Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål
|
|
- Bjarte Haraldsen
- 7 år siden
- Visninger:
Transkript
1 MATEMATIKK (MAT1005) Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 2 timer DEL 2 (MED HJELPEMIDLER) 3 timer (Del 1 leveres inn etter nøyaktig 2 timer og før hjelpemidlene kan benyttes) Alt arbeid i regneark (Excel) og i graftegner (GeoGebra) skal limes inn i et tekstdokument (Word) og leveres på Itslearning med filnavn lik elevens navn. I tekstdokumentets topptekst skal elevens navn, klasse og dato skrives inn. Total poengsum: 74 poeng Karakter 2: 19p Karakter 3: 31p Karakter 4: 43p Karakter 5: 55p Karakter 6: 67p Poeng i oppgaven er bare veiledende i vurderingen. Karakteren blir fastsatt etter en samlet vurdering. Det betyr at lærer vurderer i hvilken grad du viser regneferdigheter og matematisk forståelse gjennomfører logiske resonnementer ser sammenhenger i faget, er oppfinnsom og kan ta i bruk fagkunnskap i nye situasjoner kan bruke hensiktsmessige hjelpemidler forklarer fremgangsmåter og begrunner svar skriver oversiktlig og er nøyaktig med utregninger, benevninger, tabeller og grafiske fremstillinger vurderer om svar er rimelige Læreplanmål Regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammenhenger Regne med prosent og vekstfaktor, gjøre suksessive renteberegninger og regne praktiske oppgaver med eksponentiell vekst Gjøre målinger i praktiske forsøk og formulere matematiske modeller på grunnlag av observerte data Analysere praktiske problemstillinger knyttet til dagligliv, økonomi, statistikk og geometri, finne mønster og struktur i ulike situasjoner og beskrive sammenhenger mellom størrelser ved hjelp av matematiske modeller Planlegge, gjennomføre og vurdere statistiske undersøkelser Beregne og gjøre rede for kumulativ og relativ frekvens, presentere data i tabeller og diagrammer og drøfte ulike datafremstillinger og hvilke inntrykk de kan gi Bruke regneark i statistiske beregninger og presentasjoner Planlegge, gjennomføre og vurdere statistiske undersøkelser Beregne og drøfte sentralmål og spredningsmål Gruppere data og beregne sentralmål for et gruppert datamateriale Bruke regneark i statistiske beregninger og presentasjoner Side 1 av 4
2 KJENNETEGN PÅ GRAD AV MÅLOPPNÅELSE Lav grad Karakter 2 Middels grad Karakter 3/4 Høy grad Karakter 5/6 Begreper, forståelse og ferdigheter: Eleven forstår en del grunnleggende begreper. Eleven behersker en del enkle, standardiserte framgangsmåter. Eleven forstår de fleste grunnleggende begreper og viser eksempler på forståelse av sammenhenger i faget. Eleven behersker de fleste enkle, standardiserte framgangsmåter, har middels god regneteknikk og bruk av matematisk formspråk, viser eksempler på logiske resonnementer og bruk av ulike matematiske representasjoner. Eleven forstår alle grunnleggende begreper, kombinerer begreper fra ulike områder med sikkerhet og har god forståelse av dypere sammenhenger i faget. Eleven viser sikkerhet i regneteknikk, logiske resonnementer, bruk av matematisk formspråk og bruk av ulike matematiske representasjoner. Problemløsning: Eleven viser eksempler på å kunne løse enkle problemstillinger med utgangspunkt i tekster, figurer og praktiske og enkle situasjoner. Eleven klarer iblant å planlegge enkle løsningsmetoder eller utsnitt av mer kompliserte metoder. Eleven løser de fleste enkle og en del middels kompliserte problemstillinger med utgangspunkt i tekster, figurer og praktiske situasjoner, og viser eksempler på bruk av fagkunnskap i nye situasjoner. Eleven klarer delvis å planlegge løsningsmetoder i flere steg og å gjøre fornuftige antakelser. Eleven utforsker problemstillinger, stiller opp matematiske modeller og løser oppgaver med utgangspunkt i tekster, figurer og nye og komplekse situasjoner. Eleven viser sikkerhet i planlegging av løsningsmetoder i flere steg og formulering av antakelser knyttet til løsningen, viser kreativitet og originalitet. Eleven kan avgjøre om svar er rimelige i en del enkle situasjoner. Eleven viser eksempler på bruk av hjelpemidler knyttet til enkle problemstillinger. Eleven kan ofte vurdere om svar er rimelige. Eleven bruker hjelpemidler på en hensiktsmessig måte i en del ulike sammenhenger. Eleven viser sikkerhet i vurdering av svar, kan reflektere over om metoder er hensiktsmessige. Eleven viser sikkerhet i vurdering av hjelpemidlenes muligheter og begrensninger, og i valg mellom hjelpemidler. Eleven kan bruke hjelpemidler til å se en del enkle mønstre. Eleven klarer delvis å bruke digitale verktøy til å finne matematiske sammenhenger. Eleven kan bruke digitale verktøy til å finne matematiske sammenhenger, og kan sette opp hypoteser ut fra dette. Kommunikasjon: Eleven presenterer løsninger på en enkel måte, for det meste med uformelle uttrykksformer. Eleven presenterer løsninger på en forholdsvis sammenhengende måte med forklarende tekst i et delvis matematisk formspråk. Eleven presenterer løsninger på en oversiktlig, systematisk og overbevisende måte med forklarende tekst i matematisk formspråk. Karakteren 1 uttrykker svært lav kompetanse i faget. Side 2 av 4
3 DEL 1 (UTEN HJELPEMIDLER) 2 timer Oppgave 1 (6 poeng) a) Regn ut og skriv svaret på standardform. 1) ) , b) Regn ut. Skriv svaret som et helt tall eller en brøk. 1) 0, ) c) Skriv så enkelt som mulig. 1) (x) + (x) 2x x 2) (2a) 2 b 1 2a b 1 4 Oppgave 2 (10 poeng) Et bilverksted utfører PKK (periodisk kjøretøykontroll). En dag ble det notert hvor mange feil hver bil som ble kontrollert hadde: 1, 1, 3, 5, 3, 0, 0, 1, 2, 2, 3, 4, 0, 1, 4, 3, 1 a) Bestem typetallet, medianen og gjennomsnittet for dette datamaterialet. b) Finn variasjonsbredden og kvartilbredden. c) Lag en tabell som viser både frekvens og kumulativ frekvens for hvor mange feil det var på bilene. d) Hva er den relative frekvensen for en feil? Hva forteller svaret? e) Hva er den kumulative frekvensen for fire feil, og hva betyr dette? Oppgave 3 (4 poeng) To butikker A og B er konkurrenter og følger nøye med på prisen til hverandre. En dag er prisen for en vare 22 kroner. A setter opp prisen med 10% om morgenen for deretter å sette prisen ned igjen med 10% senere på dagen. B gjør dette omvendt. De setter ned prisen med 10% om morgenen og øker prisen med 10% senere på dagen. a) Sett opp et uttrykk som viser vareprisen på slutten av dagen for de to butikkene. b) Hvor er varen billigst på slutten av dagen? Grunngi svaret. Side 3 av 4
4 Oppgave 4 (4 poeng) I en bedrift har 5% av de ansatte (A) blitt oppsagt hvert år de 4 siste årene. I dag er 120 personer ansatt i bedriften. Hvilket av disse uttrykkene kan vi bruke for å regne ut hvor mange som var ansatt i bedriften for 4 år siden? Grunngi svaret. 1) A = 120 0,95 4 2) A = 120 1,05 4 3) A = 120 0,05 4 4) A = 120 0,95 4 5) A = 120 1,05 4 6) A = 120 0,05 4 Oppgave 5 (4 poeng) Geir skriver ned hvor mange varer hver kunde kjøper i butikken. Antall varer Antall personer [00, 10 1 [10, 20 4 [20, 30 3 [30, 40 2 Bestem hvor mange varer som gjennomsnittlig ble kjøpt av kundene i butikken. Oppgave 6 (6 poeng) Vi skal nå se på noen figurtall. Her er de tre minste figurtallene. K 1 = 5 K 2 = 9 K 3 = 13 a) Finn figurtallene K 4 og K 5. b) Forklar at K n = 4n + 1. c) Tallet 89 er et figurtall. Hvilket nummer har figurtallet? Side 4 av 4
5 DEL 2 (MED HJELPEMIDLER) 3 timer Oppgave 7 (4 poeng) Tabellen viser hvor mange omsetningsdager det gikk i gjennomsnitt fra en bolig i et borettslag i Oslo og Akershus og Hele landet ble annonsert til det ble skrevet kjøpekontrakt. Måned Des Jan. Feb. Mars Apr. Mai Juni Juli Aug. Sep. Okt. Oslo og Akershus Hele landet Kilde: garanti.no Nov. a) Lag et regneark og finn gjennomsnitt og standardavvik for antall omsetningsdager i Oslo og Akershus og for antall omsetningsdager i Hele landet. Vis formler. b) Hva forteller svarene i oppgave a) om antall omsetningsdager i Oslo og Akershus sammenliknet med antall omsetningsdager for Hele landet? Oppgave 8 (12 poeng) Geir skal pusse opp, og vurderer to tilbud, X og Y, på et hjørneskap. Tilbud X: 5000 kr, men Geir får 15% rabatt. Fraktfri tilkjøring. Tilbud Y: 4500 kr, men Geir får 10% rabatt. Tillegg for frakt er 200 kr. Geir ønsker å få hjørneskapet tilkjørt. a) Hvilket tilbud bør Geir velge? b) En stol kostet opprinnelig 4300 kroner, men koster nå 3440 kroner. Hvor mange prosent avslag er det på stolen? c) En lagerhylle er satt ned med 30% og koster nå 400 kroner. Hvor mye sparer Geir ved å kjøpe lagerhyllen på salg. d) Flisene til vaskerommet koster kr. Geir ønsker å betale flisene med kredittkort. Renten er 1,3% per måned. Hvor mye skylder Geir om et år? e) Hvor stor blir den årlige renten i prosent på et lån med 1,3% rente per måned? f) Geir ser et oppslag der det står: Bli med i trekningen av et gavekort til 1234,56 kr. Skriv tallene i stigende rekkefølge: , ,0002 Løs oppgaven. 2 0, ,00042 Side 5 av 4
6 Oppgave 9 (10 poeng) Tabellene nedenfor viser hvor mange nye lærlinger det ble registrert i 2015 og i 2005 for Sørlandet og Midt-Norge. Sørlandet Midt-Norge År Vest-Agder Aust-Agder År Nord-Trøndelag Sør-Trøndelag Kilde: ssb.no Kilde: ssb.no a) Hvor mange nye lærlinger ble registrert i de fire fylkene til sammen i 2015? b) Hvor stor var økningen i prosent fra 2005 til 2015 for de fire fylkene til sammen? c) Lag to diagrammer som illustrerer opplysningene i de to tabellene, en for Sørlandet og en for Midt-Norge. d) Av tabellene ser vi at det i 2015 ble registrert flere nye lærlinger i Midt-Norge sammenlignet med Sørlandet. Du skal lage to diagrammer et for Midt-Norge og et for Sørlandet der det ser ut som det er flere nye lærlinger på Sørlandet enn i Midt-Norge. e) Lag et sektordiagram som presentere datamaterialet for 2005 for alle de fire fylkene. Side 6 av 4
7 Oppgave 10 (14 poeng) Tabellene gjelder for videregående skoler i Akershus fylke skoleåret KILDE: akershus.no Asker og Bærum Elever Lærere Andre ansatte Utdanningsprogrammer Asker Bleiker Dønski Eikeli Holmen Nadderud Nesbru Rosenvilde Rud Sandvika Stabekk Valler Follo Elever Lærere Andre ansatte Utdanningsprogrammer Drømtorp Frogn Nesodden Roald Amundsen Ski Vestby Ås Romerike Elever Lærere Andre ansatte Utdanningsprogrammer Bjertnes Bjørkelangen Eidsvoll Hvam Jessheim Kjelle Lillestrøm Lørenskog Mailand Nannestad Nes Rælingen Skedsmo Strømmen Sørumsand a) Akershus fylke er inndelt i tre regioner: Asker og Bærum, Follo og Romerike. Hvor mange Elever var det i de tre regionene til sammen? b) 1) Finn gjennomsnittet for antall Elever på en videregående skole i Akershus fylke. b) 2) Hvor mange skoler har under gjennomsnittet antall elever. c) Sett opp en tabell og finn ut i hvilken region det var flest elever i gjennomsnitt per skole. d) Hvor stor prosentdel elever er det i hver av regionene? Presenter dataene i et sektordiagram. e) Lag en frekvenstabell for antall Andre ansatte i de videregående skolene med disse intervallene: [00, 10 [10, 20 [20, 30 [30, 40 [40, 50] f) Med utgangspunkt i oppgave e), lag et histogram. g) Finn antall elever per lærer i hver av de tre regionene? Presenter dataene i et søylediagram. Side 7 av 4
Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål
04.01.2017 MATEMATIKK (MAT1005) Potenser / Prosenter / Tabeller / Diagrammer / Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 2 timer DEL 2 (MED HJELPEMIDLER) 3 timer (Del 1 må leveres inn før hjelpemidlene
DetaljerKarakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p
30.09.016 MATEMATIKK (MAT1005) Potenser / Prosent / Mønster / Tid DEL 1 (UTEN HJELPEMIDLER) 45 minutter DEL (MED HJELPEMIDLER) 45 minutter (Del 1 leveres inn etter nøyaktig 45 minutter og før hjelpemidlene
DetaljerMATEMATIKK (MAT1005) Sentralmål / Spredningsmål
??.??.???? MATEMATIKK (MAT1005) Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 30 minutter DEL 2 (MED HJELPEMIDLER) 60 minutter (Del 1 leveres inn etter nøyaktig 30 minutter og før hjelpemidlene
DetaljerKarakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p
06.02.2017 MATEMATIKK (MAT1005) Rette linjer / Lineære funksjoner DEL 1 (UTEN HJELPEMIDLER) 50 minutter DEL 2 (MED HJELPEMIDLER) 40 minutter (Del 1 leveres inn etter nøyaktig 50 minutter og før hjelpemidlene
DetaljerKarakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p
04.11.2016 MATEMATIKK (MAT1005) Tabeller / Diagrammer DEL 1 (UTEN HJELPEMIDLER) 45 minutter DEL 2 (MED HJELPEMIDLER) 45 minutter (Del 1 leveres inn etter nøyaktig 45 minutter og før hjelpemidlene kan benyttes)
DetaljerKarakter 2: 12p Karakter 3: 19p Karakter 4: 27p Karakter 5: 35p Karakter 6: 42p
03.05.2017 MATEMATIKK (MAT1005) Potenser, Prosent, Mønster, Tid, Tabeller, Diagrammer, Sentralmål, Spredningsmål, Rette linjer, Lineære funksjoner, Funksjoner og vekst, Sannsynlighetsregning DEL 1 (UTEN
DetaljerKarakter 2: 10p Karakter 3: 16p Karakter 4: 22p Karakter 5: 28p Karakter 6: 34p
13.03.2017 MATEMATIKK (MAT1005) Funksjoner og vekst DEL 1 (UTEN HJELPEMIDLER) 40 minutter DEL 2 (MED HJELPEMIDLER) 50 minutter (Del 1 leveres inn etter nøyaktig 40 minutter og før hjelpemidlene kan benyttes)
DetaljerKarakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p
07.0.017 MATEMATIKK (MAT100) Sannsynlighetsregning DEL 1 (UTEN HJELPEMIDLER) 0 minutter DEL (MED HJELPEMIDLER) 0 minutter (Del 1 leveres inn etter nøyaktig 0 minutter og før hjelpemidlene kan benyttes)
DetaljerKarakter 2: 12p Karakter 3: 19p Karakter 4: 27p Karakter 5: 35p Karakter 6: 42p
03.05.2017 MATEMATIKK (MAT1005) Potenser, Prosent, Mønster, Tid, Tabeller, Diagrammer, Sentralmål, Spredningsmål, Rette linjer, Lineære funksjoner, Funksjoner og vekst, Sannsynlighetsregning DEL 1 (UTEN
DetaljerSensorveiledning Sentralt gitt skriftlig prøve i matematikk 1P og 2P etter forkurs i lærerutdanningene
Sensorveiledning 01.08.2016 Sentralt gitt skriftlig prøve i matematikk 1P og 2P etter forkurs i lærerutdanningene 1 Om sensorveiledningen Sensorveiledningen inneholder kommentarer til enkeltoppgaver og
DetaljerUndervisningsevaluering - AFK 2012-13 Akershus (Høst 2012) Akershus (Høst 2011) Asker VGS (Høst 2012) Asker VGS (Høst 2011)
Undervisningsevaluering - AFK 2012-13 Akershus (Høst 2012) Akershus (Høst 2011) 1. Motivasjon og innsats 3,81 3,76 2. Organisering av undervisningen 3,92 3,87 3. Klasseledelse 4,04 4,02 4. Vurdering 3,63
DetaljerMATEMATIKK (MAT1005) Sentralmål / Spredningsmål
??.??.???? MATEMATIKK (MAT1005) Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 30 minutter DEL 2 (MED HJELPEMIDLER) 60 minutter (Del 1 må leveres inn før hjelpemidlene kan benyttes) Total poengsum:
DetaljerVurderingsveiledning Muntlige eksamener. Lokalt gitt eksamen. Matematikk. Felles for utdanningsområdene
Utdanningsavdelingen Vurderingsveiledning Muntlige eksamener Lokalt gitt eksamen Matematikk Felles for utdanningsområdene Karakterer i fag 4-4. Karakterer i fag Det skal nyttes tallkarakterer på en skala
DetaljerVurderingsveiledning
Lokalt gitt skriftlig eksamen i MAT1001 Matematikk 1P-Y vår 017 Eksamensmodell Eksamen varer i 4 timer og består av to deler. Eksamensordning Eksamen har ingen forberedelsesdel. Del 1 og Del av eksamen
DetaljerLOKALT GITT EKSAMEN MUNTLIG EKSAMEN
LOKALT GITT EKSAMEN MUNTLIG EKSAMEN Fagnavn: Matematikk MAT1105 Eksamensdato: Onsdag 15. juni 2017 Faglærer: Geir Granberg Informasjon om muntlig eksamen i matematikk (MAT1105) Forberedelsestid Tillatte
DetaljerLOKALT GITT EKSAMEN MUNTLIG EKSAMEN
LOKALT GITT EKSAMEN MUNTLIG EKSAMEN Fagnavn: Matematikk MAT1105 Eksamensdato: Onsdag 15. juni 2017 Faglærer: Geir Granberg Informasjon om muntlig eksamen i matematikk (MAT1105) Forberedelsestid Tillatte
DetaljerRAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015
RAMMER FOR MUNIG EKSAMEN I MAEMAIKK EEVER 2015 Fagkoder: MA1012, MA1014, MA1016, MA1018, MA1101,MA1105, MA1106, MA1110, REA3021, REA3023, REA3025, REA3027, REA3029 Årstrinn: Vg1, Vg2 og Vg3 Gjelder for
DetaljerEksamensveiledning for elever og privatister. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016
Eksamensveiledning for elever og privatister i praktisk matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y Gjelder fra våren 2016 Veiledningen er utarbeidet for elever og privatister. Den tar utgangspunkt
DetaljerMATEMATIKK (MAT1005) Tabeller / Diagrammer
04.11.2016 MATEMATIKK (MAT1005) Tabeller / Diagrammer DEL 1 (UTEN HJELPEMIDLER) 45 minutter DEL 2 (MED HJELPEMIDLER) 45 minutter (Del 1 må leveres inn før hjelpemidlene kan benyttes) Total poengsum: 40
DetaljerRAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2018
RAMMR FOR MUNTIG KSAMN I MATMATIKK VR 2018 Fagkoder: MAT1012, MAT1014, MAT1016, MAT1018, MAT1101, MAT1105, MAT1106, MAT1110, RA3021, RA3023, RA3025, RA3027, RA3029 Årstrinn: Vg1, Vg2 og Vg3 Gjelder for
DetaljerSkolestruktur mot 2030 fase 2. Ingunn Øglænd Nordvold, Informasjonsmøte tillitsvalgte 26.8.2015
Skolestruktur mot 2030 fase 2 Ingunn Øglænd Nordvold, Informasjonsmøte tillitsvalgte 26.8.2015 Utkast til ny skolestruktur Prinsipper Skolene skal i størst mulig grad være kombinerte skoler under gitte
DetaljerHjelpemidler på Del 2 Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerSensorveiledning
Sensorveiledning 28.05.2019 MAT1001 Matematikk 1P-Y Programområde: Gjelder alle varianter 1. OM SENSORVEILEDNINGEN Sensorveiledningen er utarbeidet med bakgrunn i Utdanningsdirektoratet sin sensorveiledning
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerDITT VALG! Utdannings- og yrkesplanlegging 2010/2011
DITT VALG! Utdannings- og yrkesplanlegging 2010/2011 Arbeidshefte for 10.trinn om videregående opplæring - til bruk før Utdanningstorget / Åpen dag Vi vil at du skal bli mer nysgjerrig på hvordan framtiden
DetaljerSakskart til møte i Administrasjonsutvalget
Møteinnkalling Sakskart til møte i Administrasjonsutvalget 07.03.2018 Møtested: Schweigaards gate 4, Galleriet Møterom: Fylkestingssalen Møtedato: 07.03.2018 Tid: 09:00 Saksliste Saksnr PS 2/18 Tittel
DetaljerDitt valg! ARBEIDSHEFTE TIL UTDANNINGSTORGET/ÅPEN DAG. Utdanning er det viktigste våpen hvis vi skal oppnå forandring i verden.
Ditt valg! ARBEIDSHEFTE TIL UTDANNINGSTORGET/ÅPEN DAG Utdanning er det viktigste våpen hvis vi skal oppnå forandring i verden. Nelson Mandela 2013/2014 1 HVEM ER DU OG HVA ER VIKTIG FOR DEG? Vi vil at
Detaljer2P, Statistikk Quiz. Test, 2 Statistikk
Test, 2 Statistikk Innhold 1.1 Statistisk undersøkelse... 2 2.2 Presentasjon av tallmateriale... 2 2.3 Sentralmål... 8 2.4 Spredningsmål... 11 2.5 Gruppert datamateriale... 14 Grete Larsen 1 1.1 Statistisk
DetaljerEksempeloppgave 2014. MAT1015 Matematikk 2P Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)
Eksempeloppgave 2014 MAT1015 Matematikk 2P Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:
DetaljerStatistikk Oppgaver. Innhold. Statistikk Vg2P
Statistikk Oppgaver Innhold Modul 2: Presentasjon av tallmateriale... 2 Tabeller- Frekvens - Relativ frekvens - Kumulativ frekvens... 2 Søylediagram/stolpediagram... 3 Sektordiagram... 3 Linjediagram/kurvediagram...
DetaljerStatistikk Løsninger. Innhold. Statistikk Vg2P
Statistikk Løsninger Innhold Modul 2: Presentasjon av tallmateriale... 2 Tabeller - Frekvens - Relativ frekvens - Kumulativ frekvens... 2 Søylediagram/stolpediagram... 4 Sektordiagram... 5 Linjediagram/kurvediagram...
DetaljerVurderingsveiledning Matematikk, lokalt gitt skriftlig eksamen MAT1001 Matematikk 1P-Y MAT1006 Matematikk 1T-Y
2013 Vurderingsveiledning Matematikk, lokalt gitt skriftlig eksamen MAT1001 Matematikk 1P-Y MAT1006 Matematikk 1T-Y Vest-Agder fylkeskommune Vurderingsveiledning i matematikk Vg1P-Y og Vg1T-Y Vurderingsveiledning
DetaljerEksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1015 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
DetaljerMATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra:
MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: 1. sammenligne og regne om mellom hele tall, desimaltall, brøker, prosent, promille og tall på standardform, uttrykke slike tall på varierte
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerVurderingsveiledning for lærere og sensorer. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016
Vurderingsveiledning for lærere og sensorer i praktisk matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y Gjelder fra våren 2016 Veiledningen er utarbeidet for lærere og sensorer. Den tar utgangspunkt
DetaljerSakskart til møte i Administrasjonsutvalget Møtested: Schweigaardsgt. 4, Oslo Møterom: Fylkestingssalen Møtedato:
Møteinnkalling Sakskart til møte i Administrasjonsutvalget 30.01.2019 Møtested: Schweigaardsgt. 4, Oslo Møterom: Fylkestingssalen Møtedato: 30.01.2019 Tid: 09:00 Saksliste Saksnr Tittel PS 1/19 timer i
DetaljerStatistikk 2P, Prøve 1 løsning
Statistikk 2P, Prøve 1 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 I denne oppgaven finner du tre tabeller. Dine oppgaver er å presentere resultatene fra de tre tabellene i tre ulike
DetaljerLOKAL LÆREPLAN SKEIENE UNGDOMSSKOLE MATEMATIKK 9.TRINN
Det vil bli utarbeidet målark for hvert tema, disse sier noe om aktiviteter og vurdering. Formatert: Skrift: 14 pt Tall og algebra Bruk av konkretiseringsmateriell, spill og konkurranser. Samtaler, oppgaveregning
DetaljerKarakter 3 og 4 Beskrivelse av nokså god / god kompetanse
Fag: Matematikk Skoleår: 2008/ 2009 Klasse: 9 Lærer: Miriam Vikan Oversikt over læreverkene som benyttes, ev. andre hovedlæremidler: Faktor 2 Vurdering: a) Karakteren 1 uttrykker at eleven har svært lav
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerFagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen
Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen Standarder (gjennom hele semesteret) : - Å kunne uttrykke seg muntlig. Å forstå og kunne bruke det matematiske språket, implementeres
Detaljer1 RENHOLDSOMFANG Kvalitetskontroll INNKJØP VINDUSVASK FASADEVASK RELEVANTE RUTINER... 3
VEDLEGG 1: KRAVSPESIFIKASJON INNHOLDSFORTEGNELSE 1 RENHOLDSOMFANG... 2 1.1 Kvalitetskontroll... 2 2 INNKJØP... 2 3 VINDUSVASK... 2 4 FASADEVASK... 3 5 RELEVANTE RUTINER... 3 5.1 Tidspunkt for renhold...
DetaljerEksempeloppgave 2014. MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)
Eksempeloppgave 2014 MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:
Detaljer2P eksamen våren 2018 løsningsforslag
2P eksamen våren 2018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 2 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave
Detaljer[2016] FAG - OG VURDERINGSRAPPORT. FAG: Matematikk KLASSE/GRUPPE: 10. For kommunane: Gjesdal Hå Klepp Sola Time TALET PÅ ELEVAR: 45
Nynorsk utgåve FAG - OG VURDERINGSRAPPORT [2016] FAG: Matematikk KLASSE/GRUPPE: 10. TALET PÅ ELEVAR: 45 SKULE: Lye ungdomsskule FAGLÆRAR: Jørn Serigstad For kommunane: Gjesdal Hå Klepp Sola Time Tema 1
DetaljerSandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9
Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2016-2017 Side 1 av 9 Periode 1: UKE 33-UKE 39 Tema: Tall og tallforståelse sammenligne og omregne hele tall,
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerTILSTANDSRAPPORT FOR VIDEREGÅENDE OPPLÆRING I AKERSHUS
TILSTANDSRAPPORT FOR VIDEREGÅENDE OPPLÆRING I AKERSHUS SKOLEÅRET 009 00 VIDEREGÅENDE SKOLER I AKERSHUS FYLKE HURDAL EIDSVOLL 9 GARDERMOEN NITTEDAL GJERDRUM JESSHEIM 0 NES 0 SØRUM ASKER OSLO BÆRUM 6 8 7
Detaljer2P eksamen høsten 2017 Løsningsforslag
2P eksamen høsten 2017 Løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Tabellen nedenfor viser karakterfordelingen
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerSandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015
Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34-38 Tema: Kap.1 «Tall og tallforståelse» sammenligne og omregne hele tall ( ) og tall på standardform,
DetaljerArbeidsplan for samlingene
Arbeidsplan for samlingene Forslag til forarbeide Tema Arbeidsoppgaver Prøveveiledning 1P og 2P Lese gjennom, skrive ned spørsmål til veiledningen. Eksempeloppgave 2016 Kartlegging, regn gjennom og marker
DetaljerLokal læreplan 9 trinn matematikk
Lokal læreplan 9 trinn matematikk Lærebok: Gruntal Antall uker Geometri i planet Gruntall 9 153-198 11 utføre, beskrive og grunngi geometriske konstruksjoner med passer og linjal (og dynamiske geometriprogram)
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerStatistikk. Forkurs 2017
Statistikk Forkurs 2017 Hva er statistikk? Undersøke Registrere Lage oversikt Presentasjon av informasjon Formidle Arbeidet med statistikk kan vi dele inn i to hovedområder: Samle inn og ordne opplysninger
Detaljer2P-Y eksamen våren 2018 løsningsforslag
2P-Y eksamen våren 2018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 2 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave
Detaljer2P-Y eksamen høsten 2017 Løsning
2P-Y eksamen høsten 2017 Løsning Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Tabellen nedenfor viser karakterfordelingen ved
DetaljerLÆREPLAN MATEMATIKK 10.TRINN SKOLEÅRET
LÆREPLAN MATEMATIKK 10.TRINN SKOLEÅRET 2018-19 Årstimetallet i faget: 114 Generell del av læreplanen, grunnleggende ferdigheter og prinsipper for opplæringen er innarbeidet i planen Side 2: Kompetansemålene
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Skriv tallene nedenfor på standardform 26,3 millioner 16,5 10 8 Oppgave 2 (1 poeng) Regn ut og skriv svaret som desimaltall 8 3,5 10 7,0 10 0,5 10 5 6 Oppgave
DetaljerStatistikk. Forkurs 2018
Statistikk Forkurs 2018 Hva er statistikk? Undersøke Registrere Lage oversikt Presentasjon av informasjon Formidle Arbeidet med statistikk kan vi dele inn i to hovedområder: Samle inn og ordne opplysninger
DetaljerNår du har arbeidet deg gjennom dette kapittelet, er målet at du skal kunne
2 Statistikk Innhold Kompetansemål Statistikk, Vg2P... 1 Modul 1: Statistisk undersøkelse... 2 Modul 2: Presentasjon av tallmateriale... 4 Modul 3: Sentralmål... 12 Modul 4: Spredningsmål... 15 Modul 5:
Detaljer2P eksamen høsten 2017
2P eksamen høsten 2017 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Tabellen nedenfor viser karakterfordelingen ved en skole ved
DetaljerSensorveiledning
Sensorveiledning 16.05.2017 MAT0010 Matematikk Bokmål Formålet med sensorveiledningen Formålet med denne sensorveiledningen er å sikre så lik vurdering og så rettferdig sensur som mulig for alle elever
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Lotte har spurt ti medelever om hvor mange ganger de handler i kantina i løpet av en uke. Resultatene ser du nedenfor. 1 5 1 3 3 1 4 2 4 0 Bestem medianen, gjennomsnittet,
Detaljer2P-Y eksamen våren 2016 løsningsforslag
2P-Y eksamen våren 2016 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03
DetaljerForhåndssensurrapport
Forhåndssensurrapport 31.05.2016 MAT0010 Matematikk Bokmål Forhåndsensur for sentralt gitt skriftlig eksamen MAT0010 Matematikk Våren 2016 Forhåndssensuren ble arrangert i Oslo 30. mai og 31. mai 2016.
DetaljerEksamen MAT1003 Matematikk 2P. Nynorsk/Bokmål
Eksamen 19.05.2010 MAT1003 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del 1 skal
DetaljerEksamensveiledning MAT1001
Eksamensveiledning MAT1001 Gjelder for alle yrkesfaglige utdanningsprogram i Matematikk 1P-Y Gjelder fra våren 2017 Veiledningen inneholder informasjon om eksamen, beskrivelse av mål og vurdering av. Målgruppen
DetaljerSe hvordan Hovseter ungdomsskole arbeidet før, under og etter gjennomføring av prøven.
Hva måler nasjonal prøve i regning? Prøven skal måle i hvilken grad elevenes regneferdigheter er i samsvar med beskrivelsene av regning som grunnleggende ferdighet i læreplanen til hvert fag. Prøven er
DetaljerÅrsplan på 10. trinn for skoleåret 2018/2019 Nye Mega 10 A og B + Faktor 10
Årsplan på 10. trinn for skoleåret 2018/2019 Nye Mega 10 A og B + Faktor 10 UKE EMNE KOMPETANSEMÅL DELMÅL ARBEIDSMÅTER VURDERING 34-39 Tall og algebra (Faktor 10 grunnbok) Sammenlikne og regne om hele
DetaljerÅrsplan i matematikk for 10. trinn
Årsplan i matematikk for 10. trinn Emne på etter KAP A GEOMETRI Før høstferien (34-39) analysere, også digitalt, egenskaper ved to- og tredimensjonale figurer og bruke dem i sammenheng med konstruksjoner
DetaljerGrunnleggende ferdigheter i faget (fra Kunnskapsløftet)
Årsplan for Matematikk 2013/2014 Klasse 10A, 10B og 10C Lærere: Lars Hauge, Rayner Nygård og Hans Dillekås Læreverk: Nye Mega 10A og 10B Grunnleggende ferdigheter i (fra Kunnskapsløftet) Å uttrykke seg
Detaljer2P eksamen våren 2016 løsningsforslag
2P eksamen våren 2016 løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4
DetaljerHjelpemidler på Del 2 Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerSandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET Side 1 av 8
Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET 2016-2017 Side 1 av 8 Periode 1: UKE 33 - UKE 39 Sammenligne og regne om mellom hele tall, desimaltall, brøker,
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Markus og vennene hans spiller kort. Nedenfor ser du hvor mange poeng Markus fikk i hver av de siste åtte rundene. Runde Poengsum Markus 1 20 2 15 3 5 4 15 5
DetaljerEksamen 2P MAT1015 Høsten 2012 Løsning
Eksamen 2P MAT1015 Høsten 2012 Oppgave 1 (4 poeng) Alle som går tur til Pollfjell, skriver navnet sitt i boka som ligger i postkassen på toppen av fjellet. Nedenfor ser du hvor mange som har skrevet seg
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 02.03 0 03.03 4 04.03 6 05.03 2 06.03 6 Guro målte temperaturen utenfor hytta de seks første dagene i mars. Se tabellen ovenfor. Bestem
DetaljerSensorveiledning
Sensorveiledning 28.05.2019 MAT1006 Matematikk 1T-Y Programområde: Alle 1. OM SENSORVEILEDNINGEN Sensorveiledningen er utarbeidet med bakgrunn i Utdanningsdirektoratet sin sensorveiledning for sentralt
DetaljerTilstandsrapport. for videregående opplæring i Akershus SKOLEÅRET 2010 2011
Tilstandsrapport for videregående opplæring i Akershus SKOLEÅRET 2010 2011 VIDEREGÅENDE SKOLER I AKERSHUS FYLKE HURDAL EIDSVOLL 22 29 GARDERMOEN NITTEDAL GJERDRUM 24 JESSHEIM 23 30 NES 20 SØRUM OSLO BÆRUM
DetaljerInformasjon om valg av videregående opplæring
Informasjon om valg av videregående opplæring Videregående opplæring Hva passer for ditt barn/ din ungdom? Kilder: Utdanningsetaten, Osloskolen/Karriéreenheten og vilbli.no/inntaksreglement for Akershus
Detaljer2P-Y eksamen våren 2016
2P-Y eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4 C 04.03 --6
DetaljerDitt valg! UTDANNINGSTORGET/ÅPEN DAG ARBEIDSHEFTE TIL 2015/2016. Utdanning er det viktigste våpen hvis vi skal oppnå forandring i verden
«Utdanning er det viktigste våpen hvis vi skal oppnå forandring i verden Nelson Mandela» Ditt valg! ARBEIDSHEFTE TIL UTDANNINGSTORGET/ÅPEN DAG 2015/2016 1 HVEM ER DU OG HVA ER VIKTIG FOR DEG? Vi vil at
DetaljerArbeidsplan for samlingene
Arbeidsplan for samlingene Forslag til forarbeide Tema Arbeidsoppgaver Prøveveiledning 1P og 2P Lese gjennom, skrive ned spørsmål til veiledningen. Eksempeloppgave 2016 Kartlegging, regn gjennom og marker
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 02.03 0 03.03 4 04.03 6 05.03 2 06.03 6 Guro målte temperaturen utenfor hytta de seks første dagene i mars. Se tabellen ovenfor. Bestem
DetaljerVIDEREGÅENDE SKOLER I AKERSHUS
VURDERING OG LÆRING 2 Akershus fylkeskommune VURDERING OG LÆRING 2016 VIDEREGÅENDE SKOLER I AKERSHUS HURDAL Kart: Atrium Design EIDSVOLL 22 29 GARDERMOEN NITTEDAL GJERDRUM 24 JESSHEIM 23 30 NES 20 SØRUM
DetaljerMatematikk årsplan 9. trinn
UKE 33-41(- 40) TALL OG TALLFORSTÅELSE Periode Matematikk årsplan 9. trinn 2017-2018 Hovedemne Metoder og læringsressurser Læringsmål Innhold Grunnleggende ferdigheter Vurdering Grunnbok kap. 1 Oppgavebok
DetaljerEksamen 2P MAT1015 Vår 2012 Løsning
Eksamen 2P MAT1015 Vår 2012 Oppgave 1 (14 poeng) a) 20 elever blir spurt om hvor mange datamaskiner de har hjemme. Se tabellen ovenfor. Finn variasjonsbredden, typetallet, medianen og gjennomsnittet. Variasjonsbredden
DetaljerØnsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring
Overordnet plan for fagene. Fag: MATEMATIKK Trinn: 9 KLASSE Skole: LINDESNES UNGDOMSSKOLE År: 2015-2016 Lærestoff: MEGA 9A OG 9B Vurdering. Prinsipper i vurdering. 1. Elevene forstår hva de skal lære og
Detaljer2P eksamen våren 2016
2P eksamen våren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Dato Temperatur 01.03 2 C 02.03 0 C 03.03 --4 C 04.03 --6 C
DetaljerEksamen MAT1015 Matematikk 2P. Nynorsk/Bokmål
Eksamen 22.11.2017 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del 1 skal
DetaljerSentralmål og spredningsmål
Sentralmål og spredningsmål 3.1 Læreplanmål 1 3.1 Gjennomsnitt og typetall 2 3.2 Median 6 3.3 Variasjonsbredde og kvartilbredde 10 3.4 Varians og standardavvik 15 3.5 Digitale sentralmål og spredningsmål
DetaljerÅrsplan matematikk 10. trinn
Periode - uke Hovedområde (K-06) Kompetansemål (K-06) Delmål/læringsmål (settes på ukeplan) Lærestoff Grunnl. ferdigheter 6 uker 34-39 Geometri -utføre og grunngje geometriske konstruksjonar og avbildingar
Detaljer2P eksamen våren 2018
2P eksamen våren 2018 DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 2 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Markus
DetaljerAlle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DetaljerÅrsplan i matematikk ved Blussuvoll skole.
Årsplan i matematikk ved Blussuvoll skole. Hovedområder i faget: Målinger Statistikk, sannsynlighet og Funksjoner Undervisningstimetall per uke: 8.trinn 9.trinn 10.trinn 3,00 2,25 3,00 Læreverk/materiell:
DetaljerSandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9
Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016 Side 1 av 9 Periode 1: UKE 34-UKE 39 Tema: Statistikk gjennomføre undersøkelser og bruke databaser
DetaljerHva måler nasjonal prøve i regning?
Hva måler nasjonal prøve i regning? Prøven skal måle i hvilken grad elevenes regneferdigheter er i samsvar med beskrivelsene av regning som grunnleggende ferdighet i læreplanen til hvert fag. Prøven er
DetaljerSandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR Side 1 av 8
Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR 2017-2018 Side 1 av 8 Periode 1: UKE 33-39 Tall og Algebra Analysere sammensatte problemstillinger, identifisere faste
Detaljer