredningsmål
Sentralmål og spredningsmål 3.1 Læreplanmål 1 3.1 Gjennomsnitt og typetall 2 3.2 Median 6 3.3 Variasjonsbredde og kvartilbredde 10 3.4 Varians og standardavvik 15 3.5 Digitale sentralmål og spredningsmål
DetaljerVurderingsveiledning Muntlige eksamener. Lokalt gitt eksamen. Matematikk. Felles for utdanningsområdene
Utdanningsavdelingen Vurderingsveiledning Muntlige eksamener Lokalt gitt eksamen Matematikk Felles for utdanningsområdene Karakterer i fag 4-4. Karakterer i fag Det skal nyttes tallkarakterer på en skala
DetaljerVurderingsveiledning
Lokalt gitt skriftlig eksamen i MAT1001 Matematikk 1P-Y vår 017 Eksamensmodell Eksamen varer i 4 timer og består av to deler. Eksamensordning Eksamen har ingen forberedelsesdel. Del 1 og Del av eksamen
DetaljerRAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015
RAMMER FOR MUNIG EKSAMEN I MAEMAIKK EEVER 2015 Fagkoder: MA1012, MA1014, MA1016, MA1018, MA1101,MA1105, MA1106, MA1110, REA3021, REA3023, REA3025, REA3027, REA3029 Årstrinn: Vg1, Vg2 og Vg3 Gjelder for
DetaljerEksamensveiledning for elever og privatister. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016
Eksamensveiledning for elever og privatister i praktisk matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y Gjelder fra våren 2016 Veiledningen er utarbeidet for elever og privatister. Den tar utgangspunkt
DetaljerRAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2018
RAMMR FOR MUNTIG KSAMN I MATMATIKK VR 2018 Fagkoder: MAT1012, MAT1014, MAT1016, MAT1018, MAT1101, MAT1105, MAT1106, MAT1110, RA3021, RA3023, RA3025, RA3027, RA3029 Årstrinn: Vg1, Vg2 og Vg3 Gjelder for
DetaljerStatistikk. Forkurs 2018
Statistikk Forkurs 2018 Hva er statistikk? Undersøke Registrere Lage oversikt Presentasjon av informasjon Formidle Arbeidet med statistikk kan vi dele inn i to hovedområder: Samle inn og ordne opplysninger
DetaljerStatistikk. Forkurs 2017
Statistikk Forkurs 2017 Hva er statistikk? Undersøke Registrere Lage oversikt Presentasjon av informasjon Formidle Arbeidet med statistikk kan vi dele inn i to hovedområder: Samle inn og ordne opplysninger
DetaljerSensorveiledning
Sensorveiledning 28.05.2019 MAT1001 Matematikk 1P-Y Programområde: Gjelder alle varianter 1. OM SENSORVEILEDNINGEN Sensorveiledningen er utarbeidet med bakgrunn i Utdanningsdirektoratet sin sensorveiledning
Detaljer2P, Statistikk Quiz. Test, 2 Statistikk
Test, 2 Statistikk Innhold 1.1 Statistisk undersøkelse... 2 2.2 Presentasjon av tallmateriale... 2 2.3 Sentralmål... 8 2.4 Spredningsmål... 11 2.5 Gruppert datamateriale... 14 Grete Larsen 1 1.1 Statistisk
DetaljerStatistikk Løsninger. Innhold. Statistikk Vg2P
Statistikk Løsninger Innhold Modul 2: Presentasjon av tallmateriale... 2 Tabeller - Frekvens - Relativ frekvens - Kumulativ frekvens... 2 Søylediagram/stolpediagram... 4 Sektordiagram... 5 Linjediagram/kurvediagram...
DetaljerMATEMATIKK (MAT1005) Tabeller / Diagrammer
04.11.2016 MATEMATIKK (MAT1005) Tabeller / Diagrammer DEL 1 (UTEN HJELPEMIDLER) 45 minutter DEL 2 (MED HJELPEMIDLER) 45 minutter (Del 1 må leveres inn før hjelpemidlene kan benyttes) Total poengsum: 40
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerNår du har arbeidet deg gjennom dette kapittelet, er målet at du skal kunne
2 Statistikk Innhold Kompetansemål Statistikk, Vg2P... 1 Modul 1: Statistisk undersøkelse... 2 Modul 2: Presentasjon av tallmateriale... 4 Modul 3: Sentralmål... 12 Modul 4: Spredningsmål... 15 Modul 5:
DetaljerHjelpemidler på Del 2 Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerStatistikk Oppgaver. Innhold. Statistikk Vg2P
Statistikk Oppgaver Innhold Modul 2: Presentasjon av tallmateriale... 2 Tabeller- Frekvens - Relativ frekvens - Kumulativ frekvens... 2 Søylediagram/stolpediagram... 3 Sektordiagram... 3 Linjediagram/kurvediagram...
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksempeloppgave 2014. MAT1015 Matematikk 2P Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)
Eksempeloppgave 2014 MAT1015 Matematikk 2P Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:
DetaljerEksempeloppgave 2014. MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)
Eksempeloppgave 2014 MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:
DetaljerHjelpemidler på Del 2 Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Detaljer2P-Y eksamen våren 2018 løsningsforslag
2P-Y eksamen våren 2018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 2 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave
DetaljerSensorveiledning
Sensorveiledning 28.05.2019 MAT1006 Matematikk 1T-Y Programområde: Alle 1. OM SENSORVEILEDNINGEN Sensorveiledningen er utarbeidet med bakgrunn i Utdanningsdirektoratet sin sensorveiledning for sentralt
DetaljerForhåndssensurrapport
Forhåndssensurrapport 31.05.2016 MAT0010 Matematikk Bokmål Forhåndsensur for sentralt gitt skriftlig eksamen MAT0010 Matematikk Våren 2016 Forhåndssensuren ble arrangert i Oslo 30. mai og 31. mai 2016.
DetaljerVurderingsveiledning Matematikk, lokalt gitt skriftlig eksamen MAT1001 Matematikk 1P-Y MAT1006 Matematikk 1T-Y
2013 Vurderingsveiledning Matematikk, lokalt gitt skriftlig eksamen MAT1001 Matematikk 1P-Y MAT1006 Matematikk 1T-Y Vest-Agder fylkeskommune Vurderingsveiledning i matematikk Vg1P-Y og Vg1T-Y Vurderingsveiledning
DetaljerStatistikk. Mål. for opplæringen er at eleven skal kunne. planlegge, gjennomføre og vurdere statistiske undersøkelser
48 3 Statistikk Mål for opplæringen er at eleven skal kunne planlegge, gjennomføre og vurdere statistiske undersøkelser beregne kumulativ hyppighet, finne og drøfte sentralmål og spredningsmål representere
Detaljer2P eksamen våren 2018 løsningsforslag
2P eksamen våren 2018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 2 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave
DetaljerFagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen
Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen Standarder (gjennom hele semesteret) : - Å kunne uttrykke seg muntlig. Å forstå og kunne bruke det matematiske språket, implementeres
DetaljerLOKALT GITT EKSAMEN MUNTLIG EKSAMEN
LOKALT GITT EKSAMEN MUNTLIG EKSAMEN Fagnavn: Matematikk MAT1105 Eksamensdato: Onsdag 15. juni 2017 Faglærer: Geir Granberg Informasjon om muntlig eksamen i matematikk (MAT1105) Forberedelsestid Tillatte
DetaljerSensorveiledning
Sensorveiledning 16.05.2017 MAT0010 Matematikk Bokmål Formålet med sensorveiledningen Formålet med denne sensorveiledningen er å sikre så lik vurdering og så rettferdig sensur som mulig for alle elever
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerLOKALT GITT EKSAMEN MUNTLIG EKSAMEN
LOKALT GITT EKSAMEN MUNTLIG EKSAMEN Fagnavn: Matematikk MAT1105 Eksamensdato: Onsdag 15. juni 2017 Faglærer: Geir Granberg Informasjon om muntlig eksamen i matematikk (MAT1105) Forberedelsestid Tillatte
DetaljerKarakter 3 og 4 Beskrivelse av nokså god / god kompetanse
Fag: Matematikk Skoleår: 2008/ 2009 Klasse: 9 Lærer: Miriam Vikan Oversikt over læreverkene som benyttes, ev. andre hovedlæremidler: Faktor 2 Vurdering: a) Karakteren 1 uttrykker at eleven har svært lav
DetaljerFaktor terminprøve i matematikk for 8. trinn
Faktor terminprøve i matematikk for 8. trinn Våren 2009 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler der alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del 1
DetaljerEksamen MAT1003 Matematikk 2P. Nynorsk/Bokmål
Eksamen 19.05.2010 MAT1003 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del 1 skal
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Lotte har spurt ti medelever om hvor mange ganger de handler i kantina i løpet av en uke. Resultatene ser du nedenfor. 1 5 1 3 3 1 4 2 4 0 Bestem medianen, gjennomsnittet,
DetaljerStatistikk 2P, Prøve 1 løsning
Statistikk 2P, Prøve 1 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 I denne oppgaven finner du tre tabeller. Dine oppgaver er å presentere resultatene fra de tre tabellene i tre ulike
DetaljerStatistikk 2P, Prøve 2 løsning
Statistikk 2P, Prøve 2 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Tallmaterialet under viser alderen i år på skolebarna som kjører med en bestemt skolebuss. Mandag var alle elevene med
DetaljerMATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra:
MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: 1. sammenligne og regne om mellom hele tall, desimaltall, brøker, prosent, promille og tall på standardform, uttrykke slike tall på varierte
DetaljerEksamensveiledning MAT1001
Eksamensveiledning MAT1001 Gjelder for alle yrkesfaglige utdanningsprogram i Matematikk 1P-Y Gjelder fra våren 2017 Veiledningen inneholder informasjon om eksamen, beskrivelse av mål og vurdering av. Målgruppen
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Detaljer2P kapittel 3 Statistikk Løsninger til innlæringsoppgavene
P kapittel 3 Statistikk Løsninger til innlæringsoppgavene 3. Frekvensen av hybelboere er 15 % av 10 elever, altså 10 0,15 = 18 elever. 3.3 Sier vi at det er N elever i Arams klasse, har vi fra opplysningene
DetaljerVurderingsveiledning for lærere og sensorer. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016
Vurderingsveiledning for lærere og sensorer i praktisk matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y Gjelder fra våren 2016 Veiledningen er utarbeidet for lærere og sensorer. Den tar utgangspunkt
Detaljer2P-Y eksamen våren 2016 løsningsforslag
2P-Y eksamen våren 2016 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03
Detaljer2P kapittel 3 Statistikk Utvalgte løsninger oppgavesamlingen
P kapittel 3 Statistikk Utvalgte løsninger oppgavesamlingen 303 a For eksempel finner vi at den relative frekvensen for jenter med høyde 155 159 cm er 0,067 6,7 % 30 = =. Høyde i cm Antall Relativ (frekvens)
Detaljer2P eksamen høsten 2017 Løsningsforslag
2P eksamen høsten 2017 Løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Tabellen nedenfor viser karakterfordelingen
DetaljerLokal læreplan 9 trinn matematikk
Lokal læreplan 9 trinn matematikk Lærebok: Gruntal Antall uker Geometri i planet Gruntall 9 153-198 11 utføre, beskrive og grunngi geometriske konstruksjoner med passer og linjal (og dynamiske geometriprogram)
DetaljerBasisoppgaver til 2P kap. 3 Statistikk
Basisoppgaver til 2P kap. 3 Statistikk 3.1 Frekvenstabell og histogram 3.2 Kumulativ frekvens 3.3 Median 3.4 Gjennomsnitt 3.5 Spredningsmål 3.6 Diagrammer (Det er ikke basisoppgaver til 3.7 Statistiske
DetaljerFaktor terminprøve i matematikk for 8. trinn
Faktor terminprøve i matematikk for 8. trinn Høsten 2008 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerEksamen våren 2016 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Variasjonsbredde = 6 C ( 6 C) = 1 C Gjennomsnitt: + 0 + ( 4) + ( 6) + + 6 0 x = = =
DetaljerEksamensveiledning for matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y og MAT1006 Vg1 T-Y Gjelder fra høsten 2015
Eksamensveiledning for matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y og MAT1006 Vg1 T-Y Gjelder fra høsten 2015 Veiledningen er utarbeidet med bakgrunn i Utdanningsdirektoratets veiledning
DetaljerKapittel 5. Statistikk
Kapittel 5. Statistikk Dette kapitlet handler blant annet om: Beregne gjennomsnitt og andre sentralmål. Framstille data i frekvenstabeller. Beregne standardavvik og andre spredningsmål. Framstille data
DetaljerEksamen 24.11.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 24.11.2010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
DetaljerSandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET Side 1 av 8
Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET 2016-2017 Side 1 av 8 Periode 1: UKE 33 - UKE 39 Sammenligne og regne om mellom hele tall, desimaltall, brøker,
Detaljer[2016] FAG - OG VURDERINGSRAPPORT. FAG: Matematikk KLASSE/GRUPPE: 10. For kommunane: Gjesdal Hå Klepp Sola Time TALET PÅ ELEVAR: 45
Nynorsk utgåve FAG - OG VURDERINGSRAPPORT [2016] FAG: Matematikk KLASSE/GRUPPE: 10. TALET PÅ ELEVAR: 45 SKULE: Lye ungdomsskule FAGLÆRAR: Jørn Serigstad For kommunane: Gjesdal Hå Klepp Sola Time Tema 1
Detaljer2P eksamen våren 2016 løsningsforslag
2P eksamen våren 2016 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4
DetaljerEksamen. MAT1005 Matematikk 2P-Y Nynorsk/Bokmål
Eksamen 22.05.2018 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2
DetaljerEksempeloppgave REA3028 Matematikk S2. Bokmål
Eksempeloppgave 2008 REA3028 Matematikk S2 Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:
DetaljerDel 1 skal leveres inn etter 3 timer. Del 2 skal leveres inn senest etter 5 timer.
Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del : Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 3 timer. Del skal leveres inn senest etter 5 timer. Vanlige skrivesaker,
Detaljer2P-Y eksamen våren 2016
2P-Y eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4 C 04.03 --6
DetaljerEksamen. MAT1015 Matematikk 2P Nynorsk/Bokmål
Eksamen 22.05.2018 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DetaljerEksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1015 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
Detaljer13.03.2013 Manual til Excel. For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS
13.03.2013 Manual til Excel 2010 For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS Innholdsfortegnelse Huskeliste... 3 Lage en formel... 3 Når du får noe uønsket som f.eks. en dato i en celle... 3
DetaljerEksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 1.05.2011 REA028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres
DetaljerEksamen høsten Fag: MAT1001 Matematikk Vg1 1P-Y. Eksamensdato: 13. november Kunnskapsløftet. Videregående trinn 1.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen høsten 2013 Fag: MAT1001
DetaljerFra læreplan - formål, grunnleggende ferdigheter, hovedområder og kompetansemål
Fra læreplan - formål, grunnleggende ferdigheter, hovedområder og kompetansemål nasjonalt til årsplan - tema, handlingsmål og vurdering lokalt. http://www.udir.no/ Utdrag fra føremål med faget. Matematikk
DetaljerINNHOLD. Matematikk for ungdomstrinnet
INNHOLD STATISTIKK... 2 FREKVENS... 2 RELATIV FREKVENS... 2 FREKVENSTABELL... 2 KLASSEDELING... 3 SØYLEDIAGRAM (STOLPEDIAGRAM)... 3 LINJEDIAGRAM... 4 SEKTORDIAGRAM... 4 HISTOGRAM... 4 FRAMSTILLING AV DATA...
DetaljerEksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 29.11.2011 REA302 Matematikk R2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres
Detaljer2P-Y eksamen høsten 2017 Løsning
2P-Y eksamen høsten 2017 Løsning Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Tabellen nedenfor viser karakterfordelingen ved
DetaljerFaktor terminprøve i matematikk for 8. trinn
Faktor terminprøve i matematikk for 8. trinn Våren 2011 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del
DetaljerEksamen 19.05.2014. MAT0010 Matematikk Del 2. Badeland. Eratosthenes. Bokmål
Eksamen 19.05.2014 MAT0010 Matematikk Del 2 Badeland Eratosthenes Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 2: 5 timer totalt: Del 1 skal du levere innen 2 timer. Del 2 skal du
DetaljerDel 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 02.03 0 03.03 4 04.03 6 05.03 2 06.03 6 Guro målte temperaturen utenfor hytta de seks første dagene i mars. Se tabellen ovenfor. Bestem
DetaljerBruk av digitale verktøy som graftegner og regneark skal dokumenteres med utskrift eller gjennom en IKT-basert eksamen.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerForhåndssensurrapport MAT1015 Matematikk 2P
Forhåndssensurrapport 03.06.2013 MAT1015 Matematikk 2P 1 Om forhåndssensurrapporten Forhåndssensur Forhåndsensurmøte: 3. juni 2012 På forhåndssensurmøtet har oppgavene blitt gjennomgått, de foreløpige
DetaljerHva måler nasjonal prøve i regning?
Hva måler nasjonal prøve i regning? Prøven skal måle i hvilken grad elevenes regneferdigheter er i samsvar med beskrivelsene av regning som grunnleggende ferdighet i læreplanen til hvert fag. Prøven er
DetaljerForhåndssensurrapport MAT1005 Matematikk 2P-Y
Forhåndssensurrapport 03.06.2013 MAT1005 Matematikk 2P-Y 1 Om forhåndssensurrapporten Forhåndssensur Forhåndsensurmøte: 3. juni 2013 På forhåndssensurmøtet har oppgavene blitt gjennomgått, de foreløpige
DetaljerEksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 19.05.010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: Veiledning om vurderingen: 5 timer: Del 1 skal
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Markus og vennene hans spiller kort. Nedenfor ser du hvor mange poeng Markus fikk i hver av de siste åtte rundene. Runde Poengsum Markus 1 20 2 15 3 5 4 15 5
DetaljerLøsningsforslag for 2P våren 2015
Del 1 Oppgave 1 Sortert i stigende rekkefølge blir det: 4 5 6? 10 12 Medianen, som er 7, skal ligge midt mellom de to midterste tallene 6 og det ukjente tallet, som derfor må være 8. Oppgave 2 Opprinnelig
DetaljerÅrsplan i matematikk for 10. trinn
Årsplan i matematikk for 10. trinn Emne på etter KAP A GEOMETRI Før høstferien (34-39) analysere, også digitalt, egenskaper ved to- og tredimensjonale figurer og bruke dem i sammenheng med konstruksjoner
DetaljerEksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)
Eksempeloppgave 014 MAT1013 Matematikk 1T Ny eksamensordning våren 015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:
DetaljerSe hvordan Hovseter ungdomsskole arbeidet før, under og etter gjennomføring av prøven.
Hva måler nasjonal prøve i regning? Prøven skal måle i hvilken grad elevenes regneferdigheter er i samsvar med beskrivelsene av regning som grunnleggende ferdighet i læreplanen til hvert fag. Prøven er
DetaljerÅrsplan i matematikk ved Blussuvoll skole.
Årsplan i matematikk ved Blussuvoll skole. Hovedområder i faget: Målinger Statistikk, sannsynlighet og Funksjoner Undervisningstimetall per uke: 8.trinn 9.trinn 10.trinn 3,00 2,25 3,00 Læreverk/materiell:
DetaljerEksamen Jorda rundt. MAT0010 Matematikk Del 2. Bokmål
Eksamen 16.05.2019 MAT0010 Matematikk Del 2 Jorda rundt Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 2: 5 timer totalt. Del 1 og Del 2 skal deles ut samtidig. Del 1 skal du levere
DetaljerForhåndssensurrapport
Forhåndssensurrapport 31.05.2017 MAT0010 Matematikk Bokmål Formålet med fohåndssensurraporten Formålet med denne forhåndssensurrapporten er å sikre så lik vurdering og så rettferdig sensur som mulig for
Detaljer