Beskrivende statistikk.
|
|
- Agnar Mikalsen
- 9 år siden
- Visninger:
Transkript
1 Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke I løpet av uken blir løsningsforslag lagt ut på emnesiden Beskrivende statistikk. Gjør først oppgave 1 og. Hvis du mener du da allerede har kontroll på å regne ut gjennomsnitt og standardavvik, og å finne median, kan du gjøre praktiske oppgaven oppgave 6). Det er best om du finner noen å gjøre den sammen med gruppeoppgave). Oppgave 1 Hensikten med denne oppgaven er å sjekke for dere selv om dere har forstått definisjonene av x, x og s. Oppgave a, b, c og d skal derfor i første omgang regnes uten bruk av statistikkdelen på kalkulatoren. Et datasett består av observasjonene { 5,, 7, 4, 3 }. a ) Finn empirisk forventningsverdi x for dataene. Finn medianen x for dataene. Regn ut empirisk varians s og standardavvik s ved hjelp av formelen s x i x). d ) Regn ut varians s og standardavvik s ved hjelp av formelen s x i n x. e ) Finn ut hvordan statistikkdelen på kalkulatoren din finner x, x og s. For standardavviket finnes det antagelig to varianter. Bruk svaret på c og d oppgaven for å finne ut hvilken av disse som skal brukes. Oppgave Et forsøk bestod i å kaste 5 mynter, og registrere antall kron. Dette ble gjentatt 50 ganger, og resultatet når dataene er ordnet ble { 0, 1, 1, 1, 1, 1, 1, 1,,,,,,,,,,,,,,,,, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5} a ) Finn median og kvartilavstand for dette datasettet. Lag en frekvenstabell med både absolutte og relative frekvenser) for dette datasettet. Regn ut den empiriske forventningsverdien x uten bruk av statistikkdelen på kalkulatoren). Før du begynner å regne bør du finne en måte å effektivisere utregninga av x pånår det som her er mange like verdier. Sett opp denne metoden som en generell formel med summetegn). d ) Regn også ut empirisk standardavvik s. Før du begynner å regne bør du finne en måte å effektivisere formelen for s pånår det som her er mange like verdier. Sett opp begge varianter av denne metoden som en generell formel med summetegn).
2 Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. e ) Finn ut hvordan kalkulatoren din kan regne ut x og s, vedå utnytte at det er mange like verdier så du slipper å taste inn alle de 50 enkeltobservasjonene. Oppgave 3 Kalkulatorøvelse eksempel hentet fra Vännmann: Matematisk Statistikk, Universitetsforlaget 1989): a ) I en undersøkelse ved et steinbrudd i Gränges i Sverige ble tidsforbruk i sekunder) ved å fylle en lastebil med pukkstein målt som del av en undersøkelse om en ny type grabb ga raskere fylling enn den gamle). Finn forventningsverdi og standardavvik når vi har følgende obesrvasjoner: {155, 153, 18, 17, 69, 84, 99, 110, 11, 181, 176, 79, 94, 111, 118}. Sjekk for deg selv) at du forstår hva også de andre empiriske statistiske målene du får på kalkulatoren betyr. Egentlig består datasettet av 114 enkeltverdier, som i klasseinndelt frekvensdiagram er Intervall y j Frekvens < 60, 80] < 80, 100] 90 8 < 100, 10] < 10, 140] < 140, 160] < 160, 180] 170 < 180, 00] 190 Siden du ikke har oppgitt enkeltverdiene må du bruke midtpunktet y j i hvert intervall som observert verdi. Finn forventningsverdi og standardavvik for dette datasettet. Oppgave 4 I denne oppgaven skal dere se på og advares mot) et avrundingsproblem som kan oppstånår variasjonen standardavviket) er lite i forhold til størrelsen på de observerte dataene og x). I denne oppgaven består datasettet x av tallene x , x og x a) Regn ut forventningsverdien x og angi medianen x til datasettet x. b) Regn utstandardavviket s til datasettet x påfiremåter: 1. Via formelen s 1 n 1 x i x).. Via formelen s 1 n 1 x i nx), der du bruker x med tre desimaler. 3. Via formelen s 1 n 1 x i nx), der du bruker x med seks desimaler. 4. Med kalkulator. Diskuter resultatene fra b oppgaven med medstudentene, og konkluder med et par råd om hvordan tallsett der variasjonen er liten i forhold til størrelsen på tallene bør håndteres.
3 Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. 3 Oppgave 5 Teorioppgave. Omformingen i s xx, telleren i den empiriske variansen kan vises slik: x i x) 1) x i x i x + x ) ) x i x i x nx + nx 5) x i x + x i nx + nx 6) x 3) x i x x i nx a) La n, og gjennomfør utregningen over med x 1, x og x uten bruk av summetegn. x i + nx 4) Kommenter spesielt hva omformingen i hver likhet bygger på. En tilsvarende omforming som vi får bruk for senere i pensum) er s xy x i x)y i y) x i y i nx y Forsøk å vise dette for generell n, som i eksemplet i starten av oppgaven). Oppgave 6 Praktisk gruppeoppgave. I denne oppgaven skal dere gjøre et praktiske forsøk, med terning- og myntkast e.l. I tillegg til å være en øvelse i beskrivende statistikk skal resultatet brukes til å illustrere teorien seinere i semesteret. Det er derfor ønskelig at dere leverer den inn. Resultatet bør presenteres på ett enkelt ark for hvert forsøk. Dette skal være oversiktlig og egnet til åvisepå skjerm i klasserom. Legg litt flid i presentasjonen, korrekte utregninger og oversiktlig figur er mye viktigere enn åfåkastetså mange terninger som mulig! Lag den håndtegnet! Dette går raskere og mye penere enn ved bruk av Excel som erfaring fra tidligere viser klart.) Presentasjonen skal som sin viktigste del inneholde etstolpediagram som illustrere resultatene. På dette skal x og s være inntegnet. På den vertikale aksen skal skala både for frekvens totalt antall) og for relativ frekvens andel) være med. Den horisontale aksen skal ha med alle mulige verdier, selv om det kanskje ikke er noen observasjoner av de mer ekstreme verdiene. I tillegg skal det være med en frekvenstabell, og utregnet verdi av gjennomsnittet x og standardavviket s. Ikke glem en overskrift som forteller hva dataene handler om, og navn! I utgangspunktet skal du bare gjøre et av forsøkene men er lov til ågjøreflere, og eventuelt finne på eget forsøk). Antall kron på kast med to mynter. Kast to mynter n 00 ganger. Registrer antall kron mulige verdier {0, 1, } ). Antall øyne på enkelt terningkast. Kast en terning minst) n00 ganger. Registrer antall øyne mulige verdier {1,, 3, 4, 5, 6}).
4 4 Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. Sum av antall øyne på to terninger. Kast to terninger n300 ganger. Registrer summen av antall øyne mulige verdier {, 3,...,1}). Sum av antall øyne på fire terninger. Kast fire terninger n 300 ganger. Registrer summen av antall øyne mulige verdier {4, 5, 6,...,4}). Dette tar litt tid. Stor gruppe? Antall seksere på kast med fem terninger. Kast fem terninger n 00 ganger. Registrer antall seksere mulige verdier {0, 1,, 3, 4, 5}). Antall kron på kast med ti mynter. Kast 10 mynter n 10 ganger. Registrer antall kron mulige verdier {0, 1,,...,10}). Dette tar litt tid. Stor gruppe? Korrelasjon første og summen av to terninger Dette forsøket forutsetter at du er villig til å foregripe pensum litt og finne ut hvordan du regner ut korrelasjon, regresjonskoeffisienter og tegner spredningsplott. Det er fint om noen tar denne utfordringen. I dette forsøket skal dere kaste to terninger, og en av dem må identifiseres som første, og utfallet av dette i i-te forsøk kalles x i mulige verdier: {1,, 3, 4, 5, 6}). Dessutenskalsummenavantalløynepå de to terningene registreres, og utfallene kalles y i mulige verdier: {, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1}). Hvis du ikke har to forskjellige terninger så kast den samme terningen to ganger. Gjenta forsøket n 50 ganger og registrer parene x, y) Antall øyne på første terning, summen av antall øyne på de to terningene ). Lag et spredningsplott av resultatene. Det blir antagelig flere like par, marker dette ved å tegne flere punkter rett ved siden av hverandre. Regn ut gjennomsnitt og standardavvik for x ene, og marker dette langs førsteaksen. Regn ut gjennomsnitt og standardavvik for y ene, og marker dette langs andreaksen. Regn ut den empiriske korrelasjonen r. Regn ut regresjonslikningen y a + bx, og tegn regresjonslinja inn i spredningsplottet. Andre forsøk Det er også lovå konstruere egne forsøk. Pass påå beskrive forsøket i overskriften så det blir forståelig for uinvidde. Noen mulige temaer: Kast med assymetrisk terning f.eks laget av en fyrstikkeske). Kast med mynt mot vegg. Registrer avstand mellom mynt og vegg. En eller annen ikke for voldsom) variant av åkastepå blink. Forslag til flere oppgaver fra læreboka Løvås). Løsningsforslag lagt ut på fagets hjemmeside: Kapittel, oppg..7,.8,.9,.10, , Hans Petter Hornæs
5 Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. 5 Fasit, Beskrivende statistikk. Oppgave 1 a) x Det ordnede datasettet er {, 3, 4, 5, 7 }, og medianen er midterste verdi i dette, altså x 4. c) s 5 4.) + 4.) +7 4.) +4 4.) +3 4.) 3.7, s d) s , s Oppgave a ) Siden settet allerede er ordnet kan vi finne midterste verdi som det står. Siden 50 er et partall vil dette bli gjennomsnittet av 5. og 6. verdi, og da begge disse er 3 er x 3 b) d ) Siden 50/41.5 finner vi q 1 mellom 1.og 13. verdi som begge er, så q 1. Tilsvarende finner vi q 3 mellom 38. og 39. verdi, som begge er 4, så q 3 4. Dermed er kvartilavstanden 4. i Frekvens Relativ frekvens 0 1 1/ / / / / / I telleren skal vi addere 1 null, 7 enere, 16 toere, 1 treere, 11 firere og 3 femmere som gir x Ved å ordne litt på brøken kan dette omskrives til.68 1 x som er summen av produktene mellom 1. og 3. eller 4.) kolonne i frekvenstabellen. Dette kan generelt skrives m x y j f j j1 der y j j {1,,,m} er verdiene som finnes i listene her y 1 0,y 1,..., y m y 6 5),mens f j er den relative frekvensen av y j. Dette er summen av produktet av verdiene på observasjonene med den relative frekvensen denne verdien opptrer med. Senere skal vi se på teoretisk forventningsverdi, som er det tilsvarende uttrykket med de relative frekvensene erstattet med sannsynligheten for de forskjellige verdiene. Hvis vi bruker formelen x i nx )/) kan vi gruppere summen i teller på tilsvarende måte: s , s Generelt kan dette skrives s 1 m j1 y j x) f j 1 m yj f j x j1
6 6 Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. Oppgave 3 a) x 1.7, s b) x 109.3, s 5.4. Oppgave 4 a) x Som sluttsvar gies vanligvis gjennomsnitt med en desimal mer enn rådataene, dvs. x , men som vi skal se kan vi trenge fler i mellomregningene. x x b) 1. s xx ) ) ) s s xx /) s xx /så s / s xx så s / s xx så s / s men som sluttsvar er det vanlig med en desimal mer enn rådataene, dvs. s 0.076). Formelen s 1 n n 1 x i nx) er følsom for avrundingsfeil på x når variasjonen er liten i forhold til størrelsen på dataene. Ta derfor med mange desimaler i mellomregningene. Et alternativ er å transformere dataene, om vi subtraherer samme verdi, f.eks. 13, fra hver verdi endres ikke standardavviket, og for 0.45, 0.60 og 0.55 er ikke variasjonen spesielt liten i forhold til størrelsen )/ 0.080, enda bedre ved å trekke fra 13.4 eller Oppgave 5 a) x 1 x) +x x) 1) x 1 x 1x + x + x x x + x ) x 1 + ) x x1 x +x x)+ x + x ) 3) Andre kvadratsetning på hvertledder 1), mens ) erå bytte rekkefølge på leddene og samle ledd av samme type i parenteser dvs. i et eget summetegn). x 1 + x ) x x1 + x )+x 4) x 1 + ) x x x +x 5) I 3) er de felles faktorene x og satt utenfor parentes i midterste ledd, mens siste ledd er å addere n like tall. I 4) har vi at omformet x x 1 + x )/ tilx 1 + x x generelt x i nx). I 5) multipliseres midterste ledd sammen, og i 6) trekkes de to siste leddene sammen: x 1 + x ) x +x 6) x 1 + ) x x b) x i x)y i y) 1) x i y i y ) x i y i x i x x i y i x i y xy i + x y) ) nx y + nx y 6) y i + nx y 4) x i y i x i y i ) ) x i y i nx y x i y + y i x)+ y nx x ny + nx y 5) x i y i nx y x y 3) Hans Petter Hornæs
ST0103 Brukerkurs i statistikk Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST0103 Brukerkurs i statistikk Høst 2014 Løsningsforslag Øving 1 2.1 Frekvenstabell For å lage en frekvenstabell må vi telle
INNHOLD. Matematikk for ungdomstrinnet
INNHOLD STATISTIKK... 2 FREKVENS... 2 RELATIV FREKVENS... 2 FREKVENSTABELL... 2 KLASSEDELING... 3 SØYLEDIAGRAM (STOLPEDIAGRAM)... 3 LINJEDIAGRAM... 4 SEKTORDIAGRAM... 4 HISTOGRAM... 4 FRAMSTILLING AV DATA...
Forelening 1, kapittel 4 Stokastiske variable
Forelening 1, kapittel 4 Stokastiske variable Eksempel X = "antall kron på kast med to mynter (før de er kastet)" Uniformt utfallsrom {MM, MK, KM, KK}. X = x beskriver hendelsen "antall kron på kast med
ØVINGER 2017 Løsninger til oppgaver. Øving 1
ØVINGER 017 Løsninger til oppgaver Øving 1.1. Frekvenstabell For å lage en frekvenstabell må vi telle antall observasjoner av hvert antall henvendelser. Siden antall henvendelser på en gitt dag alltid
EKSAMEN. EMNEANSVARLIG: Terje Bokalrud og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler.
KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Kvalitetsledelse med Statistikk. SMF2121 EKSAMENSDATO: 1. juni 2010 KLASSE: Ingeniørutdanning TID: kl. 9.00 13.00. EMNEANSVARLIG: Terje Bokalrud og Hans Petter
EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA 1081F REA1081) EKSAMENSDATO: 1. juni 2010. KLASSE: Flexibel ingeniørutdanning, 2kl. Bygg. TID: kl. 9.00 12.00. FAGLÆRER: Hans Petter Hornæs ANTALL
EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 1. juni 2010. KLASSE: HIS 08 11. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside)
1 Grafisk framstilling av datamateriale
1 Grafisk framstilling av datamateriale Dette notatet er laget med tanke på åfå til en rask gjennomgang av denne delen av pensum. Determentforå ha nedskrevet det som forholdsvis rakt blir sagt i forelesning,
Statistikk. Forkurs 2017
Statistikk Forkurs 2017 Hva er statistikk? Undersøke Registrere Lage oversikt Presentasjon av informasjon Formidle Arbeidet med statistikk kan vi dele inn i to hovedområder: Samle inn og ordne opplysninger
Statistikk. Forkurs 2018
Statistikk Forkurs 2018 Hva er statistikk? Undersøke Registrere Lage oversikt Presentasjon av informasjon Formidle Arbeidet med statistikk kan vi dele inn i to hovedområder: Samle inn og ordne opplysninger
STK1100 våren Betinget sannsynlighet og uavhengighet. Svarer til avsnittene 2.4 og 2.5 i læreboka
STK1100 våren 2017 Betinget sannsynlighet og uavhengighet Svarer til avsnittene 2.4 og 2.5 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Eksempel 1 Vi vil først ved hjelp av et eksempel
Deskriptiv statistikk., Introduksjon til dataanalyse
Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.
ting å gjøre å prøve å oppsummere informasjonen i Hva som er hensiktsmessig måter å beskrive dataene på en hensiktsmessig måte.
Kapittel : Beskrivende statistikk Etter at vi har samlet inn data er en naturlig første ting å gjøre å prøve å oppsummere informasjonen i dataene på en hensiktsmessig måte. Hva som er hensiktsmessig måter
Forelesning 5, kapittel 3. : 3.5: Uavhengige hendelser.
Forelesning 5, kapittel 3. : 3.5: Uavhengige hendelser. Kast med to terninger, A er sekser på første terning og B er sekser på andre terning. Sekser på begge terningene er Fra definisjonen av betinget
Sannsynlighet og statistikk S2 Løsninger
Sannsynlighet og statistikk S2 Løsninger Innhold 3. Stokastiske variabler og sannsynlighetsfordelinger... 2 3.2 Forventningsverdi Varians Standardavvik... 9 3.3 Normalfordelingen... 7 3.4 Sentralgrensesetningen...
Sannsynlighetsregning og Statistikk.
Sannsynlighetsregning og Statistikk. Leksjon Velkommen til dette kurset i sannsynlighetsregning og statistikk! Vi vil som lærebok benytte Gunnar G. Løvås:Statistikk for universiteter og høyskoler. I den
Test, 3 Sannsynlighet og statistikk
Test, 3 Sannsynlighet og statistikk Innhold 3. Stokastiske variabler og sannsynlighetsfordelinger... 3. Forventningsverdi, varians og standardavvik... 5 3.3 Normalfordelingen... 4 3.4 Sentralgrensesetningen...
Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår
Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x
Sannsynlighet og statistikk S2 Oppgaver
annsynlighet og statistikk 2 Oppgaver Innhold 3 tokastiske variabler og sannsynlighetsfordelinger 2 32 Forventningsverdi Varians tandardavvik 5 33 Normalfordelingen 9 34 entralgrensesetningen 35 Hypotesetesting
1 Sec 3-2: Hvordan beskrive senteret i dataene. 2 Sec 3-3: Hvordan beskrive spredningen i dataene
1 Sec 3-2: Hvordan beskrive senteret i dataene 2 Sec 3-3: Hvordan beskrive spredningen i dataene Todeling av statistikk Deskriptiv statistikk Oppsummering og beskrivelse av den stikkprøven du har. Statistisk
Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter
Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter Fagstoff Listen [] Hendelse En hendelse i en sannsynlighetsmodell består av ett eller flere utfall. Vi ser på det tilfeldige forsøket «kast
ECON240 Vår 2018 Oppgaveseminar 1 (uke 6)
ECON240 Vår 2018 Oppgaveseminar 1 (uke 6) Oppgaver til prerequisites og kapittel 1 fra læreboken Example P.1, P.5, P.6, P.7, P.8, P.9, P.11, P.12, P.13, og P.14 Example 1.1, 1.2, 1.3, 1.4, 1.6, 1.7, 1.9,
Deskriptiv statistikk., Introduksjon til dataanalyse
Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.
Sentralverdi av dataverdi i et utvalg Vi tenker oss et utvalg med datapar. I vårt eksempel har vi 5 datapar.
Statistisk behandling av kalibreringsresultatene Del 4. v/ Rune Øverland, Trainor Elsikkerhet AS Denne artikkelserien handler om statistisk behandling av kalibreringsresultatene. Dennne artikkelen tar
Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Planleggingsdokument
Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer
TMA4240 Statistikk Høst 2016
TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper
ECON240 Høst 2017 Oppgaveseminar 1 (uke 35)
ECON40 Høst 017 Oppgaveseminar 1 (uke 35) Oppgaver til prerequisites og kapittel 1 fra læreboken Example P.1, P.5, P.6, P.7, P.8, P.9, P.11, P.1, P.13, og P.14 Example 1.1, 1., 1.3, 1.4, 1.6, 1.7, 1.9,
Simulering - Sannsynlighet
Simulering - Sannsynlighet Når regnearket skal brukes til simulering, er det et par grunninnstillinger som må endres i Excel. Hvis du får feilmelding om 'sirkulær programmering', betyr det vanligvis at
Simulering på regneark
Anne Berit Fuglestad Simulering på regneark Trille terninger eller kaste mynter er eksempler som går igjen i sannsynlighetsregningen. Ofte kunne vi trenge flere forsøk for å se en klar sammenheng og få
Statistikk 1. Nico Keilman. ECON 2130 Vår 2014
Statistikk 1 Nico Keilman ECON 2130 Vår 2014 Pensum Kap 1-7.3.6 fra Løvås «Statistikk for universiteter og høgskoler» 3. utgave 2013 (eventuelt 2. utgave) Se overspringelsesliste på emnesiden Supplerende
Sannsynlighetsregning
Sannsynlighetsregning Per G. Østerlie Thora Storm vgs per.osterlie@stfk.no 5. april 203 Hva og hvorfor? Hva? Vi får høre at det er sannsynlig at et eller annet kommer til å skje. Sannsynligheten for å
EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.
KANDIDATNUMMER: EKSAMEN FAGNAVN: Statistikk. FAGNUMMER: Rea 1082 EKSAMENSDATO: 14. mai 2009. KLASSE: Ing. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside) TILLATTE
Introduksjon til statistikk og dataanalyse. Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013
Introduksjon til statistikk og dataanalyse Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013 Introduksjon til statistikk og dataanalyse Hollywood-filmer fra 2011 135 filmer Samla budsjett: $ 7 166
Sannsynlighetsbegrepet
Sannsynlighetsbegrepet Notat til STK1100 Ørnulf Borgan Matematisk institutt Universitetet i Oslo Januar 2004 Formål Dette notatet er et supplement til kapittel 1 i Mathematical Statistics and Data Analysis
i x i
TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale
EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 11. juni 2007. KLASSE: HIS 05 08. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 5 (innkl. forside)
Innledning kapittel 4
Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne
ECON2130 Kommentarer til oblig
ECON2130 Kommentarer til oblig Her har jeg skrevet ganske utfyllende kommentarer til en del oppgaver som mange slet med. Har noen steder gått en del utover det som det strengt tatt ble spurt om i oppgaven,
Familiematematikk MATTEPAKKE 3. Trinn
Familiematematikk MATTEPAKKE 3. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Geobrett Hvor mange forskjellige kvadrater kan du finne? Hvor mange kvadrater av ulik størrelse kan du
Nyttige tilleggsverktøy i GeoGebra
Nyttige tilleggsverktøy i GeoGebra Her er en omtale av noen GeoGebra-verktøy som kan være nyttige og arbeidssparende. Ei vanlig GeoGebra-fil har etternavnet ggb, mens et GeoGebraverktøy har etternavnet
EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA1081 EKSAMENSDATO: 11. juni 2007. KLASSE: Ingeniørklasser. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.
Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere
2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) P(B oga)+p(b ogā) P(B A)P(A)+P(B Ā)P(Ā) ST0202 Statistikk for samfunnsvitere Bo Lindqvist
Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort
Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer
Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort
Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer
TMA4240 Statistikk Høst 2018
TMA4240 Statistikk Høst 2018 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 5 Dette er andre av tre innleveringer i blokk 2. Denne øvingen skal oppsummere pensum
Eksamensoppgave i ST0103 Brukerkurs i statistikk
Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Jarle Tufto Tlf: 99 70 55 19 Eksamensdato: 3. desember 2016 Eksamenstid (fra til): 09:00-13:00
EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Tirsdag
EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER
Høgskolen i Sør-Trøndelag Avdeling Trondheim Økonomisk Høgskole EKSAMENSOPPGAVE
Høgskolen i Sør-Trøndelag Avdeling Trondheim Økonomisk Høgskole EKSAMENSOPPGAVE MET1002 Statistikk Grunnkurs 7,5 studiepoeng Torsdag 14. mai 2007 kl. 09.00-13.00 Faglærer: Sjur Westgaard (97122019) Kontaktperson
Tilfeldighetenes spill Undervisningsopplegg for ungdomstrinnet
Tilfeldighetenes spill Undervisningsopplegg for ungdomstrinnet Utviklet med støtte fra Bakgrunn og innledning Tilfeldighetenes spill var et eksperiment som ble kjørt på Akvariet i Bergen under Forskningsdagene
Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk
MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilnærming av binomiske sannsynligheter Konfidensintervall Ørnulf Borgan Matematisk institutt Universitetet i Oslo
Tillegg til kapittel 2 Grunntall 9
18.09.2013 Kvadratsetningene Tillegg til kapittel 2 Grunntall 9 Nytt læringsmål i revidert læreplan 2013 Mål for det du skal lære: kunne bruke kvadratsetningene til å multiplisere to parentesuttrykk Bjørn
Prøvemidtveiseksamen TMA4240 Statistikk H2004
Prøvemidtveiseksamen TMA4240 Statistikk H2004 Lagt ut 21.09.2004, løsningsforslag tilgjengelig 04.10.2004. Tilatte hjelpemiddel: Bestemt enkel kalkulator, dvs. HP30S. Tabeller og formler i statistikk (Tapir).
2P kapittel 4 Statistikk Løsninger til oppgavene i læreboka
P kapittel 4 Statistikk Løsninger til oppgavene i læreoka 4.1 a Det er 5 + 8 = 13 elever som ruker inntil 119 minutter på sosiale medier. Da er det 5 13 = 1 elever som ruker 10 179 minutter på sosiale
Sannsynlighet og statistikk
Sannsynlighet og statistikk Innhold Kompetansemål Sannsynlighet og statistikk, S... 3. Stokastiske variabler og sannsynlighetsfordelinger... 3 Stokastisk forsøk... 3 Definisjon av sannsynlighet og sannsynlighetsmodell...
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 5: Sannsynlighetsfordelinger for diskrete variabler Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variabler (5.1) Dersom vi til hvert utfall av eksperimentet
Grunnleggende kurs i Excel. Langnes skole
Grunnleggende kurs i Excel Langnes skole Noen viktige begreper Kolonne Celler - Alle cellene har egne navn, f.eks A1 Kolonner Rader Arkfaner rad - start hver oppgave i en ny fane - kan velge så ark du
EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 10. juni Ingeniørutdanning. TID: kl EMNEANSVARLIG: Hans Petter Hornæs
KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Statistikk. Rea181 EKSAMENSDATO: 1. juni 28 KLASSE: Ingeniørutdanning. TID: kl. 9. 13.. EMNEANSVARLIG: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl.
Bruk SUMMER-funksjonen i formelen i G9. Oppgave 14. H. Aschehoug & Co Side 1
Repetisjon fra kapittel 2: Summere mange tall, funksjonen SUMMER() Regnearket inneholder en mengde innebygde funksjoner. Vi skal her se på en av de funksjonene vi oftest bruker. Funksjonen SUMMER() legger
ST1101/ST6101 Sannsynlighetsregning og statistikk Vår 2019
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST/ST Sannsynlighetsregning og statistikk Vår 9 Oppgaver fra boka 3..9 Ved et terningkast anses utfallet antall øyne lik for
Innledning kapittel 4
Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 2: Beskrivende analyse og presentasjon av data for én variabel Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start 2 Grafisk
Sannsynlighetsregning og kombinatorikk
Sannsynlighetsregning og kombinatorikk Introduksjon Formålet med sannsynlighet og kombinatorikk er å kunne løse problemer i statistikk, somoftegårutpååfattebeslutninger i situasjoner der tilfeldighet rår.
1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger
1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk
Regneregler for forventning og varians
Regneregler for forventning og varians Det fins regneregler som er til hjelp når du skal finne forventningsverdier og varianser. Vi skal her se nærmere på disse reglene. Vi viser deg også hvordan reglene
Sannsynlighet og statistikk
Sannsynlighet og statistikk Arkeologiske utgravinger har vist at mennesker har underholdt seg med forskjellige spill i tusener av år. Terninger fra India som ble brukt i spill, er faktisk 5000 år gamle.
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010
ÅMA0 Sannsynlighetsregning med statistikk, våren 00 ÅMA0 Sannsynlighetsregning med statistikk våren 00 Praktisk om kurset Foreleser og faglig ansvarlig: Bjørn H. Auestad (kontor: E-536). Undervisningstider:
Løsningsforslag til obligatorisk oppgave i ECON2130 våren 2014 av Jonas Schenkel.
Løsningsforslag til obligatorisk oppgave i ECON2130 våren 2014 av Jonas Schenkel. Det er i flere av oppgavene flere fremgangsmåter. Om din måte var riktig burde komme frem i rettingen. A Både X og Y tilfredsstiller
7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44
1 7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile
MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12.
MASTR I IDRTTSVITNSKAP 2014/2016 Utsatt individuell skriftlig eksamen i STA 400- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator ksamensoppgaven består av 10 sider inkludert
MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem
MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Øvelsesoppgave i: ECON2130 Statistikk 1 Dato for utlevering: Mandag 22. mars 2010 Dato for innlevering: Fredag 9. april 2010 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Innleveringssted: Ved siden av SV-info-senter
STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler
STK1000 Uke 36, 2016. Studentene forventes å lese Ch 1.4 (+ 3.1-3.3 + 3.5) i læreboka (MMC). Tetthetskurver Eksempel: Drivstofforbruk hos 32 biler Fra histogram til tetthetskurver Anta at vi har kontinuerlige
Normal- og eksponentialfordeling.
Ukeoppgaver i Statistikk, uke 8 : Normal- og eksponentialfordeling. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 8 I løpet av uken blir løsningsforslag lagt
4: Sannsynlighetsregning
Plan for hele året: - Kapittel 5: Januar - Kapittel 6: Februar - Kapittel 7: Februar/mars 4: Sannsynlighetsregning - Kapittel 8: Mars/april - Repetisjon: April/mai - Økter, prøver, prosjekter: Mai - juni
Fasit for tilleggsoppgaver
Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x
EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 16. juni 2009. KLASSE: HIS 07 10. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 innkl. forside)
6 Sannsynlighetsregning
MATEMATIKK: 6 Sannsynlighetsregning 6 Sannsynlighetsregning 6.1 Forsøk. Utfallsrom. Sannsynlighet (sjanse). Sannsynlighetsmodell Ved ett kast med en terning vet vi at terningen vil vise enten ett, to,
Sannsynlighetsregning og Statistikk
Sannsynlighetsregning og Statistikk Leksjon 2. Leksjon 2 omhandler begreper og regneregler for sannsynligheter. Dette er behandlet i kapittel 3.1 og 3.2 i læreboka. Du bør når du har fullført leksjon 2
Et lite notat om og rundt normalfordelingen.
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 22 18 96, b 99 40 33 30 Eksamensdato: 30. november 2017 Eksamenstid
år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9
TMA424 Statistikk Vår 214 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II Oppgave 1 Matlabkoden linearreg.m, tilgjengelig fra emnets hjemmeside, utfører
TMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
Statistisk behandling av kalibreringsresultatene Del 1. v/ Rune Øverland, Trainor Elsikkerhet AS
Statistisk behandling av kalibreringsresultatene Del 1. v/ Rune Øverland, Trainor Elsikkerhet AS Denne artikkelserien handler om statistisk behandling av kalibreringsresultatene. I de fleste tilfeller
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: STK1000 Innføring i avvendt statistikk Eksamensdag: Onsdag 7. oktober 2015 Tid for eksamen: 11.00 13.00 Oppgavesettet er på
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) =P(B oga)+p(b
Eksamen høsten 2016 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 6,3 millioner 6,3 1 000 000 6,3 10,63 10 10 6,63 10 7 6 16,5 10 1,65 10 10 8 8 1,65
ST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave 3 Pensumoversikt Kap. 2 Beskrivende statistikk,
Basisoppgaver til 2P kap. 3 Statistikk
Basisoppgaver til 2P kap. 3 Statistikk 3.1 Frekvenstabell og histogram 3.2 Kumulativ frekvens 3.3 Median 3.4 Gjennomsnitt 3.5 Spredningsmål 3.6 Diagrammer (Det er ikke basisoppgaver til 3.7 Statistiske
Kort overblikk over kurset sålangt
Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente
Prosent- og renteregning
FORKURSSTART Prosent- og renteregning p prosent av K beregnes som p K 100 Eksempel 1: 5 prosent av 64000 blir 5 64000 =5 640=3200 100 p 64000 Eksempel 2: Hvor mange prosent er 9600 av 64000? Løs p fra
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON30- Statistikk Dato for utlevering: 5.03.06 Dato for innlevering: 05.04.06 innen kl. 5:00 Innleveringssted: Ekspedisjonen i. etasje ES hus
Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave. Pensumoversikt. Forelesninger og øvinger
2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 3 4 Pensumoversikt Forelesninger og øvinger
Når du har arbeidet deg gjennom dette kapittelet, er målet at du skal kunne
2 Statistikk Innhold Kompetansemål Statistikk, Vg2P... 1 Modul 1: Statistisk undersøkelse... 2 Modul 2: Presentasjon av tallmateriale... 4 Modul 3: Sentralmål... 12 Modul 4: Spredningsmål... 15 Modul 5:
ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.
ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling
ST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave 3 Pensumoversikt Kap. 2 Beskrivende statistikk,
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Øvelsesoppgave i: ECON30 Dato for utlevering: 7.03.04 Dato for innlevering: 07.04.04 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Innleveringssted: Ekspedisjonen, etasje innen kl 5:00 Øvrig informasjon: Denne
ÅMA110 Sannsynlighetsregning med statistikk, våren 2008
ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,
Andre sett med obligatoriske oppgaver i STK1110 høsten 2010
Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Dette er det andre settet med obligatoriske oppgaver i STK1110 høsten 2010. Oppgavesettet består av fire oppgaver. Det er valgfritt om du vil
SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B
SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi