Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen
|
|
- Viggo Jensen
- 5 år siden
- Visninger:
Transkript
1 Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen gir testobservatoren t mer spredning enn testobservatoren z, der variansen en kjent.
2 I dag Inferens for to populasjoner : Konfidensintervall for forskjeller i forventning Hypotesetesting μ1 μ2
3 Sammenlikning av to forventninger med ukjent standardavvik F.eks: Effekt av økt kalsiuminntakpå blodtrykk En gruppe får økt kalsium i diett Kontrollgruppe får placebo To-utvalgsproblem: Sammenlikne respons fra to grupper Hver gruppe utvalg fra forskjellige populasjoner Respons i forskjellige grupper uavhengige
4 Notasjon Populasjonsparametre: Populasjon Variabel Forventning Standardavvik 1 X 1 µ 1 s 1 2 X 2 µ 2 s 2 Tall for utvalg: Populasjon Utvalgsstørrelse Gjennomsnitt Standardavvik 1 n 1 x 1 s 1 2 n 2 x 2 s 2
5 To uavhengige utvalg Interesseparameter: µ 1 - µ 2 Naturlig essmator: x 1 - x 2 (forventningsret for µ 1 -µ 2 ) Varians for x 1 - x 2 er lik s n s2 1 2 Hvis populasjonsfordelingene er normale: x 1 - x 2 er også normal + n
6 Eksempel 7.10 Klasse: 12 jenter (n 1 ) og 8 guter (n 2 ). Høyde måles på 10 årsdag. X 1 : høyde jenter, X 2 : høyde guter Hva er sannsynlighet for at gjennomsnitlig høyde for jenter er større enn gjennomsnitlig høyde for guter? Dvs. hva er P( x 1 > x 2) = P( x 1- x 2 > 0) =? X 1 er N(56.9,2.8), X 2 er N(56.0,3.5): differanse x 1- x 2 også normalfordelt! med Forventning: µ 1 - µ 2 = = 0.9 Varians: Standardavvik: 2.18 = 1.48 Får da
7
8
9 Observator for to uavhengige utvalg Interesseparameter: µ 1 - µ 2 Naturlig essmator: x 1 - x 2 Varians for x 1 - x 2 er lik s n s2 + n 1 2 Testobservatoren Z = ( x -x ) - ( µ -µ ) s1 / n1 + s2/ n2 er N(0,1) fordelt Men kan bare brukes hvis standardavvikene er kjent
10 To-utvalg ukjente varianser I praksis: σ 1 og σ 2 ukjente Estimeres ved empiriske standardavvik s 1 og s 2, får da testobservator ( x1-x2) - ( µ 1-µ 2) t = 2 2 s / n + s / n Ikke t-fordelt! En t-fordeling erstatter en N(0,1)-fordeling bare når et enkelt standardavvik σ i en z-observator erstattes med et empirisk standardavvik s Men: Tilnærmet t(k)-fordelt med passende k To måter å estimere k på: En metode som beregnes fra data (med dataprogram), eller den minste verdien av (n 1-1) og (n 2-1)
11 Formel for beregning av frihetsgrader på datamaskin Som oftest ikke et heltall. Beregnes av R og annen programvare med denne el. lignende formler NB. Ikke bruk denne på eksamen, bruk den minste av (n 1-1) og (n 2-1)
12
13 Ny læringsmetode 21 elever prøver ny metode (klasse 1) 23 elever følger dagens metode (klasse 2) Klassene ble valgt slik at de var så like som mulig, slik at en eventuell effekt av forskjellen på metodene er minst mulig konfundert med andre forskjeller mellom klassene TABLE 7.3 DRP Scores for Third-Graders Treatment group Control group
14 Ny læringsmetode: (Normale) Kvantilplott
15 Ny læringsmetode - konfidensintervall 21 elever prøver ny metode 23 elever følger dagens metode Gruppe n Gj.sn. Std.avvik 1 (Behandling) (Kontroll) For å beskrive størrelsen av behandlingseffekten, lager vi et 95% konfidensintervall: SE s / n s / n / / x - x = = + = 1 2 Frihetsgrader min(n 1-1, n 2-1)=20 gir 97.5-persentil t*= gir 95% KI: x # x % ± t SE +, -+. = ± = 0.97,18.95 Datagenererte frihetsgrader=37.86 gir 97.5-persentil t*= gir 95% KI: x # x % ± t SE +, -+. = ± = 1.24,18.68
16
17 Ded Det vanligste er at Δ > = 0
18 To-utvalgs t-tester For å teste H 0 : μ 1 =μ 2 mot H a : μ 1 >μ 2 (H a : μ 1 -μ 2 >0) P-verdi = P( T t ) For å teste H 0 : μ 1 =μ 2 mot H a : μ 1 <μ 2 (H a : μ 1 -μ 2 <0) P-verdi = P( T t ) For å teste H 0 : μ 1 =μ 2 mot H a : μ 1 μ 2 (H a : μ 1 -μ 2 0) P-verdi = 2P( T t ), For alle alternativer er T (tilnærmet) t-fordelt med k frihetsgrader (når begge populasjonene er normalfordelte)
19 2 flervalgsspørsmål
20 Ny læringsmetode 21 elever prøver ny metode 23 elever følger dagens metode Gruppe n Gj.sn. Std.avvik 1 (Behandling) (Kontroll) Håper å vise at leseferdigheter i behandlingsgruppen er bedre enn i kontrollgruppen: H 0 : μ 1 = μ 2 mot H a : μ 1 >μ 2 t ( x -x ) - ( µ -µ ) ( ) - 0 = = = / / / / s1 n1 + s2 n Frihetsgrader min(n 1-1, n 2-1) =20 gir p-verdi P(T>2.31) = (eller mellom 0.01 og 0.02 fra Tabell D) Datagenererte frihetsgrader=37.86 gir p-verdi P(T>2.31) = 0.013
21
22 Tungt jaktet LeT jaktet vs μ1 μ2 Forskjell på de ukjente, sanne forventningene i corssol-fordelingen i de to ulve-gruppene (tungt og let jaktet)? H0: Det er ingen forskjell i de sanne forventningene Ha: Det er en forskjell i de sanne forventningene Dvs: H0: μ1= μ2 mot Ha: μ1 μ2 (tosidig alternasv) H0: μ1- μ2=0 mot Ha: μ1- μ2 0 n1 = 103, n2 = 45, x1 = , x2 =
23 EsSmat for μ 1 - μ 2 : x 1 - x 2 = pg/mg Videre har vi s 1 = , s 2 = og SE x 1 - x 2 = Gir t-observator t = ( )/ = Bruker Slnærmelsen 44 frihetsgrader. Fra tabellen finner vi da at P-verdien (tosidig) må være større enn 0.2 Så ingen grunn Sl å forkaste H 0, kan ikke påstå at data viser en signifikant forskjell mellom de to populasjonene. Men la oss sjekke det i R:
24 To-utvalgs-t-test og konfidensintervall i R > t.test(wolf.tung$cpmg,wolf.lett$cpmg) Welch Two Sample t-test data: wolf.tung$cpmg and wolf.lett$cpmg t = , df = , p-value = alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: sample estimates: mean of x mean of y
25 Egenskaper to-utvalgs t-test Mer robust enn ett-utvalgs t-test Svært presise når n 1 n 2 og formene på fordelingene er ganske like (altså selv om fordelingene ikke er normale) Større utvalg trengs når ulike former på fordelinger Velg så like utvalgsstørrelser som mulig!
26 Små utvalg Ikke nok observasjoner til å sjekke fordeling Kun ekstreme uteliggere mulig å se Feilmarginer i konfidensintervaller store Ofte mulig å trekke konklusjoner likevel, hvis størrelsen på en effekt / forskjell er veldig stor
27 To utvalg med samme standardavvik σ 1 = σ 2 Hvis vi kan anta σ 1 = σ 2 = σ kan vi utrykke variansen Sl x 1 - x s + 2 = s 2 + s 1 1 ( ) n n n n Med kjent σ blir dermed z-observatoren z = ( x -x ) - ( µ -µ ) s 1/ n + 1/ n 1 2 Når σ er ukjent må den essmeres. Men begge de empiriske variansene s 12 og s 2 2 essmerer σ 2. Den beste måten å slå sammen disse essmatene er ved 2 2 formelen ( n - 1) s + ( n -1) s s = pooled n1+ n2-2
28 t-test for to utvalg med like varianser Vi får da følgende t-observator t = ( x -x ) - ( µ -µ ) s 1/ n + 1/ n pooled 1 2 Hvis dataene i begge utvalg er fra normalfordelinger (med lik varians) så er faktisk denne t-observatoren eksakt t-fordelt med k = n 1 + n 2-2 frihetsgrader. Vi kan vinne noen frihetsgrader på denne metoden men metoden er bare gyldig under den strenge antagelsen σ 1 = σ 2 Det finnes metoder for å teste om σ 1 = σ 2, men disse krever antagelse om normalfordeling.
29 t-test for to utvalg med like varianser og sammenslått (pooled) variansestimat
30 Eksempel: Kalsium og blodtrykk Gir økt inntak av kalsium redusert blodtrykk? TABLE 7.4 Seated Systolic Blood Pressure (mm Hg) Calcium Group Placebo Group Begin End Decrease Begin End Decrease NB: Nedgang (decrease) er positiv når det er en reduksjon, negativ ved oppgang
31 Eksempel: Kalsium og blodtrykk Kvantilplott: Ingen alvorlige avvik fra normalfordeling for begge grupper Må gjøre en signifikanstest for å besvare spørsmålet om økt inntak av kalsium reduserer blodtrykk?
32 Eksempel: Kalsium og blodtrykk Gruppe 1 med forventning μ 1 fikk kalsium-tilskudd, gruppe 2 med forventning μ 2 fikk placebo Naturlig med ensidig null-hypotese, for forsøk med rotter hadde vist at kalsium ga en nedgang, ingen grunn til å tro at det skulle øke blodtrykket. Hypoteser: H 0 : μ 1 = μ 2, H a : μ 1 > μ 2 Numeriske beskrivelser av data Gruppe Behandling n x s 1 Kalsium Placebo De empiriske standardavvikene utelukker ikke like populasjonsstandardavvik, forskjell i estimatene kan lett være pga tilfeldigheter Vi vil anta like standardavvik i begge grupper
33 Eksempel: Kalsium og blodtrykk Vi vil anta like standardavvik i begge grupper Det sammenslåtte standardavviket blir s pooled Dette gir en t-observator t ( n 1) s ( n 1) s = = n + n ( x -x ) - ( µ -µ ) (5-(-0.273)) - 0 = = = s 1/ n + 1/ n /10 + 1/11 pooled som under nullhypotesen H 0 : μ 1 = μ 2 er t-fordelt med k = n 1 + n 2 2 = 19 frihetsgrader. P-verdi for testen med H a : μ 1 > μ 2 - blir dermed 5.9% > 5% og altså insignifikant. Tilsvarende blir 95% konfidensintervallet (med 95 persentil t*=1.729) x - x ± t s 1/ n + 1/ n = [-0.31, 10.85] * 1 2 pooled 1 2 og overlapper 0.
34
35 Antagelsen om like populasjonsstandardavvik Vanskelig å verifisere Derfor kan t-metodene for samlede («pooled») to-utvalg noen ganger være risikable å bruke Ganske robuste mot både ikke-normalitet og ulike populasjons-standardavvik når utvalgsstørrelsene n 1 og n 2 er ganske like Når utvalgsstørrelsene n 1 og n 2 er veldig forskjellige, er metodene sensitive for ulike populasjons-standardavvik, og man skal være forsiktige med å bruke dem med mindre utvalgsstørrelsene er store
36 Oppsummering Konfidensintervall og t-test for to uavhengige utvalg med ukjent standardavvik t-test to metoder: ulike standardavvik i de to populasjonene like standardavvik pooled standard deviation
7.2 Sammenligning av to forventinger
7.2 Sammenligning av to forventinger To-utvalgs z-observator To-utvalgs t-prosedyrer To-utvalgs t-tester To-utvalgs t-konfidensintervall Robusthet To-utvalgs t-prosedyrerår variansene er like Sammenlikning
DetaljerKapittel 7: Inferens for forventningerukjent standardavvik
Kapittel 7: Inferens for forventningerukjent standardavvik 7.1: Inferens for forventningen i en populasjon 7.: Inferens for å sammenligne to forventninger 7.1 Inferens for forventningen i en populasjon
DetaljerInferens i fordelinger
Inferens i fordelinger Modifiserer antagelsen om at standardavviket i populasjonen σ er kjent Mer kompleks systematisk del ( her forventningen i populasjonen). Skal se på en situasjon der populasjonsfordelingen
DetaljerI dag. Konfidensintervall og hypotesetes4ng ukjent standardavvik (kap. 7.1) t-fordelingen
I dag Konfidensintervall og hypotesetes4ng ukjent standardavvik (kap. 7.1) t-fordelingen Inferens for forventningen 4l en populasjon (7.1) Kapi@el 6: En antagelse om kjent standardavvik s i populasjonen
DetaljerDenne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
DetaljerKapittel 7: Inferens for forventningerukjent standardavvik
Kapittel 7: Inferens for forventningerukjent standardavvik 7.1: Inferens for forventningen i en populasjon 7.2: Inferens for å sammenligne to forventninger 7.1 Inferens for forventningen i en populasjon
DetaljerKapittel 3: Studieopplegg
Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere
DetaljerDenne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
DetaljerDenne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
DetaljerUtvalgsfordelinger (Kapittel 5)
Utvalgsfordelinger (Kapittel 5) Oversikt pensum, fortid og fremtid Eksplorativ data-analyse (Kap 1, 2) Hvordan produsere data (Kap 3) Sannsynlighetsteori (Kap 4) Utvalgsfordelinger til observatorer (Kap
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Det er to populasjoner som vi ønsker å sammenligne. Vi trekker da et utvalg
DetaljerST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper
ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper Bo Lindqvist Institutt for matematiske fag 2 Kapittel 8: Sammenligning av grupper Situasjon: Vi ønsker
DetaljerFasit for tilleggsoppgaver
Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x
Detaljer6.2 Signifikanstester
6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon I Kapittel 8 brukte vi observatoren z = x µ σ/ n for å trekke konklusjoner om µ. Dette
DetaljerBivariate analyser. Analyse av sammenhengen mellom to variabler. H 0 : Ingen sammenheng H 1 : Sammenheng
Bivariate analyser Analyse av sammenhengen mellom to variabler H : Ingen sammenheng H 1 : Sammenheng Hvis den ene variabelen er kategorisk er en slik analyse det samme som å sammenligne grupper. Ulike
DetaljerIntroduksjon til inferens
Introduksjon til inferens Hittil: Populasjon der verdien til et individ/enhet beskrives med en fordeling. Her inngår vanligvis ukjente parametre, μ, p,... Enkelt tilfeldig utvalg (SRS), observator p =
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig
DetaljerStatistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere
2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende
DetaljerStatistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere
2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger
DetaljerKap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere
Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon
DetaljerNotasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere
2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den
DetaljerAnalyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger
Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives
DetaljerTMA4240 Statistikk H2010 (20)
TMA4240 Statistikk H2010 (20) 10.5: Ett normalfordelt utvalg, kjent varians (repetisjon) 10.4: P-verdi 10.6: Konfidensintervall vs. hypotesetest 10.7: Ett normalfordelt utvalg, ukjent varians Mette Langaas
DetaljerStatistikk og dataanalyse
Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel
DetaljerTid: 29. mai (3.5 timer) Ved alle hypotesetester skal både nullhypotese og alternativ hypotese skrives ned.
EKSAMENSOPPGAVE, bokmål Institutt: IKBM Eksamen i: STAT100 STATISTIKK Tid: 29. mai 2012 09.00-12.30 (3.5 timer) Emneansvarlig: Trygve Almøy (Tlf: 95141344) Tillatte hjelpemidler: C3: alle typer kalkulator,
DetaljerEKSAMENSOPPGAVER STAT100 Vår 2011
EKSAMENSOPPGAVER STAT100 Vår 2011 Løsningsforslag Oppgave 1 (Med referanse til Tabell 1) a) De 3 fiskene på 2 år hadde lengder på henholdsvis 48, 46 og 35 cm. Finn de manglende tallene i Tabell 1. Test
DetaljerST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon
ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere
DetaljerEKSAMENSOPPGAVE Georg Elvebakk NB! Det er ikke tillatt å levere inn kladd sammen med besvarelsen
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: 30.mai 2016. Klokkeslett: 09 13. Sted: Tillatte hjelpemidler: Teorifagbygget, «Tabeller og formler i statistikk» av Kvaløy
DetaljerVerdens statistikk-dag.
Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet
DetaljerForelesning 6: Punktestimering, usikkerhet i estimering. Jo Thori Lind
Forelesning 6: Punktestimering, usikkerhet i estimering Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Trekke utvalg 2. Estimatorer og observatorer som stokastiske variable 3. Egenskapene til en estimator
DetaljerUNIVERSITETET I OSLO
Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk Eksamensdag: Mandag 3. desember 2018. Tid for eksamen: 14.30 18.30. Oppgavesettet er på
DetaljerKapittel 9 og 10: Hypotesetesting
Kapittel 9 og 1: Hypotesetesting Hypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker
Detaljer1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver. 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver
1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver 3 Oppvarming til kap 10: Rette linjer Sammenligne to populasjoner Data fra to
DetaljerST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner
ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Kapittel 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to
DetaljerLøsningsforslag STK1110-h11: Andre obligatoriske oppgave.
Løsningsforslag STK1110-h11: Andre obligatoriske oppgave. Oppgave 1 a) Legg merke til at X er gamma-fordelt med formparameter 1 og skalaparameter λ. Da er E[X] = 1/λ. Små verdier av X tyder derfor på at
DetaljerHØGSKOLEN I STAVANGER
EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN
DetaljerEKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Mandag 9. mai 017. Klokkeslett: 09 13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»
DetaljerKort overblikk over kurset sålangt
Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp.
ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk
DetaljerSupplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013
1 Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 013. Skrevet av Stian Lydersen 16 januar 013 Vi antar at vårt utvalg er et tilfeldig og representativt utvalg for
DetaljerLøsningsforsalg til andre sett med obligatoriske oppgaver i STK1110 høsten 2015
Løsningsforsalg til andre sett med obligatoriske oppgaver i STK1110 høsten 2015 R-kode for alle oppgaver er gitt bakerst. Oppgave 1 (a) Boksplottet antyder at verdiene er høyere for kvinner enn for menn.
DetaljerTMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
DetaljerVerdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/
Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator
DetaljerTMA4240 Statistikk Høst 2009
TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b5 Løsningsskisse Oppgave 1 Vi ønsker å finne ut om et nytt serum kan stanse leukemi.
DetaljerDatamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)
Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens
DetaljerHypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf:
Hypotesetesting Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400 www.aschehoug.no 1 Oversikt Sannsynlighetsregning og statistikk
DetaljerLøsningsforslag Til Statlab 5
Løsningsforslag Til Statlab 5 Jimmy Paul September 6, 007 Oppgave 8.1 Vi skal se på ukentlige forbruk av søtsaker blant barn i et visst område. En pilotstudie gir at standardavviket til det ukentige forbruket
DetaljerTidspunkt: Fredag 18. mai (3.5 timer) Tillatte hjelpemidler: C3. Alle typer kalkulatorer, alle andre hjelpemidler.
Fakultet: KBM Eksamen i: STAT100 STATISTIKK Tidspunkt: Fredag 18. mai 2018 14.00 17.30 (3.5 timer) Kursansvarlig: Trygve Almøy 95141344 Tillatte hjelpemidler: C3. Alle typer kalkulatorer, alle andre hjelpemidler.
DetaljerInferens i regresjon
Strategi som er fulgt hittil: Inferens i regresjon Deskriptiv analyse og dataanalyse først. Analyse av en variabel før studie av samvariasjon. Emne for dette kapittel er inferens når det er en respons
Detaljer10.1 Enkel lineær regresjon Multippel regresjon
Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel
DetaljerHypotesetesting. mot. mot. mot. ˆ x
Kapittel 6.4-6.5: ypotesetesting ypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker
DetaljerInference for Distributions
Inference for Distributions IPS Chapter 7 7.1: Inference for the Mean of a Population 7.2: Comparing Two Means 7.3: Optional Topics in Comparing Distributions 2012 W.H. Freeman and Company 7.1 Inferens
Detaljer1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent
1 Section 7-2: Estimere populasjonsandelen 2 Section 7-4: Estimere µ når σ er ukjent Kapittel 7 Nå begynner vi med statistisk inferens! Bruke stikkprøven til å 1 Estimere verdien til en parameter i populasjonen.
DetaljerTMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må
DetaljerUtfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010
TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må
DetaljerSammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt
SOS1120 Kvantitativ metode Forelesningsnotater 10. forelesning høsten 2005 Per Arne Tufte Sammenlikninger av gjennomsnitt Sammenlikner gjennomsnittet på avhengig variabel for ulike grupper av enheter Kan
DetaljerTMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Statistisk inferens: 9.6: Prediksjonsintervall 9.8: To utvalg, differanse µ 1 µ 2 Mette Langaas Foreleses mandag 18.oktober, 2010 2 Prediksjonsintervall for fremtidig observasjon,
DetaljerSeksjon 1.3 Tetthetskurver og normalfordelingen
Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data ved tall Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver
DetaljerEksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
DetaljerSeksjon 1.3 Tetthetskurver og normalfordelingen
Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver
Detaljer1 10-2: Korrelasjon. 2 10-3: Regresjon
1 10-2: Korrelasjon 2 10-3: Regresjon Example Krysser y-aksen i 1: b 0 = 1 Stiger med 2 hver gang x øker med 1: b 1 = 2 Formelen til linja er derfor y = 1 + 2x Eksempel Example Vi lar fem personer se en
DetaljerFerdig før tiden 4 7 Ferdig til avtalt tid 12 7 Forsinket 1 måned 2 6 Forsinket 2 måneder 4 4 Forsinket 3 måneder 6 2 Forsinket 4 måneder 0 2
Besvar alle oppgavene. Hver deloppgave har lik vekt. Oppgave I En kommune skal bygge ny idrettshall og vurderer to entreprenører, A og B. Begge gir samme pristilbud, men kommunen er bekymret for forsinkelser.
DetaljerHypotesetest: generell fremgangsmåte
TMA4240 Statistikk H2010 (21) 10.8, 10.10: To normalfordelte utvalg 10.9: Teststyrke og antall observasjoner Mette Langaas Foreleses mandag 1.november, 2010 2 Hypotesetest: generell fremgangsmåte Generell
Detaljerα =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6)
TMA4245 Statistikk Vår 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 4 blokk II Løsningsskisse Oppgave 1 4 personer spurt. Hvis mellom 22 og 26 personer svarer
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 3. april Bjørn H. Auestad Kp. 6: Hypotesetesting
Detaljer1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene
1 Sec 3-2: Hvordan beskrive senteret i dataene 2 Sec 3-3: Hvordan beskrive spredningen i dataene Todeling av statistikk Deskriptiv statistikk Oppsummering og beskrivelse av den stikkprøven du har. Statistisk
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ...
ÅMA Sannsynlighetsregning med statistikk, våren 6 Kp. 6 (kp. 6)... Begrep: nullhypotese alternativhypotese ensidig, tosidig teststørrelse (testobservator) nullfordeling kritisk verdi, forkastningsområde
DetaljerForkaste H 0 "Stikkprøven er unormal" Akseptere H 0 "Stikkprøven er innafor normalen" k kritisk verdi. Utgangspunkt for H 0
* 6.2. Hypotesetest i normalfordeling med kjent σ v.h.a. kritisk verdi (fra i går) Overordnet mål med hypotesetest i normalfordeling: vurdere en påstand om µ ("er den påståtte verdien for µ riktig, eller
DetaljerHypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk
ÅMA Sannsynlighetsregning med statistikk, våren 2 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk 2. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk
DetaljerTMA4240 Statistikk H2010 (19)
TMA4240 Statistikk H2010 (19) Hypotesetesting 10.1-10.3: Generelt om statistiske hypoteser 10.5: Ett normalfordelt utvalg Mette Langaas Foreleses mandag 25.oktober, 2010 2 Estimering og hypotesetesting
DetaljerLøsningsforslag eksamen 27. februar 2004
MOT30 Statistiske metoder Løsningsforslag eksamen 7 februar 004 Oppgave a) Y ij = µ i + ε ij, der ε ij uavh N(0, σ ) der µ i er forventa kopperinnhold for legering i og ε ij er feilleddet (tilfeldig variasjon)
DetaljerFordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger
Fordelinger, mer om sentralmål og variasjonsmål Tron Anders Moger 20. april 2005 1 Forrige gang: Så på et eksempel med data over medisinerstudenter Lærte hvordan man skulle få oversikt over dataene ved
DetaljerUtvalgsfordelinger (Kapittel 5)
Utvalgsfordelinger (Kapittel 5) Observator En observator er en funksjon av data for mange individer, for eksempel Gjennomsnitt Andel Stigningstall i regresjonslinje En observator er en tilfeldig variabel
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting
DetaljerOppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir
DetaljerFormelsamling i medisinsk statistikk
Formelsamling i medisinsk statistikk Versjon av 6. mai 208 Dette er en formelsamling til O. O. Aalen (red.): Statistiske metoder i medisin og helsefag, Gyldendal, 208. Gjennomsnitt x = n (x + x 2 + x 3
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2 Eksamensdag: Mandag 4. juni 2007. Tid for eksamen: 14.30 17.30. Oppgavesettet er
DetaljerTillatte hjelpemidler: C3: alle typer kalkulator, alle andre hjelpemidler
EKSAMENSOPPGAVER Institutt: Eksamen i: Tid: IKBM STAT100 Torsdag 13.des 2012 STATISTIKK 09.00-12.30 (3.5 timer) Emneansvarlig: Solve Sæbø ( 90065281) Tillatte hjelpemidler: C3: alle typer kalkulator, alle
DetaljerTMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 0, blokk II Løsningsskisse Oppgave Surhetsgrad i ferskvann Eksamen august 00, oppgave av 3 a) En god estimator
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Løsningsforslag: Statistiske metoder og dataanalys Eksamensdag: Fredag 9. desember 2011 Tid for eksamen: 14.30 18.30
Detaljeri x i
TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale
DetaljerECON240 VÅR / 2016 BOKMÅL
ECON240 VÅR / 2016 BOKMÅL UNIVERSITETET I BERGEN EKSAMEN UNDER SAMFUNNSVITENSKAPELIG GRAD [ DATO og KLOKKESLETT FOR EKSAMEN (START OG SLUTT) ] Tillatte hjelpemidler: Matematisk formelsamling av K. Sydsæter,
DetaljerUNIVERSITETET I OSLO
Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1110 FASIT. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider. Vedlegg: Tillatte
DetaljerKapittel 9 og 10: Hypotesetesting
Kapittel 9 og 1: ypotesetesting ypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker
Detaljerβ(µ) = P(akseptere H 1 µ)
Sentrale begreper for hypotesetesting Begrep Nullhypotesen H 0 Definisjon/forklaring Utrykker "status quo"/"situation normal"/"ting er slik produsenter påstår"/"alt er greit" Signifikansnivå α Sannsynligheten
DetaljerMultippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p.
Multippel regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Det er fortsatt en responsvariabel y. Måten dette gjøre på er nokså
DetaljerEksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00
DetaljerLøsning eksamen desember 2016
Løsning eksamen desember 016 Oppgave 1 a) En drone har to uavhengige motorer. Vi innfører hendelsene A: motor 1 svikter B: motor svikter Dronen er avhengig av at begge virker, slik at sannsynligheten for
DetaljerKræsjkurs i STAT101. Noen anbefalinger Regn mange(5-10) oppgavesett til eksamen:
Kræsjkurs i STAT101 Noen anbefalinger Regn mange(5-10) oppgavesett til eksamen: Legg vekt på å forstå hva formlene brukes til, det vil si når, og hvordan? Lær sammenhengen mellom fordelingene og tema i
DetaljerEt lite notat om og rundt normalfordelingen.
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK 1000 Innføring i anvendt statistikk. Eksamensdag: Mandag 4. desember 2006. Tid for eksamen: 14.30 17.30. Oppgavesettet er
DetaljerTMA4240 Statistikk Høst 2007
TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,
DetaljerEcon 2130 uke 16 (HG)
Econ 213 uke 16 (HG) Hypotesetesting I Løvås: 6.4.1 6, 6.5.1-2 1 Testing av µ i uid modellen (situasjon I Z-test ). Grunnbegreper. Eksempel. En lege står overfor følgende problemstilling. Standardbehandling
DetaljerOppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir
DetaljerKp. 9.8 Forskjell mellom to forventninger
andeler I analysene skal vi se på situasjonene der σx og σ Y er kjente; normalantakelse a σx og σ Y er ukjente men σ X = σ Y ; normalantakelse og b σx og σ Y er ukjente og σ X σ Y ; normalantakelse 3 og
Detaljer