LØSNING: Oppgavesett nr. 1
|
|
- Mona Ludvigsen
- 6 år siden
- Visninger:
Transkript
1 LØSNING: Oppgavesett nr. MAT0 Statistikk, 208 (Versjon 0) Oppgave : ( fordeling, gjennomsnitt, varians og standardavvik ) a) Plotter fordelingen til x i : antall personer x i Figur : Antall observasjoner og de tilhørende antall overtidsdager.
2 b) Plotter høyden x i sfa. person nr. i: x i x i Figur 2: Høyden x i sfa. person nr. i. c) Gjennomsnittshøyden x: x n x i () cm (2) 69.2 cm (3) 2
3 d) Emirisk varians: ( n 2 ) S 2 x n (x i x) 2 (4) ( )2 + ( ) ( ) 2 2 cm 2 (5) 74.2 cm 2 (6) e) Empirisk standardavvik: ( n 2 ) S x S 2 x 74.2 cm cm (7) 3
4 Oppgave 2: ( lokaliseringsmål og spredningsmål ) a) Eksempler på statistiske størrelser som beskriver sentrum, altså lokalisering, av observasjoner: Gjennomsnitt: x n x i (8) hvor n er antall observasjoner og x i er verdien til observasjon nr. i. Median: median midtre observasjonen, n odde gjennomsnitt av to midterste observasjonene, n like (9) Typetall: typetall den verdien som forekommer hyppigst (0) 4
5 b) Eksempler på statistiske størrelser som beskriver spredningen i observasjoner: Modalprosent: modalprosent %-vis andel av observasjonene som har verdi lik typetallet () Variasjonsbredde: variasjonsbredde differansen mellom største og minste verdi (2) Empirisk varians: S 2 x n ( xi x ) 2 (3) hvor x er gjennomsnittet, n er antall observasjoner og x i er verdien til observasjon nr. i. Empirisk standardavvik: hvor S 2 x er varians. S x S 2 x (4) 5
6 c) i) Empirisk kovarians: S xy n ( xi x )( y i y ) (5) hvor x og y er gjennomsnitt, n er antall observasjoner, x i er verdien til x-observasjon nr. i og tilsvarende for y. Korrelasjonskoeffisient: R xy S xy S x S y (6) hvor S xy er empirisk kovarians, S x standardavvik for x-obervasjonene og S y er standardavvik for y-observasjonene. ii) S xy kan ha alle mulige reelle verdier, S xy,. iii) R xy er normalisert og ligger mellom og, R xy [, ]. iv) R xy er et mål på lineær korrelasjon mellom observasjonene x i og y i. v) R xy er enhetsuavhengig, dvs. ingen enhet. Dette betyr at R xy har samme verdi uansett hva slags enhet man bruker for å regne ut S xy, S x og S y. 6
7 vi) R xy : sterk negativ korrelasjon, dvs. store x hører sammen med små y. lineær 2 sammenheng mellom x og y, med negativt stigningstall R xy : sterk positiv korrelasjon, dvs. store x hører sammen med store y. lineær sammenheng mellom x og y, med positivt stigningstall R xy 0: ingen korrelasjon ukorrelert 2 Lineær sammenhenger mellom x og y betyr at de kan skrives på formen: y ax + b, (a og b er konstanter). Lineær er altså det samme som en rett linje. 7
8 Oppgave 3: ( kovarians ) a) For å regne ut standardavviket S x trenger vi gjennomsnittet x: x n x i (7) Standardavviket S x er da: S x S 2 x n (8) (x i x) 2 (9) (7 42)2 + (47 42) 2 + (23 42) 2 + (27 42) (20) For å regne ut standardavviket S y trenger vi gjennomsnittet ȳ: ȳ n y i (2) Standardavviket S y er da: S y S 2 y (22) n (y i ȳ) 2 (23) (58 6)2 + (06 6) 2 + (54 6) 2 + (46 6) (24) 8
9 Kovariansen er: S xy (x i x)(y i ȳ) (25) n [ (7 42)(58 6) + (47 42)(06 6) 4 ] +(23 42)(54 6) + (27 42)(46 6) (26) 968 (27) Vi kjenner nå S xy, S x og S y. Dermed kan vi regne ut korrelasjonskoeffisienten R xy : R xy S xy S x S y (28) (29) 9
10 b) Siden R xy er det en linær sammenheng mellom pris og etterspørsel. (Jfr. oppgave c vi i denne øvingen). Dermed kan vi velge to (vilkårlige) punkt x x, y y og x x 2, y y 2 fra tabellen i oppgavesettet, f.eks. x 7, y 58 og x 2 47, y Dette innsatt i topunktformelen gir: y y y 2 y x 2 x ( x x ) y ( x 7 ) (30) (3) y 2x (32) c) Fra oppgave 3b vet vi at det er en lineær sammenheng mellom pris og etterspørsel. Derfor er det figur A (33) som potensielt kan beskrive sammenhengen mellom pris og etterspørsel for dataene i tabellen. 0
11 Oppgave 4: ( korrelasjonskoeffisient - et mål på lineær sammenheng ) B R AB 0.95 C R AC A A D R AD A Figur 3: Sammenhenger mellom aksjene.
12 Oppgave 5: ( aksjeanalyse ) a) Gjennomsnittet ā og b: ā n b n a i b i NOK 07.6 NOK (34) NOK 49.8 NOK (35) b) Plott av a i og b i : ( i, 2, 3, 4, 5 ) a, b ( aksjekurser, NOK ) b i 30 0 a i ( måned nr. ) i Figur 4: Plott av a i og b i. c) Av figuren ser vi at aksjekursene til selskapet BETA (blå kurve) varierer mest. Derfor er BETA mest usikker. 2
13 d) i) Varians: S 2 a n (a i ā) 2 (0 07.6)2 + ( ) 2 + ( ) 2 + ( ) 2 + (4 07.6) NOK 2 NOK 2 S 2 b n (b i b) 2 ( )2 + ( ) 2 + ( ) 2 + ( ) 2 + ( ) NOK 2 NOK 2 ii) Siden S 2 b > S2 a så ser vi at dette stemmer med den grafiske konklusjonen fra oppgave 5c. e) i) Kovarians: S ab (a i ā)(b i n b) (36) [ (0 07.6)( ) + ( )( ) 5 + ( )( ) + ( )( ) ] + (4 07.6)( ) NOK 2 (37) 39.4 NOK 2 (38) 3
14 ii) Dermed blir korrelasjonskoeffisienten R ab : R ab S ab S a S b 39.4 NOK NOK NOK (39) iii) Korrelasjonskoeffisienten har ingen enhet. Den er enhetsløs. Lign.(39) er et eksempel som illustrerer dette. iv) Siden R ab er positiv, dvs. R ab > 0, så er det positiv korrelasjon. Med R ab 0.62 så hører store a til en viss grad sammen med store b. Dvs., til en viss grad, er det en positiv lineær sammenheng mellom a og b. 4
MAT110. Statistikk 1. Løsning til øvingsoppgaver Per Kristian Rekdal
MAT110 Statistikk 1 Løsning til øvingsoppgaver 2016 Per Kristian Rekdal 2 Forord Løsningsforslag: Dette er en samling av løsningsforslag til øvingene i emnet MAT110 Statistikk 1 ved Høgskolen i Molde fra
DetaljerMAT110. Statistikk 1. Løsning til øvingsoppgaver Per Kristian Rekdal
MAT110 Statistikk 1 Løsning til øvingsoppgaver 2017 Per Kristian Rekdal 2 Forord Løsningsforslag: Dette er en samling av løsningsforslag til øvingene i emnet MAT110 Statistikk 1 ved Høgskolen i Molde fra
DetaljerMAT110. Statistikk 1. Kompendium 2018, del 1. Per Kristian Rekdal
MAT110 Statistikk 1 Kompendium 2018, del 1 Per Kristian Rekdal 2 Innhold 0 Introduksjon 7 0.1 Statistikk........................................ 8 0.2 Oversikt over MAT110 Statistikk 1.........................
DetaljerLØSNING: Eksamen 22. mai 2018
LØSNING: Eksamen 22. mai 2018 MAT110 Statistikk 1, vår 2018 Oppgave 1: ( logistikk a Sannsynlighetene p i, med i = 1, 2, 3,..., 8 utgjør en gyldig sannsynlighetsfordeling fordi: 8 p i = i=1 + 5 + 40 +
DetaljerStatistikk. Forkurs 2017
Statistikk Forkurs 2017 Hva er statistikk? Undersøke Registrere Lage oversikt Presentasjon av informasjon Formidle Arbeidet med statistikk kan vi dele inn i to hovedområder: Samle inn og ordne opplysninger
DetaljerStatistikk. Forkurs 2018
Statistikk Forkurs 2018 Hva er statistikk? Undersøke Registrere Lage oversikt Presentasjon av informasjon Formidle Arbeidet med statistikk kan vi dele inn i to hovedområder: Samle inn og ordne opplysninger
DetaljerEksamen i. MAT110 Statistikk 1
Avdeling for logistikk Eksamen i MAT110 Statistikk 1 Eksamensdag : Torsdag 28. mai 2015 Tid : 09:00 13:00 (4 timer) Faglærer/telefonnummer : Molde: Per Kristian Rekdal / 924 97 051 Kristiansund: Terje
DetaljerDeskriptiv statistikk., Introduksjon til dataanalyse
Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.
DetaljerDeskriptiv statistikk., Introduksjon til dataanalyse
Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.
DetaljerKapittel 4: Matematisk forventning
Kapittel 4: Matematisk forventning TMA4240 Statistikk (F2 og E7) Multivariate tilfeller foreleses mandag 6.september, 2004 Ole.Petter.Lodoen@math.ntnu.no p.1/16 Forventing til funksjon av flere stokastiske
DetaljerForelesning 7 Statistiske beskrivelser av enkeltvariabler. Mål for sentraltendens
Forelesning 7 Statistiske beskrivelser av enkeltvariabler Statistiske mål for univariate fordelinger: Sentraltendens Verdien for fordelingens tyngdepunkt Spredning Hvor nært opp til tyngdepunktet ligger
DetaljerOppgavesett nr. 5. MAT110 Statistikk 1, Et transportfirma har et varemottak for lastebiler med spesialgods, se figur 1.
Innleveringsfrist: mandag 19. mars kl. 16:00 (version 01) Oppgavesett nr. 5 MAT110 Statistikk 1, 2018 Oppgave 1: ( logistikk ) Et transportfirma har et varemottak for lastebiler med spesialgods, se figur
DetaljerStatistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005
SOS110 Kvantitativ metode Forelesningsnotater 6 forelesning høsten 005 Statistisk beskrivelse av enkeltvariabler (Univariat analyse) Per Arne Tufte Disposisjon Datamatrisen Variabler Datamatrisen Frekvensfordelinger
DetaljerMAT110. Statistikk 1. Samling av øvingsoppgaver Per Kristian Rekdal
MAT110 Statistikk 1 Samling av øvingsoppgaver 2017 Per Kristian Rekdal 2 Forord Øvingsoppgaver: Dette er en samling av øvingsoppgaver i emnet MAT110 Statistikk 1 ved Høgskolen i Molde fra våren 2017. Samlingen
Detaljer2P, Statistikk Quiz. Test, 2 Statistikk
Test, 2 Statistikk Innhold 1.1 Statistisk undersøkelse... 2 2.2 Presentasjon av tallmateriale... 2 2.3 Sentralmål... 8 2.4 Spredningsmål... 11 2.5 Gruppert datamateriale... 14 Grete Larsen 1 1.1 Statistisk
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010
ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning
DetaljerKompendium V-2014 MAT110. Statistikk 1. Del 1 av 2. Per Kristian Rekdal
Kompendium V-2014 MAT110 Statistikk 1 Del 1 av 2 Per Kristian Rekdal 2 Figur 1: But under a different accounting convention... 3 4 Forord Dette er del I (av II) av kompendiet i faget MAT110 Statistikk
DetaljerSeksjon 1.3 Tetthetskurver og normalfordelingen
Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver
DetaljerMAT110. Statistikk 1. Samling av øvingsoppgaver Per Kristian Rekdal
MAT110 Statistikk 1 Samling av øvingsoppgaver 2016 Per Kristian Rekdal 2 Forord Øvingsoppgaver: Dette er en samling av øvingsoppgaver i emnet MAT110 Statistikk 1 ved Høgskolen i Molde fra våren 2016. Samlingen
DetaljerSannsynlighetsregning og Statistikk.
Sannsynlighetsregning og Statistikk. Leksjon Velkommen til dette kurset i sannsynlighetsregning og statistikk! Vi vil som lærebok benytte Gunnar G. Løvås:Statistikk for universiteter og høyskoler. I den
DetaljerFormelsamling i medisinsk statistikk
Formelsamling i medisinsk statistikk Versjon av 6. mai 208 Dette er en formelsamling til O. O. Aalen (red.): Statistiske metoder i medisin og helsefag, Gyldendal, 208. Gjennomsnitt x = n (x + x 2 + x 3
DetaljerEksamen i. MAT110 Statistikk 1
Avdeling for logistikk Eksamen i MAT110 Statistikk 1 Eksamensdag : Tirsdag 22. mai 2018 Tid : 09:00 13:00 (4 timer) Faglærer/telefonnummer : Molde + Kristiansund: Per Kristian Rekdal / 924 97 051 Hjelpemidler
DetaljerTyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4
3 Tyngdepunkt Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4240 H2006: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF
DetaljerFYS våren Linjetilpasning. Alex Read Universitetet i Oslo Fysisk institutt
FYS150 - våren 019 Linjetilpasning Alex Read Universitetet i Oslo Fysisk institutt Mål Studere en alternativ linjetilpasning der vi kjenner usikkerheten per målepunkt σ i (i stedet for å hente denne usikkerheten
DetaljerFormelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal
Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene
Detaljerstatistikk, våren 2011
ÅMA110 Sannsynlighetsregning med statistikk, våren 011 Kp. 3 Diskrete tilfeldige variable 1 Diskrete tilfeldige variable, innledning Hva er en tilfeldig variabel (stokastisk variabel)? Diskret tilfeldig
DetaljerLøsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår
Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x
DetaljerEt lite notat om og rundt normalfordelingen.
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte
DetaljerForelesning 7 Statistiske beskrivelser av enkeltvariabler. Mål for sentraltendens
Forelesning 7 Statistiske beskrivelser av enkeltvariabler Statistiske mål for univariate fordelinger: Sentraltendens Verdien for fordelingens tyngdepunkt Spredning Hvor nært opp til tyngdepunktet ligger
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.
ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling
Detaljer3.4: Simultanfordelinger (siste rest) 4.1,4.2,4.3: Multivariat del (ferdig med kapittel 3 og 4 etter denne forelesningen)
TMA4240 Statistikk H200 3.4: Simultanfordelinger (siste rest) 4.,4.2,4.3: Multivariat del (ferdig med kapittel 3 og 4 etter denne forelesningen) Mette Langaas Foreleses mandag 3. september 200 2 f (x,
DetaljerEt lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver?
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Boka (Ch 1.4) motiverer dette ved å gå fra histogrammer til tetthetskurver.
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) =P(B oga)+p(b
DetaljerTogforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at
Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4245 V2007: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF 4.1: La X være
Detaljerting å gjøre å prøve å oppsummere informasjonen i Hva som er hensiktsmessig måter å beskrive dataene på en hensiktsmessig måte.
Kapittel : Beskrivende statistikk Etter at vi har samlet inn data er en naturlig første ting å gjøre å prøve å oppsummere informasjonen i dataene på en hensiktsmessig måte. Hva som er hensiktsmessig måter
DetaljerØving 1 TMA4245 - Grunnleggende dataanalyse i Matlab
Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab For grunnleggende bruk av Matlab vises til slides fra basisintroduksjon til Matlab som finnes på kursets hjemmeside. I denne øvingen skal vi analysere
Detaljer1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene
1 Sec 3-2: Hvordan beskrive senteret i dataene 2 Sec 3-3: Hvordan beskrive spredningen i dataene Todeling av statistikk Deskriptiv statistikk Oppsummering og beskrivelse av den stikkprøven du har. Statistisk
DetaljerEt lite notat om og rundt normalfordelingen.
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte
DetaljerRegresjon med GeoGebra
Praksis og Teori Askim videregående skole 14.08.14 1 Lærplanmål 2 Punkter og Lister 3 Regresjon 4 Teori 5 Nytt verktøy Læreplanmål i 2P Modellering gjere målingar i praktiske forsøk og formulere matematiske
DetaljerKvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013
Tentamen matematikk GS3 Mandag 22. april 2013 DEL 1 Excel Oppgave 1. Hans låner 90 000 kr i banken til 4 % rente pr år. Nedbetalingstiden for lånet er 6 år. a) Lag tabellen nedenfor i Excel. År % rente
DetaljerSentralmål og spredningsmål
Sentralmål og spredningsmål av Peer Andersen Peer Andersen 2014 Sentralmål og spredningsmål i statistikk I dette notatet skal vi se på de viktigste momentene om sentralmål og spredningsmål slik de blir
DetaljerDataens tidsalder. Hvorfor data? Data, data, data. STK1000 Innføring i anvendt statistikk. Tirsdag 24. august 2010
STK1000 Innføring i anvendt statistikk Tirsdag 24. august 2010 Geir Storvik (modifisert etter I. Glad s tidligere presentasjon) 1 Data, data, data Genetiske data World Wide Web Overvåkning Medisinske bilder
DetaljerECON Statistikk 1 Forelesning 2: Innledning
ECON2130 - Statistikk 1 Forelesning 2: Innledning Data, beskrivende statistikk, visualisering Jo Thori Lind j.t.lind@econ.uio.no 1. Beskrivende statistikk Typer variable Nominelle: Gjensidig utelukkende
DetaljerDataanalyse. Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse?
Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse? Skrevet av: Kjetil Sander Utgitt av: estudie.no Revisjon: 1.0 (Sept.
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Mål på beliggenhet (2.6) Kvartiler: Deler de ordnede dataene inn i fire like store deler: 1. kvartil Q 1 : 25% av dataene
DetaljerVelkommen til TMA4240. Velkommen til TMA / 18
Velkommen til TMA4240 Velkommen til TMA4240 1 / 18 Kort om kurset TMA4240 Statistikk Jeg er Sara Martino Dere er MTDT, MTKJ, MTNANO, MTPETR Vi had forelesning: Tirsdager kl 14.15-16.00 i F1 Torsdager kl
DetaljerDiversifiseringsoppgaver
Diversifiseringsoppgaver 1 Et firma vurderer to ettårige prosjekter som i dag vil kreve en investering på 100. Firmaet kan anvende hele eller deler av hvert prosjekt. Opplysninger om prosjektene er gitt
DetaljerUtvalgte løsninger oppgavesamlingen
P kapittel Modellering Utvalgte løsninger oppgavesamlingen 01 a Snitthøyden i 1910 lir 170,0 171, 4 170,7. I 1970 lir den 177,1 179, 4 178,3. Med som antall år etter 1900 og y som snitthøyden i entimeter
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 13: Lineær korrelasjons- og regresjonsanalyse Kap. 13.1-13.3: Lineær korrelasjonsanalyse. Disse avsnitt er ikke pensum,
DetaljerStatistikk 1. Nico Keilman. ECON 2130 Vår 2014
Statistikk 1 Nico Keilman ECON 2130 Vår 2014 Pensum Kap 1-7.3.6 fra Løvås «Statistikk for universiteter og høgskoler» 3. utgave 2013 (eventuelt 2. utgave) Se overspringelsesliste på emnesiden Supplerende
DetaljerSeksjon 1.3 Tetthetskurver og normalfordelingen
Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data ved tall Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver
DetaljerEksamen våren 2016 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Variasjonsbredde = 6 C ( 6 C) = 1 C Gjennomsnitt: + 0 + ( 4) + ( 6) + + 6 0 x = = =
DetaljerStatistikk 2P, Prøve 2 løsning
Statistikk 2P, Prøve 2 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Tallmaterialet under viser alderen i år på skolebarna som kjører med en bestemt skolebuss. Mandag var alle elevene med
DetaljerØving 1 TMA4240 - Grunnleggende dataanalyse i Matlab
Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to
DetaljerSentralmål og spredningsmål
Sentralmål og spredningsmål 3.1 Læreplanmål 1 3.1 Gjennomsnitt og typetall 2 3.2 Median 6 3.3 Variasjonsbredde og kvartilbredde 10 3.4 Varians og standardavvik 15 3.5 Digitale sentralmål og spredningsmål
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2010
ÅMA0 Sannsynlighetsregning med statistikk, våren 00 ÅMA0 Sannsynlighetsregning med statistikk våren 00 Praktisk om kurset Foreleser og faglig ansvarlig: Bjørn H. Auestad (kontor: E-536). Undervisningstider:
DetaljerSTK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler
STK1000 Uke 36, 2016. Studentene forventes å lese Ch 1.4 (+ 3.1-3.3 + 3.5) i læreboka (MMC). Tetthetskurver Eksempel: Drivstofforbruk hos 32 biler Fra histogram til tetthetskurver Anta at vi har kontinuerlige
DetaljerLøsninger til innlæringsoppgavene
Tall i arbeid Påbygging Kapittel 4 Modellering Løsninger til innlæringsoppgavene 4.1 a Modellen gir følgende verdier for årene i oppgaven: År 1955 1985 015 Folketall (millioner) 3,5 4, 4,8 b Setter vi
DetaljerFormelsamling V MAT110 Statistikk 1. Per Kristian Rekdal
Formelsamling V-2016 MAT110 Statistikk 1 Per Kristian Rekdal Figur 1: Statistikk. 3 Innhold 1 Beskrivende statistikk 9 1.1 Populasjon og utvalg.................................. 9 1.2 Statistiske mål
DetaljerLøsningsforslag til obligatorisk oppgave i ECON 2130
Andreas Mhre April 15 Løsningsforslag til obligatorisk oppgave i ECON 13 Oppgave 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) E(XY) = - E(X ) X og Z er uavhengige, så
DetaljerForventning og varians.
Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.) Forventningsverdi gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: E(X) f(),x diskret
DetaljerEksamen 2P MAT1015 Vår 2012 Løsning
Eksamen 2P MAT1015 Vår 2012 Oppgave 1 (14 poeng) a) 20 elever blir spurt om hvor mange datamaskiner de har hjemme. Se tabellen ovenfor. Finn variasjonsbredden, typetallet, medianen og gjennomsnittet. Variasjonsbredden
DetaljerLøsningskisse seminaroppgaver uke 11 ( mars)
HG Mars 008 Løsningskisse seminaroppgaver uke (0.-4. mars) ECON 0 EKSAMEN 004 VÅR Oppgave En gitt prøve er laget som en flervalgsprøve ( multiple choice test ). Prøven består av tre spørsmål. For hvert
DetaljerDEL 1 GRUNNLEGGENDE STATISTIKK
INNHOLD 1 INNLEDNING 15 1.1 Parallelle verdener........................... 18 1.2 Telle gunstige.............................. 20 1.3 Regneverktøy og webstøtte....................... 22 1.4 Oppgaver................................
DetaljerTMA4240 Statistikk Høst 2009
TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Oppgave 1 Oppgave 11.5 fra læreboka. Oppgave 2 Oppgave 11.21 fra læreboka. Oppgave
DetaljerKapittel 1: Data og fordelinger
STK Innføring i anvendt statistikk Mandag 8. august 8 Ingrid K. lad I løpet av dette kurset skal dere bli fortrolig med statistisk tenkemåte forstå teori og metoder som ligger bak knappene/menyene i vanlige
DetaljerMATEMATIKK (MAT1005) Sentralmål / Spredningsmål
??.??.???? MATEMATIKK (MAT1005) Sentralmål / Spredningsmål DEL 1 (UTEN HJELPEMIDLER) 30 minutter DEL 2 (MED HJELPEMIDLER) 60 minutter (Del 1 må leveres inn før hjelpemidlene kan benyttes) Total poengsum:
DetaljerEksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
DetaljerForelesning 13. mars, 2017
Forelesning 13. mars, 217 AVSNITT 5.2 Kovariansen mellom to variable Korrelasjon mellom to variable AVSNITT 5.3 Betingede fordelinger Kovariansen mellom to stokastiske variable Kovariansen mellom to stokastiske
DetaljerLoven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere
2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) P(B oga)+p(b ogā) P(B A)P(A)+P(B Ā)P(Ā) ST0202 Statistikk for samfunnsvitere Bo Lindqvist
DetaljerForventning og varians.
Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.1) Forventningsverdi = gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: x xf(x),x
DetaljerNår du har arbeidet deg gjennom dette kapittelet, er målet at du skal kunne
2 Statistikk Innhold Kompetansemål Statistikk, Vg2P... 1 Modul 1: Statistisk undersøkelse... 2 Modul 2: Presentasjon av tallmateriale... 4 Modul 3: Sentralmål... 12 Modul 4: Spredningsmål... 15 Modul 5:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Torsdag 9. oktober 2008. Tid for eksamen: 15:00 17:00. Oppgavesettet er på
DetaljerForkurs i kvantitative metoder ILP 2019
Forkurs i kvantitative metoder ILP 2019 Dag 2. Forkurs som arbeidskrav for kvantitativ deler av PED-3055 Gregor Maxwell og Bent-Cato Hustad Førsteamanuensis i spesialpedagogikk Hva lærte vi i går? Hva
DetaljerLøsningsforslag for 2P våren 2015
Del 1 Oppgave 1 Sortert i stigende rekkefølge blir det: 4 5 6? 10 12 Medianen, som er 7, skal ligge midt mellom de to midterste tallene 6 og det ukjente tallet, som derfor må være 8. Oppgave 2 Opprinnelig
DetaljerTMA4240 Statistikk Høst 2016
TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 12 Denne øvingen består av oppgaver om enkel lineær regresjon. De handler blant
DetaljerForeleses onsdag 8. september 2010
TMA4240 Statistikk H200 4.2: Varians (univariat del) 4.4: Chebyshevs teorem 3.4: Simultanfordelinger Mette Langaas Foreleses onsdag 8. september 200 Mette.Langaas@math.ntnu.no, TMA4240H200 2 4.2 Varians
DetaljerTMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Variasjonsredden: 6 C ( 6 C) = 6 C+ 6 C= 12 C Gjennomsnittet: 2 C+ 0 C + ( 4 C) + (
DetaljerMål på beliggenhet (2.6) Beregning av kvartilene Q 1, Q 2, Q 3. 5-tallssammendrag. ST0202 Statistikk for samfunnsvitere
2 Mål på beliggenhet (2.6) Kvartiler: Deler de ordnede dataene inn i fire like store deler: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 1. kvartil Q 1 : 25% av dataene
DetaljerUtvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling
Kapittel 8 Utvalgsfordelinger; utvalg, populasjon, grafiske metoder, X, S 2, t-fordeling, χ 2 -fordeling TMA4240 H2006: Eirik Mo 2 Til nå... Definert sannsynlighet og stokastiske variabler (kap. 2 & 3).
DetaljerØVINGER 2017 Løsninger til oppgaver. Øving 1
ØVINGER 017 Løsninger til oppgaver Øving 1.1. Frekvenstabell For å lage en frekvenstabell må vi telle antall observasjoner av hvert antall henvendelser. Siden antall henvendelser på en gitt dag alltid
DetaljerHØGSKOLEN I STAVANGER
HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 5. JUNI 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET
DetaljerIntroduksjon til statistikk og dataanalyse. Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013
Introduksjon til statistikk og dataanalyse Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013 Introduksjon til statistikk og dataanalyse Hollywood-filmer fra 2011 135 filmer Samla budsjett: $ 7 166
DetaljerSAMMENDRAG OG FORMLER. Nye Mega 9A og 9B
SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi
DetaljerInnhold. Innledning. Del I
Del I Innledning 1 Hva er statistikk?... 19 1.1 Bokas innhold 20 1.1.1 Noen eksempler 20 1.1.2 Historie 23 1.1.3 Bokas oppbygning 25 1.2 Noen viktige begreper 26 1.2.1 Populasjon og utvalg 26 1.2.2 Variasjon
DetaljerKapittel 2: Hendelser
Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en
Detaljer2T kapittel 3 Modellering og bevis Løsninger til innlæringsoppgavene
T kapittel 3 Modellering og bevis Løsninger til innlæringsoppgavene 3.1 a Modellen gir følgende verdier for årene i oppgaven: År 1955 1985 015 Folketall (millioner) 3,5 4, 4,8 b Setter vi inn for = 00
DetaljerKort overblikk over kurset sålangt
Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente
DetaljerStatistikk Oppgaver. Innhold. Statistikk Vg2P
Statistikk Oppgaver Innhold Modul 2: Presentasjon av tallmateriale... 2 Tabeller- Frekvens - Relativ frekvens - Kumulativ frekvens... 2 Søylediagram/stolpediagram... 3 Sektordiagram... 3 Linjediagram/kurvediagram...
DetaljerMASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00
MASTER I IDRETTSVITENSKAP 2014/2016 Individuell skriftlig eksamen i STA 400- Statistikk Fredag 13. mars 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 10 sider inkludert forsiden
DetaljerMAT110. Statistikk 1. Kompendium 2018, del 2. Per Kristian Rekdal
MAT110 Statistikk 1 Kompendium 2018, del 2 Per Kristian Rekdal 2 Innhold 0 Introduksjon 7 0.1 Statistikk........................................ 8 0.2 Oversikt over MAT110 Statistikk 1.........................
DetaljerSentralmål og spredningsmål
Sentralmål og spredningsmål av Peer Andersen Peer Andersen 2014 Sentralmål og spredningsmål i statistikk I dette notatet skal vi se på de viktigste momentene om sentralmål og spredningsmål slik de blir
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 2: Beskrivende analyse og presentasjon av data for én variabel Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start 2 Grafisk
Detaljer( ) 3. DEL 1 Uten hjelpemidler. Oppgave 1. Oppgave 2. Oppgave I gjennomsnitt har hver elev 1,25 søsken.
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 Antall søsken i klassen er: 0 5+ 1 6+ 2 2+ 3 2+ 4 1= 0+ 6+ 4+ 6+ 4= 20 20 5 = = 1, 25
DetaljerMASTER I IDRETTSVITENSKAP 2013/2015 MASTER I IDRETTSFYSIOTERAPI 2013/2015. Individuell skriftlig eksamen. STA 400- Statistikk
MASTER I IDRETTSVITENSKAP 013/015 MASTER I IDRETTSFYSIOTERAPI 013/015 Individuell skriftlig eksamen i STA 400- Statistikk Mandag 10. mars 014 kl. 10.00-1.00 Hjelpemidler: kalkulator Eksamensoppgaven består
DetaljerKontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.
Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4 november 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.
DetaljerHøye skårer indikerer høye nivåer av selvkontroll.
Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2015 Skriftlig skoleeksamen tirsdag 19. mai, 09:00 (4 timer) Resultater publiseres 10. juni Kalkulator
DetaljerEksamen våren 2015 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 For et utvalg der antall observasjoner er et partall, slik som her, er medianen gjennomsnittet
DetaljerEksamensoppgave i SØK1004 - Statistikk for økonomer
Institutt for samfunnsøkonomi Eksamensoppgave i SØK1004 - Statistikk for økonomer Faglig kontakt under eksamen: Hildegunn E. Stokke, tlf 73591665 Bjarne Strøm, tlf 73591933 Eksamensdato: 01.12.2014 Eksamenstid
Detaljer